The Diversity of Scarabaeid Beetles (Scarabaeidae: Coleoptera) in The Lowland Rainforest Ecosystem of Sorong Nature Tourism Park, West Papua, Indonesia

https://doi.org/10.22146/jtbb.78230

La Ode Fitradiansyah(1), Tri Atmowidi(2*), Windra Priawandiputra(3), Sih Kahono(4)

(1) Student of Animal Biosciences Study Program, Graduate School, IPB University
(2) Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Campus Dramaga, Bogor 16680
(3) Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Campus Dramaga, Bogor 16680
(4) Research Centre for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong 16912, Indonesia
(*) Corresponding Author

Abstract


Scarabaeid beetles have an essential role in forest ecosystems, such as nutrient recycling, seed dispersal, forest regeneration, controlling parasite, and reducing carbon emissions. Until now, there has been no publication on scarabaeid beetle diversity in the lowland rainforest ecosystem of Papua, Indonesia. This study aims to measure the diversity of scarabaeid beetles in the lowland rainforest ecosystem of Sorong Nature Tourisme Park (SNTP), West Papua, Indonesia. Determination of study sites used in this study was using the purposive sampling method in three habitat types i.e., rehabilitation zone, conservation zone, and protection zone using baited dung traps (type A, B, and C dung traps), light trap, and active sampling. The fresh cow and human feces baits were used for dung traps that was replaced every 24 hours (68 repetitions for 68 days) in each habitat. Results showed a total of 30 individuals belonging to 13 species of scarabaeid beetles were collected. Onthophagus has the highest species richness (5 species) and the low species richness were Aphodius sp., Anomala sp., and Adoretus sp. (1 species). The protection zone has the highest diversity index (H’=2.09), followed by the conservation zone (H’=2), and rehabilitation zone (H’=0.5). Based on trap type, dung trap collected the most beetle species (9 species), followed by light trap (6 species), and active sampling (2 species). Based on Pearson correlation, soil pH significantly correlated with beetle abundance. This study was the first report of scarabaeid beetles in the West Papua, Indonesia.


Full Text:

PDF


References

Abot, A.R. et al., 2012. Abundance and diversity of coprophagous beetles (Coleoptera: Scarabaeidae) caught with a light trap in a pasture area of the Brazilian Cerrado. Studies on Neotropical Fauna and Environment, 47(1), pp.53-60. doi: 10.1080/01650521.2012.662846.

Allegro, G. & Sciaky, R., 2003. Assesing the potential role of ground beetles as bioindicators. Forest Ecology and Management, 175, pp.275-284. doi: 10.1016/S0378-1127(02)00135-4.

Arnett, J.R.H. et al., 2002. American beetles, volume II: Polyphaga: Scarabaeoidea through Curculionoidea. CRC Press. doi: 10.1201/9781420041231.

Balthasar, V., 1963. Monographie der Scarabaeidae und Aphodiidae der palaearktischen und orientalischen Region. Band 1, 2 und 3, Verlag der Tschechoslawakischen Akademie der Wissennschaften, Prague. doi: 10.4039/Ent97446-4.

Beljai, M., 2017. Characteristics of Natural Tourism Potential in the Sorong Nature Park Area. AGRICOLA, 7(1), pp.68-89. doi: 10.30574/wjarr.2020.6.3.0163.

BKSDA West Papua, 2008. The KSDA book information field regions I Sorong. Center for the conservation of the resources natural of West Papua. Sorong.

Bouchard, P. et al., 2011. Family-group names in Coleoptera (Insecta). ZooKeys, 88, pp.1-972. doi: 10.3897/zookeys.88.807.

Chown, S.L., 2001. Physiological variation in insects: hierarchical levels and implications. J Insect Physiol, 47, pp.649–60. doi: 10.1016/S0022-1910(00)00163-3.

Creedy, T.J. & Mann, D.J., 2012. Identification guide to the Scarabaeinae beetles of Cusuco National Park, Honduras. UK: Operation Wallacea.

Clarke, K.R., 1993. Non-parametric multivariate analyses of changes in commmunity structure. Austral Ecology, 18(1), pp.117-143. doi: 10.1111/j.1442-9993.1993.tb00438.x.

Clarke, K. R. & Ainsworth, M., 1993. A method of linking multivariate community structure to environmental variables. Marine Ecology-Progress Series, 92, pp.205-205. doi: 10.3354/meps092205.

Cox, C.B., Moore, P.D. & Ladle, R.J., 2016. Biogeography: An Ecological and Evolutionary Approach 9th Edition. New Jersey, US: Wiley-Blackwell.

Errouissi, F. et al., 2004. Effects of the attractiveness for dung beetles of dung pat origin and size along a climatic gradient. Environmental Entomology, 33(1), pp.45-53. doi: 10.1603/0046-225x-33.1.45.

Firake, D.M. et al., 2013. First report of elephant beetles in the genus Xylotrupes hope (Coleoptera: Scarabaeidae) attacking guava. The Coleopterists Bulletin, 67(4), pp.608–610. doi: 10.1649/0010-065x-67.4.608.

Garcia-Lopez, A. et al., 2011. Sampling scarab beetles in tropical forests: The effect of light source and night sampling periods. Journal of Insect Science, 11(1), 95. doi: 10.1673/031.011.9501.

Halffter, G. & Edmonds, W. D., 1982. The nesting behavior of beetles (Scarabaeinae)-an ecological and evolutive approach. Mexico D.F: Instituto de Ecologia.

Hammer, Ø. et al., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1).

Hanski, I. & Cambefort, Y., 1991. Beetles ecology. Princeton University Press,.

Hutcheson, K., 1970. A test for comparing diversities based on the shannon formula. J. Theor Biol., 29(1), pp.151-154. doi: 10.1016/0022-5193(70)90124-4.

Juniarti, F. & Rusniarsyah, L., 2022. Diversity of Soil Surface Interface Insects in Three Land Use Types in Sintang District, West Kalimantan. IOP Conf. Series: Earth and Evironmental Science, 959 012026. doi: 10.1088/1755-1315/959/1/012026.

Kahono, S. & Ubaidillah, R., 2003. Species Richness of Parasitic Wasp Superfamily Chalcidoidea (Insecta: Hymenoptera) at North Kayan Mentarang National Park, East Kalimantan, Indonesia. In Joint Biodiversity Expedition in Kayan Mentarang National Park. Jakarta, IDN: Ministry of Forestry – WWF Indonesia – ITTO.

Kahono, S. & Setiadi, L. K., 2007. Diversity and Vertical Distribution of Scarabaeidae Stool Weevil (Coleoptera: Scarabaeidae) In Wet Tropical Forest Mountains Gede Pangrango National Park, West Java, Indonesia. Biodiversitas, 8(4), pp.118-121. doi: 10.13057/biodiv/d080209.

Latifa, H., Atmowidi, T. & Noerdjito W.A. 2019. Biodiversity of coprophagous beetles in organic and non-organic farming. Journal of Biological Resources 5(2), pp.52-57. doi: 10.29244/jsdh.5.2.52-57.

Lobo, J.M., Lumaret, J.P. & Jay-Robert P., 1998. Sampling beetles in the French Mediterranean area: effects of abiotic factors and farm practices. Pedobiologia (Jena), 42, pp.252–66.

Magurran, A., 1988. Ecological diversity and its measurement. New Jersey: Princeton University Press. doi: 10.1007/978-94-015-7358-0.

Malina, V.C. & Junardi, K., 2018. Species of beetles (Coleoptera: Scarabaeidae) in Gunung Palung National Park, West Kalimantan. Protobiont, 7(2), pp.47-54. doi: 10.26418/protobiont.v7i2.25301.

Marshall, A.J. & Beehler, B.M., 2011. Ecology of Indonesian Papua Part One. US: Tuttle Publishing

Milotić, T. et al., 2018. Dung beetle assemblages, dung removal and secondary seed dispersal: data from a large-scale, multi-site experiment in the Western Palaearctic. Frontiers of Biogeography, 10, pp.1-2. doi: 10.21425/f5101-237289.

Ministry of Agriculture [MoA]., 1981 Decree of the Ministry of Agriculture No. 397/Kpts/Um/5/1981, 1 February 1981, Ascertainment of Sorong Natural Tourism Park.

Moy, M.S., Mardiastuti, A. & Kahono, S., 2016. Response of beetle communities (Coleoptera: Scarabaeidae) across gradient of disturbance in the tropical lowland forest of Buton, Sulawesi. Zoo Indonesia, 25(1), pp.58-70. doi: 10.52508/zi.v25i1.3024.

Muhaimin, A.M.D., Hazmi, I.R. & Yaakov, S., 2015. Colonisation of beetles (Coleoptera: Scarabaeidae) of smaller body size in the Banri Forest Reserve, Selangor, Malaysia: A model sampling site for a secondary forest area. Pertanika J Trop Agric, 38(4), pp.531-532.

Nichols, E. et al., 2007. Global dung beetle response to tropical forest modification and fragmentation: A quantitative literature review and metaanalysis. Biological conservation, 137, pp.1-19. doi: 10.1016/j.biocon.2007.01.023.

Nichols, E. et al., 2008. Ecological functions and ecosystem services provided by Scarabaeinae beetles. Biol Conserv, 141, pp.1461– 74. doi: 10.1016/j.biocon.2008.04.011.

Priwandiputra, W. et al., 2020. Dung beetle assemblages in lowland forests of Pangandaran Nature Reserve, West Java, Indonesia. Biodiversitas, 21(2), pp.497-504. doi: 10.13057/biodiv/d210210.

Putri, R., Dahelmi & Herwina H., 2014. Dung Beetle species (Coleoptera: Scarabaeidae) at Lembah Harau Nature Reserve, West Sumatra. J Biol UA, 3(2), pp.35-140. doi: 10.25077/jbioua.3.2.%25p.2014.

Rizwangul, A. et al., 2018. Feeding preference and taxis behavior of adult Holotrichia oblita (Coleoptera: Scarabaeidae) on three plants. Acta Entomologica Sinica, 61(5), pp.585-595.

Sa’roni, S.M. et al., 2020. Diversity of dung beetle (Coleoptera: Scarabaeidae) in oil palm agropasture ecosystem in West Kotawaringin Regency, Central Kalimantan, Indonesia. IOP Conference Series: Earth and Environmental Science, 468(1), 12006. doi: 10.1088/1755-1315/468/1/012006.

Shahabuddin, 2010. Diversity and community structure of beetles (Coleoptera: Scarabaeidae) across a habitat disturbance gradient in Lore Lindu National Park, Central Sulawesi. Biodiversitas, 11(1), pp.29-33. doi: 10.13057/biodiv/d110107.

Simba, L.D. et al., 2022. Interactive effects of rangeland management and rainfall on dung beetle diversity. Biodiversity and Conservation, 31, pp.2639-2656. doi: 10.1007/s10531-022-02448-z.

Slade, E.M. et al., 2014. Can cattle grazing in mature oil palm increase biodiversity and ecosystem service provision?. The Planter, 90(1062), pp.655-665.

Sowig, P., 1995. Habitat selection and offspring survival rate in three paracoprid beetles: the influence of soil type and soil moisture. Ecography (Cop), 18, pp.147–54. doi: 10.1111/j.1600-0587.1995.tb00335.x.

Sowig, P., 1996. Brood care in the beetle Onthophagus vacca (Coleoptera: Scarabaeidae): the effect of soil moisture on time budget, nest structure, and reproductive success. Ecography (Cop), 19, pp.254–258. doi: 10.1111/j.1600-0587.1996.tb01252.x.

Sweke, E.A. et al., 2013. Fish diversity and abundance of Lake Tanganyika: comparison between protected area (Mahale Mountains National Park) and unprotected areas. International Journal of Biodiversity, 2013(3), pp.516-522. doi: 10.1155/2013/269141.

Tsunoda, T., Suzuki, J.I. & Kaneko, N., 2017. Fatty acid analyses to detect the larval feeding preferences of an omnivorous soil-dwelling insect, Anomala cuprea (Coleoptera: Scarabaeidae). Applied Soil Ecology, 109, pp.1–6. doi: 10.1016/j.apsoil.2016.09.020.

Ueda, A. et al., 2017. List of beetles (Coleoptera: Coprophagous group of Scarabaeoidea) collected in lowland near Balikpapan, East Kalimantan, Indonesia. Bulletin of FFPRI, 16(2), pp.109-119.

Wardhaugh, C.W., Stone, M.J. & Stork, N.E., 2018. Seasonal variation in a diverse beetle assemblage along two elevational gradients in Australian Wet Tropics. Scientific Reports, 8(1), 8559. doi: 10.1038/s41598-018-26216-8.



DOI: https://doi.org/10.22146/jtbb.78230

Article Metrics

Abstract views : 406 | views : 303

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)