Isolation and Characterization of Rhizospheric Bacteria Associated with Canna Plant for Production of Maltooligosaccharide Amylase
Rina Dwi Agustiani(1), Oedjijono Oedjijono(2*), Nanik Rahmani(3), Nuraeni Ekowati(4)
(1) Faculty of Biology, University of Jenderal Soedirman, Jalan dr. Soeparno 63 Purwokerto 53122, Indonesia; Department of Biology, Faculty of Science and Technology, International Women University, Bandung 40173, Indonesia.
(2) Faculty of Biology, University of Jenderal Soedirman, Jalan dr. Soeparno 63 Purwokerto 53122, Indonesia.
(3) Center for Applied Microbiology Research, Research Institute for Life and Environmental Sciences, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911, Indonesia.
(4) Faculty of Biology, University of Jenderal Soedirman, Jalan dr. Soeparno 63 Purwokerto 53122, Indonesia.
(*) Corresponding Author
Abstract
The objectives of the study were to isolate amylolytic bacteria from the rhizosphere and plant tissue of Canna edulis Ker., as well as litter; to know oligosaccharide compounds produced from starch hydrolyzed by the bacterial enzymes, and to identify the amylolytic bacteria based on phenetic and 16S rRNA gene sequences. From the rhizosphere, Canna plant tissue, and litters obtained thirty-two amylolytic bacterial isolates. Eight isolates (TH6, TH7, T5, T10, D2, D3, A3, S1) produced high clear zone diameters ranging from 18-30 mm; especially an isolate T10, which was consistent in producing a total clear zone diameter of 20 mm. The hydrolysate of starch hydrolysed by the T10 amylase resulted in three oligosaccharide compounds maltotriose, maltotetraose, and maltopentose. The amylase activity of isolate T10 was optimal at a temperature of 40°C and pH at 0.801 U/mL. The isolate T10 was identified as a species member of Bacillus toyonensis based on phenotyphic characterization and 16S rDNA gene sequencing analysis with a similarity value of 99.93%
Keywords
Full Text:
PDFReferences
Abdalla, M. et al., 2021. One-pot production of maltoheptaose (DP7) from starch by sequential addition of cyclodextrin glucotransferase and cyclomaltodextrinase. Enzyme and Microbial Technology, 149 (6), 109847. doi: 10.1016/j.enzmictec.2021.109847
Abdul-Manas, N.H. et al., 2014. The characterization of an alkali-stable maltogenic amylase from Bacillus lehensis G1 and improved maltooligosaccharide production by hydrolysis suppression. PLoS ONE 9(9). doi: 10.1371/journal.pone.0106481
Afifah, N., Putri, D.H. & Irdawati, 2018. Isolation and identification of endophytic bacteria from the Andalas plant stem (Morus macroura Miq.). Bioscience, 2(1), pp.72-75.
Agamennone, V. et al., 2019. Genome annotation and antimicrobial properties of B. toyonensis VU-DES13, isolated from the Folsomia candida gut. Entomologia Experimentalis et Aplicata 167, pp:269-285. doi: 10.1111/eea.12763.
Asgher, M. et al., 2007. A thermostable α-amylase from moderately thermophilic Bacillus subtilis strain for starch processing. J Food Eng., 79, pp.950-955.
Bajpai, B., Chaudhary, M. & Saxena, J., 2015. Production and characterization of α-Amylase from an extremely halophilic archaeon, Haloferax sp. HA10. Food Technol Biotechnol., 53(1), pp.11-17, doi: 10.17113/ftb.53.01.15.3824
Ben-Ali, M. et al., 2006. Thermostability enhancement and change in starch hydrolysis profile of the maltohexaose-forming amylase of Bacillus stearothermophilus US100 strain. Biochemical Journal, 394(1), pp.51–56. doi: 10.1042/BJ20050726
Behal, A. et al., 2016. Characterization of alkaline α- amylase from Bacillus sp. AB 04. IJAB, 8(1), pp.80-83.
De-Moraes-Russo, C.A. & Selvatti, A.P., 2018. Bootstrap and rogue identification tests for phylogenetic analyses. Molecular Biology and Evolution, 35(9), pp.2327–2333. doi: 10.1093/molbev/msy118.
Dey, G. et al., 2002. Purification and characterization of maltooligosaccharide-forming amylase from Bacillus circulans GRS 313. Journal of Industrial Microbiology and Biotechnology, 28(4), pp.193-200. DOI: 10.1038/sj/jim/7000220.
Ding, N. et al., 2021. Carbohydrate-binding module and linker allow cold adaptation and salt tolerance of maltopentaose-forming amylase from marine bacterium Saccharophagus degradans 2-40T. Frontiers in Microbiology, 12(7), pp.1–14. doi: 10.3389/fmicb.2021.708480.
Divakaran, D., Chandran, A. & Pratap-Chandran, R., 2011. Comparative study on production of α-amylase from Bacillus licheniformis strains. Brazilian Journal of Microbiology, 42(4), pp.1397–1404. doi: 10.1590/S1517-83822011000400022.
Duan, Y. et al., 2021. Isolation, identification, and antibacterial mechanisms of Bacillus amyloliquefaciens QSB-6 and its effect on plant roots. Frontiers in Microbiology, 12:746799. doi:10.3389/fmicb.2021.746799.
El-Fallal, A. et al., 2012. Starch and microbial α-amylases: from concepts to biotechnological applications. In Carbohydrates-Comprehensive Studies on Glycobiology and Glycotechnology, Intech Open Science, pp.459-488. doi: 10.5772/51571
Gebreyohannes, G., 2015. Isolation and optimization of amylase producing bacteria and actinomycetes from soil samples of Maraki and Tewedros campus, University of Gondar, North West Ethiopia. African Journal of Microbiology Research, 9(31), pp.1877-1882.
Ginting, E.L. et al., 2021. Isolation and identification of thermophilic amylolytic bacteria from Likupang Marine Hydrothermal, North Sulawesi, Indonesia. Biodiversitas, 22(6), pp.3326-3332. doi: 10.13057/biodiv/d220638.
Gupta, R. et al., 2003. Microbial α-amylases: A biotechnological perspective. Process Biochemistry, 38(11), pp.1599–1616. doi: 10.1016/S0032-9592(03)00053-0.
Hasanah, U. et al., 2020. Amylolytic activity of bacterial strains isolated from sago pulp of the traditional sago industry in Palopo, South Sulawesi. AIP Conference Proceedings 2231, 040073 (2020), https://doi.org/10.1063/5.0002487.
Hellmuth, K. & van-den Brink, J.M., 2013. Microbial production of enzymes used in food applications. In Microbial Production of Food Ingredients, Enzymes and Nutraceuticals. Woodhead Publishing Limited. doi: 10.1533/9780857093547.2.262.
Jang, E.Y. et al., 2020. Amylase-producing maltooligosaccharide provides potential relief in rats with loperamide-induced constipation. Evidence-Based Complementary and Alternative Medicine. doi: 10.1155/2020/5470268.
Jiménez, G. et al., 2013. Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations. Systematic and Applied Microbiology 36(6), pp.383-391. doi: 10.1016/j.syapm.2013.04.008.
Lim, S.J. & Oslan, S.N., 2021. Native to designed: Microbial α-Amylases for industrial applications. PeerJ, 9, pp.1–30. doi: 10.7717/peerj.11315.
Logan, N.A. & De Vos, P., 2009. Genus I. Bacillus Cohn 1872. In Bergey’s Manual of Systematic Bacteriology Second Edition Volume Three The Firmicutes. Springer, Springer Dordrecht Heidelberg London New York. pp.21-127. doi: 10.1007/b92997.
Luang-In, V. et al., 2019. Isolation and identification of amylase-producing bacteria from soil in Nasinuan community forest, Maha Sarakham, Thailand. Biomedical & Pharmacology Journal, 12(3), pp.1061-1068.
Luo, J-c. et al., 2021. Characterization of a deep sea Bacillus toyonensis isolate: genomic and pathogenic features. Frontiers in Cellular and Infection Microbiology, 11, 629116. doi: 10.3389/fcimb.2021.629116.
Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), pp.426–428. doi: 10.1021/ac60147a030
Moradi, M. et al., 2014. Screening and isolation of powerful amylolytic bacterial strains. International Journal of Current Microbiology and Applied Sciences, 3(2), pp.758–768.
Naidu, K. et al., 2019. Purification and characterization of α-amylase from Paenibacillus sp. D9 and Escherichia coli recombinants. Biocatalysis and Biotransformation, 38(1), pp.24-34. doi: 10.1080/10242422.2019.1628738.
Nisa, I.K. et al., 2021. The potential of amylase enzyme activity against bacteria isolated from several lakes in East Java, Indonesia. Biodiversitas, 22(1), pp.42-49.
Ochoa-Solano, J.L. & Olmos-Soto, J., 2006. The functional property of Bacillus for Shrimp feeds. Food Microbiology 23(6), pp.519–525, doi: 10.1016/j.fm.2005.10.004.
Ozturk, H.U. et al., 2014. A maltooligosaccharides producing α-amylase from Bacillus subtilis SDP1 isolated from rhizosphere of Acacia cyanophylla Lindley. Food Biotechnology, 28(4), pp.309-332. doi: 10.1080/08905436.2014.963600.
Pan, S. et al., 2017. Maltooligosaccharide-forming amylase: Characteristics, preparation, and application. Biotechnology Advances, 35(5), pp.619–632. doi: 10.1016/j.biotechadv.2017.04.004.
Putri, W.D.R. et al., 2012. Isolation and characterization of amylolytic lactic acid bacteria during growol fermentation, an Indonesian traditional food. Jurnal Teknologi Pertanian, 13(1), pp.52-60.
Rahmani, N. et al., 2013. Production of maltooligosaccharides from black potato (Coleus tuberosusi) starch by α-amylase from a marine bacterium (Brevibacterium sp.). Microbiology Indonesia, 7(3), pp.129-136. doi: 10.5454/mi.7.3.6.
Rahmani, N. et al., 2018. Xylanase and feruloyl esterase from actinomycetes cultures could enhance sugarcane bagasse hydrolysis in the production of fermentable sugars. Bioscience Biotechnology and Biochemistry, 82(5), pp.904–915. doi: 10.1080/09168451.2018.1438169.
Santos, F.D.S. et al., 2018. Bacillus toyonensis improves immune response in the mice vaccinated with recombinant antigen of bovine herpesvirus type 5. Benef. Microbes, 9(1), pp.133–142. doi: 10.3920/BM2017.0021.
Sivaramakrishnan, S. et al., 2006. α-Amylase from microbial sources: An overview on recent developments. Food Technol. Biotechnol., 44 (2), pp.173–184.
Smibert, R.M. & Krieg, N.R., 1981. General Characterization. In Manual Methods for General Bacteriology. American Society for Microbiology, Washington.
Subagiyo, Djarod, M.S.R. & Setyati, W.A., 2017. Potensi ekosistem mangrove sebagai sumber bakteri untuk produksi protease, amilase, dan selulase. Jurnal Kelautan Tropis, 20(2), pp.106–111.
Vaseekaran, S., Balakumar, S. & Arasaratnam, V., 2010. Isolation and identification of a bacterial strain producing thermostable α- amylase. Tropical Agricultural Research, 22 (1), pp.1-11. doi: 10.4038/tar.v22i1.2603.
Vijayalakshmi, et al., 2012. Isolation and characterization of Bacillus subtilis KC3 for amylolytic activity. International Journal of Bioscience, Biochemistry and Bioinformatics, 2(5), pp.336-341. doi: 10.7763/IJBBB.2012.V2.128.
Wang, J. et al., 2021. Toyoncin, a novel leaderless bacteriocin that is produced by Bacillus toyonensis XIN-YC13 and specifically targets B. cereus and Listeria monocytogenes. Applied and Environmental Microbiology, 87(12), e00185-21. doi: 10.1128/AEM.00185-21.
Yopi, et al., 2017. Isolation and characterization of mannanase, xylanase, and cellulase from marine bacteria Bacillus sp. Biofarmasi Journal of Natural Product Biochemistry, 15(1), pp.15–20. doi: 10.13057/biofar/f150103.
Yufinta, C.P., Julyantoro, P.G.S. & Pratiwi, M.A., 2018. Pengaruh penambahan Bacillus sp. terhadap kelulushidupan pasca larva udang Vannamei (Litopenaeus vannamei) yang terinfeksi vibriosis. Current Trends in Aquatic Science, 1(1), pp.89-95.
Zhao, C. et al., 2017. Functional properties, structural studies and chemo-enzymatic synthesis of oligosaccharides. Trends in Food Science and Technology, 66, pp.135–145. doi: 10.1016/j.tifs.2017.06.008.
Zhuang, Y., Zhou, X. & Wang, S., 2012. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Plant Systematics and Evolution, 298(7), pp.3389–3402. doi: 10.2503/jjshs.58.977.
Zubaidah, A. et al., 2019. Screening bakteri selulolitik dan amilolitik pada rumen sapi sebagai kandidat probiotik pada budidaya ikan secara in vitro. Jurnal Riset Akuakultur, 14(4), pp.261-271.
DOI: https://doi.org/10.22146/jtbb.78346
Article Metrics
Abstract views : 1071 | views : 1891Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)