
Jurnal Listrik, Instrumentasi, dan Elektronika Terapan (JuLIET), Vol. 3, No. 2, Oktober 2022 45

E-ISSN: 2746-2536

Cheap and Fast Implementation of Linear and Cubic Piecewise Interpolation

for Robot Path Smoothing on Arduino Uno Board

Trias Prima Satya1, Jans Hendry1*, Aditya Putra Yudhananta1, Zubainindra Bagus F Meliawan1
1Department of Electrical Engineering and Informatics, Universitas Gadjah Mada; trias.primasatya@ugm.ac.id,

adityapy28@mail.ugm.ac.id, zubainindra_agus@mail.ugm.ac.id
*Correspondence: jans.hendry@ugm.ac.id

Intisari – Teknologi mobile robot telah menjadi bagian dari keseharian manusia. Perkembangannya yang cepat telah

menghasilkan robot–robot yang digunakan untuk tujuan khusus seperti layanan kebersihan, memindahkan barang di gudang, dan

otomasi lainnya. Robot–robot ini biasanya memiliki kemampuan navigasi otomatis yang dihasilkan dari pelatihan berupa peta jalur

yang akan dilalui. Permasalahannya adalah cukup banyak metode dengan tujuan tersebut yang tidak menyertakan metode

penghalusan jalur saat membelok. Penambahan teknik tersebut memang memberatkan kerja otak robot apalagi jika metode yang

digunakan cukup kompleks sehingga membutuhkan perangkat keras yang mahal. Penelitian ini mengusulkan pendekatan metode

linear dan cubic terhadap persamaan aslinya. Hasilnya menunjukkan bahwa nilai mean squared error keduanya 0,7789 dan 0,7365

dengan waktu komputasi sekitar 0,809 detik dan 0,836 detik. Maka kedua pendekatan ini cukup menjanjikan untuk diterapkan pada

perangkat keras yang murah untuk aplikasi mobile robot.

Kata kunci – mobile robot, penghalusan jalur, interpolasi, linear, cubic

Abstract – Mobile robot technology has become our daily need. The pace of development has yielded various useful robots that

can do specific tasks like cleaning services, transporting stuff in a warehouse, and automation. These robots usually have self-

navigation ability that comes from a pre-training map in the form of trajectories. The problem is most of the methods do not

consider the path smoothing at a turning point. This is because it can burden the robot processor. Hence, in this research, we

implemented an estimation of the two most popular methods in path smoothing based on interpolation which are linear and cubic

interpolations. The result shows that the mean squared error between the estimated and original formula of interpolation is around

0.7789 and 0.7365 with execution times around 0.809 seconds and 0.836 seconds, respectively. Hence, both estimation methods can

be very promising to be implemented in real-world mobile robots application.

Keywords – mobile robot, path smoothing, interpolation, linear, cubic

I. INTRODUCTION

Mobile robots have become a familiar technology

nowadays. They are used for specific purposes with specific

tasks like cleaning, transporting stuff in a warehouse, and

industrial automation [1]. These robots are developed with

the ability to self-navigating and survive in an uncommon

environment. For this purpose, a robot should be equipped

with various sensors, for instance, inertial measurement units

(IMU), RBG and depth camera, range finders (laser-based or

ultrasonic), and so on. In many cases, these robots are

required to create a full path that can be a closed loop or an

open loop. This path is regarded as their map to use for

future moves when they are burdened with the same tasks.

One of the popular methods for self-navigating mobile

robots is SLAM (simultaneous localization and mapping)

method which helps them to build path or trajectory maps

and localize their position in that map [2]. Path creation in

this discussion is called path planning.

Quite many of the algorithms used for path planning end

up with schools of straight lines and sharp turns to avoid

collision with static obstacles as shown in Figure 1.

Commonly, path planning follows straight blue lines with

sharp turns that can be disadvantageous. When a robot finds

a turn, it will be slowing down and stop then accelerate in

another direction. This action can be expensive in terms of

battery source as overshoot might happen each time it

accelerates. From another point of view, suppose that the

robot is a service robot chair that transports a disabled

person, it has the potential to cause shock and inconvenience

to the person. Added to that, the kinematics of robots might

not be able to handle such turns. Hence, it is safer to create a

smooth path at the turning point as depicted by the orange

line.

To create a smooth path as shown by the orange line,

some algorithms can be used. They are polynomial

interpolation, Bezier curve, Cubic Splines, B-Spline,

NURBS curve, Dubin’s curve, Clothoid, Hypocyloid, and

other optimization-based curves [3]. Simply, this turning

point depicted by the blue lines is called discontinuity. This

point should be replaced with a new line that can bridge two

consecutive lines which is called a curve. To create a smooth

and better curve, an equation with high complexity is

needed. Hence the implementation in terms of execution

time and resource availability can be hard. So, an estimation

is needed with an accepted error tolerance as such they can

be planted into cheap hardware with fast execution time.

Figure 1. Illustration of mobile robot path

46 Jurnal Listrik, Instrumentasi, dan Elektronika Terapan (JuLIET), Vol. 3, No. 2, Oktober 2022

E-ISSN: 2746-2536

In this paper, the implementation of two famous path

smoothing methods estimation is introduced. They are linear

and cubic piecewise polynomial interpolations. The

implementation is applied in Arduino Uno which has lower

features than others. To have better reading experiences, this

paper is organized as follows: 1) the motivations and aims

are explained in the Introduction, 2) the methods used in this

research are explained in the Methodology, 3) the results and

discussions are described in the Result and Discussion, 4)

the Conclusion.

II. METHODOLOGY

The interpolation technique is frequently used in many

fields like signal processing, image processing, data analysis,

economics, electronics, controls, and so on. This technique is

first introduced by Waring [4]. In a nutshell, for any pairs of

(xi, yi), new members of yi at new points xi that lies between

them can be estimated by involving the given yi.

A. Linear Interpolation

Assume that f(x) is a quadratic formula that represents a

smooth curve for the robots’ path. The linear interpolation is

used to fill the in-between points as such the robots can

move smoothly without further slowing down.

𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (1)

the first derivative of f(x) is calculated by (2).

𝑓′(𝑥) = 2𝑎𝑥 + 𝑏 (2)

with the range of x = [0, 1], then the value of f(x) and its

derivative are

𝑓(0) = 𝑐
(3)

 𝑓(1) = 𝑎 + 𝑏 + 𝑐 (4)

 𝑓′(0) = 𝑏 (5)

 𝑓′(1) = 2𝑎 + 𝑏 (6)

by assuming that p0 and p1 are points at x = 0 and x = 1,

respectively, then the value of a, b, and c can be replaced

with

𝑎 =
𝑝1 − 𝑝0

2

(7)

 𝑏 =
𝑝1 − 𝑝0

2
 (8)

 𝑐 = 𝑝0 (9)

Hence, the quadratic curve (s(x)) can be fed to the

microcontroller directly as expressed by (10).

𝑠(𝑥) =
𝑝1 − 𝑝0

2
𝑥2 +

𝑝1 − 𝑝0
2

𝑥 + 𝑝0 (10)

B. Cubic Interpolation

In this technique, the curve is assumed to be a 3rd-order

polynomial as stated in (11). The goal is like (10), to find the

new assignment of a, b, and c that can be directly filled with

numerical values which is the position of robots.

𝑓(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 (11)

The derivative of f(x) is

𝑓′(𝑥) = 3𝑎𝑥2 + 2𝑏𝑥 + 𝑐 (12)

with the range of x = [0, 1], then the value of f(x) and its

derivative are

𝑓(0) = 𝑑

(13)

 𝑓(1) = 𝑎 + 𝑏 + 𝑐 + 𝑑 (14)

 𝑓′(0) = 𝑐 (15)

 𝑓′(1) = 3𝑎 + 2𝑏 + 𝑐 (16)

this technique takes four points (two on the left and two on

the right) to calculate the final estimation. Assume that p0,

p1, p2, and p3 are values at x = -1, x = 0, x = 1, and x = 2,

respectively. Then the value of a, b, c, and d are

𝑎 = −
1

2
𝑝0 +

3

2
𝑝1 −

3

2
𝑝2 +

1

2
𝑝3

(17)

𝑏 = 𝑝0 −

5

2
𝑝1 + 2𝑝2 −

1

2
𝑝3

(18)

𝑐 = −

1

2
𝑝0 +

1

2
𝑝2

(19)

 𝑑 = 𝑝1 (20)

by substituting (17) – (20) to f(x), the final s(x) can be

calculated as in (21).

𝑠(𝑥) = (−
1

2
𝑝0 +

3

2
𝑝1 −

3

2
𝑝2 +

1

2
𝑝3) 𝑥

3

+(𝑝0 −
5

2
𝑝1 + 2𝑝2 −

1

2
𝑝3) 𝑥

2

+(−
1

2
𝑝0 +

1

2
𝑝2) 𝑥 + 𝑝1

(21)

C. Mean Squared Error

Let sn[x] and �̂�𝑛[𝑥] denote the original equation and

estimation of the polynomial interpolation, hence the error

can be calculated using mean squared error using (22).

𝑚𝑠𝑒 =
1

𝑁
∑(𝑠𝑛[𝑥] − �̂�𝑛[𝑥])

2

𝑁

𝑛=1

(22)

Jurnal Listrik, Instrumentasi, dan Elektronika Terapan (JuLIET), Vol. 3, No. 2, Oktober 2022 47

E-ISSN: 2746-2536

III. RESULT AND DISCUSSION

The microcontroller used in this experiment is

ATMEGA328P which is used in the Arduino Uno

development board as shown in Figure 2. Its specification is

shown in Table 1. With these low features, it is better to

implement an interpolation method with low complexity

while maintaining quality. Hence, the approach offered in

this experiment can meet the requirement.

Figure 2. Arduino Uno development board

Table 1. ATMEGA328P specifications

Type Value

CPU 8-bit AVR

Speed 1 MIPS for 1 MHz

RAM 2 Kbytes SRAM

EEPROM 1 Kbytes

Type Value

A. Linear Interpolation

The interpolation of consecutive points that represent

robot position (x, y) using the estimation method is shown in

Figure 3(a). These values are read by MATLAB via serial

communication (port com:6) right after the calculation is

finished. Curve plots using serial plot which is available in

Arduino IDE can’t provide high-definition figures for better

visual. Hence, we make another program to read and display

the curve in another programming language. In figure 3(b),

the curve calculated using original interpolation with the

same (x, y) is plotted using MATLAB as a comparison. As

can be observed that they have similar tendencies, but the

estimated curve has exhibited few errors. There is a

discontinuity that happens on (x, y) = (300, 0) which is

caused by the sign changes in the y-direction. It will not

happen in the real-world coordinates as their value will be

always positive.

B. Cubic Interpolation

The cubic interpolation over the mobile robot’s path is

shown in Figure 4. Like linear interpolation, the cubic

estimation also produces a similar curve compared with the

original cubic interpolation but with some errors depicting

discrepancies between the estimated and original cubic. The

curve from the estimated cubic has 2 peaks because they are

rolling down faster than the original. That is why they

yielded errors between interpolated points.

C. Mean Squared Error

The error between estimated and original interpolation is

also measured in this experiment. It can be shown that the

interpolation error for estimated linear and cubic

interpolation is around 0.7789 and 0.7365, respectively. The

smaller error that cubic has indicated that this estimation is

better in performance compared to estimate linear. Hence,

the estimated cubic approach that we used can be potentially

useful in a real-world implementation.

(a)

(b)

Figure 3. Path smoothing by (a) estimated linear interpolation, (b) original

linear interpolation

(a)

(b)

Figure 4. Path smoothing by (a) estimated cubic interpolation, (b) original

cubic interpolation

48 Jurnal Listrik, Instrumentasi, dan Elektronika Terapan (JuLIET), Vol. 3, No. 2, Oktober 2022

E-ISSN: 2746-2536

D. Execution Time

The execution time is measured by using millis() which

is a built-in function in Arduino IDE. When measured, the

linear interpolation takes around 0.809 seconds to finish one

estimation and 0.836 seconds for cubic interpolation. The

time difference between both methods is slightly low but

cubic interpolation can give a smooth curve than linear

interpolation with lower errors. Both methods executed the

iteration in less than one second which is very promising.

IV. CONCLUSION

The polynomial interpolations for the mobile robot's path

smoothing have been implemented in the Arduino Uno

board. The execution time for linear and cubic interpolation

is around 0.809 sec and 0.836 sec, consecutively. They are

still under 1 second which is probably acceptable for a

mobile robot to plan its smooth path. The curve yielded from

the estimations is similar to the original equation of the

polynomial. Their MSE are 0.7789 and 0.7365, respectively,

which indicates that the estimated formula can be very

promising to be used in a real-world implementation.

ACKNOWLEDGEMENT

This is part of the main research sponsored by the

Department of Electrical Engineering and Informatics and

Vocational College of Universitas Gadjah Mada under a

competitive scheme.

REFERENCES

[1] N. Correll et al., “Analysis and observations from the first amazon

picking challenge,” IEEE Transactions on Automation Science

and Engineering, vol. 15, no. 1, pp. 172–188, 2016.

[2] A. A. Ravankar, Y. Hoshino, A. Ravankar, L. Jixin, T. Emaru,

and Y. Kobayashi, “Algorithms and a framework for indoor robot

mapping in a noisy environment using clustering in spatial and

hough domains,” Int J Adv Robot Syst, vol. 12, no. 3, p. 27, 2015.

[3] A. Ravankar, A. A. Ravankar, Y. Kobayashi, Y. Hoshino, and C.-

C. Peng, “Path smoothing techniques in robot navigation: State-

of-the-art, current and future challenges,” Sensors, vol. 18, no. 9,

p. 3170, 2018.

[4] E. Waring, “Vii. problems concerning interpolations,” Philos

Trans R Soc Lond, no. 69, pp. 59–67, 1779.

	I. INTRODUCTION
	II. METHODOLOGY
	A. Linear Interpolation
	B. Cubic Interpolation
	C. Mean Squared Error

	III. RESULT AND DISCUSSION
	A. Linear Interpolation
	B. Cubic Interpolation
	C. Mean Squared Error
	D. Execution Time

	IV. CONCLUSION
	ACKNOWLEDGEMENT

