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ABSTRACT 
Kratom (M. speciosa), has a long history of traditional use for various ailments as well as for 
recreational purposes due to its opioid and psychoactive effects. Nowadays kratom is easily 
accessible via online markets, with leaf powders commonly categorized by vein color, suggesting 
different effects despite minimal variations in alkaloid content. To improve the identification and 
characterization of kratom samples, fingerprinting methods using chemometric tools are 
increasingly applied in food and pharmaceutical analysis. This study explores a combination of 
Fourier Transform Infrared Spectroscopy (FTIR) and Thin-Layer Chromatography (TLC) 
densitometry data, analyzed with Principal Component Analysis (PCA), to develop a model for 
distinguishing kratom venation and other alkaloid-containing plants. The TLC chromatogram 
revealed six consistent peaks (Rf values of 0.17, 0.27, 0.42, 0.73, 0.8, and 0.9), correlating with 
alkaloids found in kratom. Using PCA, we combined FTIR absorbance values at selected 
wavenumbers with TLC chromatogram data, resulting in four principal components (PC1, PC2, PC3, 
and PC4) that explained 84.1%, 9.7%, 2.7%, and 2.5% of the variance, respectively. The resulting 
score plot demonstrated distinct clustering of samples, which was then verified with cluster analysis. 
The resulting analysis indicated effective differentiation between kratom vein colors and plant 
species. The developed FTIR-TLC-PCA model offers a promising approach for sample classification, 
potentially aiding quality control and authenticity verification in pharmaceutical applications. 
Keywords: Kratom; chemometric; FTIR spectroscopy; TLC densitometry, authentication 
 

INTRODUCTION 
Kratom (Mitragyna speciosa) is an endogenous plant from Southeast Asia that is traditionally 

used as a treatment for various ailments such as cough, common cold, fever, diarrhea, increased 
sexual performance, and opium substitute (Singh et al., 2019, 2020). Kratom isolated two alkaloids 
namely mitragynine and 7-hydroxy mitragynine (7-OH-MG) (Raffa et al., 2013). Mitragynine is well 
known as a major analgesic alkaloid in Kratom, that exhibit centrally mediated analgesic activity in 
various pain models (Ya et al., 2019). Kratom’s opioid and psychoactive activities lead to its use for 
recreational purposes (Raffa et al., 2013; Rech et al., 2015). While the dangerous aspects of kratom 
consumption and its legal status in various countries remained a grey area, kratom has become easily 
brought via internet vendors (Cinosi et al., 2015; Olsen et al., 2019; Warner et al., 2016). Kratom is 
traditional medicine in Dayak community, Kalimantan, Indonesia. The National Narcotics Board of 
Indonesia investigated that Kratom identified as new opioid in Indonesia to risk misappropriation 
and has negative impacts on health (Muttaqien, 2024). Kratom leaf powder is typically categorized 
by the color of the leaf veins, with each color marketed to produce different effects, despite minimal 
differences in alkaloid concentrations (Ramanathan & McCurdy, 2020) 

Fingerprint analysis has been gaining popularity in food analysis and authentication using 
chemometric tools (Karabagias, 2020). Chemometric tools are valuable techniques to interpret of 
complex chemical data and mathematical methods, such as Principal Component Analysis (PCA) 
(Miller & Miller, 2005). PCA model could enhance the classification ability to distinguish between 
different sample groups based on their chemical characteristics (Worley & Powers, 2016). Fourier 
Transform Infrared Spectroscopy (FTIR) and Thin-Layer Chromatography (TLC) densitometry are 
two powerful techniques that provide complementary data on the chemical composition and 
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characteristics of samples (Arifah et al., 2022; Kartini & Azminah, 2012). FTIR captures the molecular 
fingerprint through vibrational spectra, identifying functional groups and assessing molecular 
structure. In contrast, TLC densitometry offers separation and quantification of chemical 
constituents, particularly useful in complex mixtures. Thus, the combination of the two data with the 
PCA model could increase its effectiveness in analyzing the properties of the dataset (Nascimento et 
al., 2020). Despite its potential, studies specifically integrating TLC-FTIR with PCA to identify 
differences between plant samples for pharmaceutical applications remain limited. This study aims 
to develop a PCA model based on the combination of TLC and FTIR data to profile and distinguish 
different kratom venations. This research contributes novel insights by enhancing the precision and 
reliability of TLC-FTIR-PCA for distinguishing plant sample materials offering a simple screening tool 
for identifying plant samples in pharmaceutical research. 

 

METHOD 
Materials 

Three brands of three different venations of kratom leaf powder (green, red, and white) were 
purchased from sellers based in Pontianak, West Kalimantan, Indonesia. Methanol, n-hexane, ethyl 
acetate, acetone and ammonia were purchased from Merck. 
 
Sample preparation 

All samples were ground into fine powder using FOMAC FGD Z1000 grinder and passed 
through a mesh 60 sieve. Approximately 1 g of kratom powder was accurately weighted, and 
extracted using GT Sonic R6 Ultrasonic Cleaner with methanol as solvent in accordance to the 
optimum condition in the previous research (Rusydan et al., 2021). 

 
TLC-densitometry analysis 

The TLC analysis method used is based on research by (Singh et al., 2019). The extract 
obtained is applied with CAMAG® Linomat 5 and developed in TLC system with hexane: ethyl 
acetate: ammonia (30:15:1 v/v/v) as the mobile phase and TLC Silica Gel Plates 60 F254 (merck) as 
the stationary phase. The chromatograms were then dried and examined with CAMAG ® TLC    
Scanner 3. 

 
FTIR Analysis 

FTIR absorbance was measured using Thermo Nicolet iS10 FTIR spectrometer with Thermo 
Smart iTR diamond ATR. The scanning process was performed from 650 cm-1 to 4000 cm-1. The 
sample window was cleaned with acetone before and after each use. The resolution was 8 with the 
number of scans was 32. Every sample measurement was performed by the background collection. 
(Arifah et al., 2022). 
 
Data Analysis 

The TLC chromatogram along with FTIR spectra were subjected to PCA using Minitab® 22 
software version 22.1. PCA aims to group correlated variables and replace them with a new group 
called the principal components which then allowed to see the difference between samples. Cluster 
Analysis of observation will be conducted to assess samples similarity across variables to verify PCA 
classification results (Alin, 2010). 
 

RESULTS AND DISCUSSIONS 
TLC-densitometry analysis 

Kratom extracts were tested with TLC-densitometry to gain a chromatogram profile. The Rf 
patterns correlate with alkaloids and other compounds found in the kratom, such as mitragynine and 
7-hidroxymitragynine (7-HMG) (Ya et al., 2019). The resulting chromatogram showed peaks at 
Rf=0,17; 0,27; 0,42; 0,73; 0,8; and 0,9. These peaks are selected due to its consistently showing up in 
all readings in Figure 1. 
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FTIR Spectral 
The FTIR spectra were used to identify the presence of selected functional groups on the 

mitragynine in Figure 2. The selected wavenumbers investigated the wavenumber of 3285, 65, and 
2921, 1 cm-1 categorized -OH and -CH functional group based on C9-hydroxymitragynine structure 
(Miller & Miller, 2005; Mustafa et al., 2022). (Mustafa et al., 2022) reported that the C22- and C9-
hydroxy mitragynine structure at a wavenumber of 3186 cm−1 influenced FTIR spectra related to the 
hydroxyl compounds group. The ester group of mitragynin was 1609,54 cm-1 attributed to the C=O 
stretch of carbonyl functional group. The selected wavenumber of 1245 cm−1 and 
1094 cm−1 visualized -CO group peak to alcohol/ether group in mitragynin (Mustafa et al., 2022). 

 
Chemometrics 

The variable used in the analysis is the absorbance value of the selected wavenumbers of the 
FTIR spectra. These wavenumbers are selected based on peaks that are shown in the spectra, thus 
able to represent unique peaks of kratom. This FTIR spectra data was then combined with a TLC 
chromatogram and then analyzed using PCA. FTIR provides the molecular fingerprint data, while TLC 
chromatography adds separation and quantitative data that are not available in FTIR. The 
combination of FTIR and TLC data provides complementary information, which could improve model 
accuracy and sensitivity  (Kartini et al., 2025). 

 
 

Figure 1. Kratom TLC chromatogram profile 
 

 
 

Figure 2. The FTIR spectra of kratom leaf powder 
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PCA creates a new principal component (PC) variable for classification. To assess the impact 
of the new PCs, the corresponding eigenvalue is examined. The eigenvalue represents the magnitude 
of variance captured by PC, and a higher eigenvalue indicates higher significance in capturing the 
data structure. The PC needs to have eigenvalue > 1 to be selected. Only PC1, PC2, PC3, and PC4 meet 
the required eigenvalue, which represents 84,1 %, 9,7%, 2,7%, and 2,5% of the total variance 
respectively. The eigenvector shows the magnitude and direction of the 41 wavenumbers impact on 
the PCs. PC1 was most impacted by peaks at 660 – 1550 cm-1 while PC2 was most impacted by peaks 
at 1900-3300 cm-1 and TLC AUC value.  Meanwhile, PC 3 and PC4 are mainly impacted by the TLC 
data. 

The resulting score plot shows that all samples have different ranges against the first two 
principal components (PC1 and PC2) in Figure 3. These two are chosen because it is statistically a 
better representation of total variation in the data set (93,8%) compared to other combinations. The 
spread of observation can be used to categorize the data based on similarities. The results have 
shown that the FTIR data used could separate and differentiate the samples into different clusters 
and even different quadrants. This indicates that the method developed could distinguish kratom 
venation based on its unique properties. The difference in quadrant may indicate that the PCA used 
can be used effectively to classify and predict a sample identity based on its unique properties. 
Differences between samples within the same sample group might be due to variations in the time of 
harvest and meteorological conditions for each sample (Sengnon et al., 2023) 

Cluster analysis on observation results was conducted with PC1 and PC2 as variables to verify 
the partition for each cluster in Figure 4. Similarity level value >0.7 commonly used as indicator that 
there is a significant similarity between cluster section, while distance level > 1,5 might indicate 
significant dissimilarity between cluster section. Cluster analysis results showed that it contains a 
total of 9 observations, with six step linkage is within the desired similarity level (92,1297) and 
distance level (1,1766) with 3 clusters. This indicate that the numbers of clusters sufficient for the 

 
 

Figure 3. The PCA Score plot of TLC chromatogram and FTIR spectra data fusion of 
kratom venation  

 
Table I. Eigen analysis table of the correlation matrix. PCs are chosen based on eigenvalue. 
The higher the eigenvalue, the more PC could capture Athe dataset. 
 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 
Eigenvalue 39.55 4.552 1.252 1.189 0.342 0.08 0.025 0.011 
Proportion 0.841 0.097 0.027 0.025 0.007 0.002 0.001 0 
Cumulative 0.841 0.938 0.965 0.99 0.998 0.999 1 1 
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final partition are 3 clusters. The final partition is able to classify each sample correctly, which 
indicate logical separation were achieved based on the dataset for classification of kratom venation. 

The analysis of the cluster centroids further supports the Identified grouping, as each cluster 
exhibits distinct characteristics associated with specific kratom venation. The clustering aligns with 
existing literature that suggests different kratom vein colors may correlate with varying 
concentrations of active compounds, such as mitragynine and 7-hydroxymitragynine (7-HMG) 
(Hassan et al., 2013; Takayama, 2004). The distance between centroids, were used to evaluate how 
closely related the clusters are. From the cluster centroids, it was showed that cluster 2 (red) and 
cluster 3 (white) are closely related. This could be due to similar alkaloids composition between the 
two venations in comparison to green venation. 

While the result of PCA is satisfactory, the dataset in this study was far too little to be divided 
into a training set and a testing set for prediction. Further sample collection, especially with more 
diverse sample pools such as differences in the sample region and also different sample identities 

 
 

Figure 4. The Dendogram results were categorized in three final partition clusters. 
 

Table II. Amalgamation steps of cluster analysis on PCs. The sudden changes of similarity 
level and distance level indicate that the final partition has been reached. 
 

Step # of clusters 
Similarity 

level 
Distance 

level 
Clusters 
joined 

New cluster 
# of obs. 

in new cluster 

1 8 99.5765 0.0633 2 3 2 2 
2 7 97.4505 0.3811 4 5 4 2 
3 6 95.5589 0.6639 7 8 7 2 
4 5 92.2632 1.1566 4 6 4 3 
5 4 92.2219 1.1628 1 2 1 3 
6 3 92.1297 1.1766 7 9 7 3 
7 2 57.2766 6.3869 4 7 4 6 
8 1 0.0000 14.9495 1 4 1 9 

 
Table III. Distance between cluster centroids. Smaller cluster centroids value indicating 
similarity between two clusters. 
 

 Cluster1 Cluster2 Cluster3 
Cluster1 0.0000 10.7293 14.1039 
Cluster2 10.7293 0.0000 6.1035 
Cluster3 14.1039 6.1035 0.0000 
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could be beneficial for developing a better prediction tool. Adding more relevant variables into the 
model could improve data representation, thus better capturing the variability in the dataset. 

 
CONCLUSIONS 

This study investigated the use of TLC chromatograms and FTIR spectra of kratom combined 
with chemometrics could differentiate and classify based on different kratom venations. The 
combined dataset provided a complementary method to classify kratom venation. However, further 
research focusing on a more diverse dataset needs to be done to develop a better prediction model. 
However, this study also showed the potential of TLC-densitometry and FTIR spectroscopy coupled 
with chemometrics as tools for the classification of kratom venation. 
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