Bioremediation of Mercury- Polluted Water in Free Water Surface-Constructed Wetland System by Euglena sp. and Echinodorus palifolius (Nees & Mart.) J.F. Macbr.
Dwi Umi Siswanti(1), Budi Setiadi Daryono(2), Himawan Tri Bayu Murti Petrus(3), Eko Agus Suyono(4*)
(1) Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan Sekip Utara, Yogyakarta 55281, Indonesia
(2) Biology, Universitas Gadjah Mada, Jl. Teknika Selatan Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemical Engineering (Sustainable Mineral Processing Research Group), Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta 55281, Indonesia
(4) Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
Mercury accumulation in the aquatic environment can be highly harmful. The body takes mercury vapor through the lungs, then absorbs mercury metal through the digestive system, and then the blood carries the metal to the brain. Bioremediation is the process of breaking down or converting harmful compounds into non-toxic forms, which can be accomplished through phytoremediation or phycoremediation. The goal of this study was to examine the growth and anatomy of Euglena sp. after being cultured in the mercury-containing FWS-CW waste treatment system. The ability of Euglena sp. and Echinodorus palifolius to bioremediate mercury at different concentration as well as association and non-association treatments. This study was carried out in a bioreactor known as FSW-CW (Free Water Surface-Constructed Wetlands). Plant growth (plant height and number of leaves), chlorophyll content, diameter of root and petiole, metaxylem diameter of root, petiole, and leaves, cortical thickness of root and leaves, and petiole anatomy were all measured. Water temperature, pH, salinity, and light intensity were all measured as environmental parameters. Mercury treatment reduced Euglena density (183.5 cells. mL-1103 in control and 12.6 cells. mL-1103 in 100 ppm mercury treatment) and number of E. palifolius leaves, but not plant height and chlorophyll. Root and petiole diameters were affected by the mercury treatment, petiole diameter decreased unless the concentration was 100 ppm, whereas root diameter actually increased. The diameter of the root metaxylem increased, but the petioles and leaves, as well as the thickness of the root cortex, did not provide a significant response. The growth of E. palifolius was still optimal in the presence of Euglena in mercury-containing medium.
Keywords
Full Text:
PDFReferences
Abad, S.Q., Rodriguez-Gonzales, P. & Lonso, J.I.G., 2016. Evidence of the direct adsoption of mercury in human hair during occupational exposure to mercury vapour. Journal of Trace Elements in Medicine and Biology, 36, pp. 16-21. doi: 10.1016/j.jtemb.2016.03.012.
Abdelfattah, A. et al., 2023. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environmental Science Ecotechnology, 13, 100205. doi: 10.1016/j.ese.2022.100205.
Ahmed, H. & Hader, D., 2010. A Fast Algals Bioassay for Assessment of Copper Toxicity in Water using Euglena gracilis. Journal Applied Phycology, 22, pp. 785-792. doi: 10.1007/s10811-010-9520-z.
Al-Sulaiti, M.M., Soubra, L. & Al-Ghouti, M.A., 2022. The Causes and Effect of Mercury and Methylmercury Contamination in the Marine Environment: A Review. Current Pollution reports, 8, pp. 249-272. doi: 10.1007/s40726-022-00226-7.
Bilgaiyan, P. et al., 2023. Phytoremediation of Wastewater through Implemented Wetland-A Review. E3S Web of Conferences, 405, 04026. doi: 10.1051/e3sconf/202340504026.
Batool, R. et al., 2014. Structural and functional response to metal toxicity in aquatic Cyperus alopecuroides Rottb. Limnologica, 48, pp. 46-56. doi: 10.1016/j.limno.2014.06.002.
Chang, J. et al., 2022. Mechanism controlling the transformation and resistance to mercury (II) for a plant-associated Pseudomonas sp. strain, AN-B15. Journal of Hazardous Materials, 5(432), pp. 127948.doi: 10.1016/j.jhazmat.2021.127948.
Claro, K. C., Oliveira, P.S. & Rico-Gray, V., 2009. Tropical Biology and Conservation Management-Volume V: Ecology, EOLSS Publications.
Danouche, M., Ghachtouli, NE. & Arroussi H.E., 2021. Phycoremediation Mechanisms of Heavy Metals Using Living Green Microalgae: Physicochemical and Molecular Approaches for Enhancing Selectivity and Removal Capacity. Heliyon, 7(7), e07609. doi: 10.1016/j.heliyon.2021.e07609.
Devars, S. et al., 2000. Mercury uptake and removal by Euglena gracilis. Archieve of Microbiology, 174, pp.175-180. doi: 10.1007/s002030000193.
Dixit, R. et al., 2015. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability, 7, pp. 2128-2212. doi: 10.3390/su7022189.
Ekawanti, A. & Krisnayanti, B.D., 2015. Effect of Mercury Exposure on Renal Function and Hematological parameters among Artisanal and Small-scale Gold Miners at Sekotong, West Lombok, Indonesia. Journal of Health and Pollution, 5(9), pp.25-32. doi: 10.5696/2156-9614-5-9.25.
Fu, Y., You, S.& Luo, X., 2021. Areview on the status and development of hyperaccumulator harvest treatment technology. IOP Conf.Series: Earth and Environmental Science, 642, 012113. doi: 1755-1315/643/1/012113.
Gojkovic, Z. et al., 2022. The Role of Microalgae in the Biogeochemical Cycling of Methylmercury 9meHg) in Aquatic Environments. Phycology, 2(3), pp.344-362. doi: 10.3390/phycology2030019.
Hader, D.P. & Hammersbach, R., 2022. Euglena, a Gravitactic Flagellata of Multiple Usages. Life, 12(10), 1522. doi: 10.3390/life12101522.
Hakim, W.H.A. et al., 2023. The Effect of IAA Phytohormone 9Indole-3-Acetic Acid) on the Growth, Lipid, Protein, Carbohydrate, and Pigment Content in Euglena sp. Malaysian Journal of Fundamental and Applied Scince, 19, pp.513-524. doi: 10.11113/mjfas.v19n4.2884.
Hussein, H.S. et al., 2007. Phytoremediation of Mercury and Organomercurial in Chloroplast Transgenic Plants: Enhanced Root Uptake, Translocation to Shoots, and Volatilization. Environmental Science & Technology, 41(24), pp.8439-8446. doi: 10.1021/es070908q.
Indahsari, H.S. et al., 2022. Effect of Salinity and Bioflocculation during Euglena sp. Harvest on the Production of Lipid, Chlorophyll, and Carotenoid with Skeletonema sp. as a Bioflocculant. Journal of Pure and Applied Microbiology, 16(4), pp. 2901-2911. doi : 10.22207/JPAM.16.4.65.
Khatiwada, B. et al., 2020. Proteomic Response of Euglena gracilis to Heavy Metal Exposure – Identification of Key Proteins Involved in Heavy Metal Tolerance and Accumulation. Algal Research, 45, pp. 101764. doi: 10.1016/j.algal.2019.101764.
Knight, R. et al., 2000. Constructed wetland for Pollution Control, IWA Publishing.
Krisnayanti, B.D & Probiyantono, A.S., 2020. Dampak Merkuri pada Kesehatan manusia di Sektor Pertambangan Emas Skala Kecil. Global Opportunities for Long-term Development of Artisanal and Small Scale Gold Mining (ASGM).
Kumar, P.K. et al., 2018. Phycoremediation of Sewage Wastewater and Industrial Flue Gases for Biomass Generation from Microalgae. South African Journal of Chemical Engineering, 25, pp.133-146. doi: 10.1016/j.sajce.2018.04.006.
Kumar, V. et al., 2023. A review on clean-up technologies for heavy metal ions contaminated soil samples. Heliyon, 9, e15472. doi: 10.1016/j.heliyon.2023.e15472.
Li, S. et al., 2023. A review: Responses of Physiological, Morphological and Anatomical Traits to Abiotic Stress in Woody Plants. Forest, 14, pp. 1784. doi: 10.3390/f14091784.
Leong, Y.K. & Chang, Jo-Shu, 2020. Bioremediation of Heavy Metals Using Microalgae: Recent Advances and Mechanisms. Bioresource Technology, 303, 122886. doi: 10.1016/j.biortech.2020.122886.
Majid, M. et al., 2014. Production of Algal Biomass. Biomass and Bioenergy. Springer, Cham. doi: 10.1007/978-3-319-07641-6_13.
Marrugo-Negrete, J. et al., 2015. Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere, 127, pp.58-63. doi: 1016/j.chemosphere.2014.12.073.
McGrath, S.P., Shen, Z.G. & Zhao, F. J., 1997. Heavy Metal Uptake and Chemical Changes in The Rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum Grown in Contaminated Soils. Plant Soil, 180, pp.153–159. doi: 10.1023/A:1004248123948.
Metcalf, E., 2003. Wastewater Engineering: Treatment, Disposal, and Reuse, New York: Mc Graw Hill Inc.
Moreno-Sanches, R. et al., 2017. Biochemistry and Physiology of Heavy Metal Resistance and Accumulation in Euglena. Biochemistry, Cell and Molecular Biology, pp. 91-121. doi: 10.1007/978-3-319-54910-1_6.
Napaldet, J.T. et al., 2019. Effect of phytoremediation on morpho-anatomical characters of some aquatic macrophytes. Biodiversitas, 20(5), pp. 1289-1302. doi: 10.13057/biodiv/d200519.
Nurafifah, I. et al., 2023. The Effect of Acidic pH on Growth Kinetics, Biomass Productivity, and Primary Metabolite Content of Euglena sp. Makara Journal of Science, 27(2), pp.97-105.doi: 10.7454/mss.v27i2.1506.
Prasetya, A. et al., 2020. Characteristic of Hg removal using zeolite adsorption and Echinodorus palifolius phytoremediation in subsurface flow constructed wetland (SSF-CW) model. Journal of Environmental Chemical Engineering, 8(3), 103781. doi: 10.1016/j.jece.2020.103781.
Rangabhashiyam, S. & Balasubramanian-Manian, P., 2019. Characteristic, performance, equilibrium and kinetic modeling aspect of heavy metal removal using algae. Bioresource Technology report, 5, pp.261-279. doi : 10.1016/j.biteb.2018.07.009.
Rangkuti, P.M., Siswanti, D.U. & Suyono, E.A., 2023. Salinity Treatment as Bacterial Control and Its Impact on Growth and Nutritional Value of Spirulina ( Arthospora platensis) Culture in Open Pond System. Journa of Fisheries and Environment, 47(1), pp.63-74.
Rodriguez-Zavala, J.S. et al., 2007. Molecular Mechanism od Resistance to heavy Metals in Protist Euglena gracilis. Journal of Environmental Science and Health, 42. doi : 10.1080/10934520701480326.
Sari, E. et al., 2018. The Effectiveness of Filter Media and Echinodorus palaefolius on Phytoremediation of Leachate. IOP Conference Series Earth and Environmental Science, 175(1), 012096. doi: 10.1088/1755-1315/175/1/012096.
Shah, V. et al., 2021. Improved Mechanistic Model of the Atmospheric redox Chemistry of Mercury. Environmental Science & Technology, 55(21), pp.14445-14456. doi: 10.1021/acs.est.1c03160.
Singh, A., 2021. Studies on Zero-Cost Algae Based Phytoremediation of Dye and Heavy Metal from Simulated Wastewater. Bioresource Technology, 342. doi: 10.1016/j.biortech.2021.125971.
Stefanakis, A.I., Akratos, C.S. & Tsihrintzis, V.A., 2014. Constructed Wetlands Classification. Elsevier Publisher. doi: 10.1016/B978-0-12-404612-2-00002-7.
Suyono, E.A., 2015. The Effect of Nitrogen Excess in Medium on Carotenoid and Chlorophyll Content of Chlorella Zofingiensis Donz Culture. UAJY Int Smnr.
Tripathi, S. & Poluri, K.M., 2023. Heavy metal detoxification mechanisms by microalgae: Insight from transcriptomic analysis. Environmental Pollution, 285, 117443. doi: 10.1016/j.envpol.2021.117443.
Ubando, A.T. et al., 2021. Microalgal biosorption of heavy metal: A comprehensive bibliometric review. Journal of Hazardous Materials, 404, 123431. doi: 10.1016/j.jhazmat.2020.123431.
Vymazal, J. et al., 2013. Emergent plants used in free water surface constructed wetlands: A review. Ecological Engineering, 61B, pp.582-592. doi: 10.1016/j.ecoleng.2013.06.023.
Wang, Q. et al., 2004. Source and remediation for mercury contamination in aquatic system-a literature review. Environmental Pollution, 131, pp. 323-336. doi: 10.1016/j.envpol.2004.01.010.
Wardana, W.E. et al., 2023. Effect of Mercury Stress on The Growth and Lipid Content of Euglena sp. and Echinodorus palaefolius. Jurnal Biodjati, 8(1), pp. 172-179. doi: 10.15575/biodjati.v8i1.23764.
Xun, Y. et al., 2017. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites. Chemosphere, 189, pp.161-170. doi: 10.1016/j.chemosphere.2017.09.055.
Yan, B. & Hou, Y., 2018. Effect of Soil Magnesium of Plants: a Review. 2nd International Symposium of Resource Exploration and Envirnmental Science. IOP Conf.Series: Earth and Environmental Science, 170, pp. 022168. doi. 10.1088/1775-1315/170/2/022168
Yuan, Z. et al., 2022. Effect of different water conditions on the biomass, root morphology and aerenchyma formation in bermudagrass (Chynodon dactylon (L.) Pers). BMC Plant Biology, 22(1), pp.266. doi : 10.1186/s12870-022-03653-2
Zamani-Ahmadmahmoodi, R. et al., 2020. Aquatic pollution caused by mercury, leas, and cadmium affects cell growth and pigment content of marine microalga, Nannochloropsis oculate. Environmental Monitorong Assessment, 192, pp. 330. doi: 10.1007/s10661-020-8222.5.
DOI: https://doi.org/10.22146/jtbb.88143
Article Metrics
Abstract views : 997 | views : 639Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)