Alternatif Nature-based Solution untuk Daerah Rawan Bahaya Pesisir Barat Kabupaten Pangandaran

https://doi.org/10.22146/mgi.101717

Djati Mardiatno(1*), Aulia Syifa Ardiati(2), Nurul Hidayah(3), Galang Riswanda Nuswantara(4), Askiyamin Alimuddin(5), Hayu Nur Mahron(6)

(1) Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia
(2) Fakultas Geografi, Universitas Gadjah Mada, Yogyakarta, Indonesia dan Pusat Studi Bencana, Universitas Gadjah Mada, Yogyakarta Indonesia
(3) Fakultas Geografi, Universitas Gadjah Mada, Yogyakarta, Indonesia
(4) Fakultas Geografi, Universitas Gadjah Mada, Yogyakarta, Indonesia
(5) Fakultas Geografi, Universitas Gadjah Mada, Yogyakarta, Indonesia
(6) Fakultas Geografi, Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


Abstrak. Kabupaten Pangandaran merupakan salah satu kabupaten di Provinsi Jawa Barat bagian selatan yang memiliki wilayah kepesisiran cukup luas dan beragam secara biofisik. Kawasan pesisir ini memiliki peran strategis dalam mendukung aktivitas ekonomi, sosial, dan ekologi masyarakat sekitar. Akan tetapi, kawasan pesisir juga menghadapi berbagai potensi bahaya alam seperti abrasi, banjir rob, gelombang ekstrem, dan perubahan garis pantai baik akibat dari faktor alam maupun dari faktor manusia. Setiap tipologi pesisir berperan strategis pengurangan risiko bencana yang berbeda menurut potensi dan ancamannya. Oleh karena itu, penentuan tipologi pesisir sangat penting untuk menilai tingkat bahaya dalam pengelolaan wilayah kepesisiran agar dapat memberikan solusi atas bahaya dengan tetap  memperhatikan keberlanjutan sumber daya di wilayah pesisir. Penelitian ini bertujuan untuk menilai tingkat dari bahaya kepesisiran dan menyusun alternatif pengelolaan bahaya tersebut berdasarkan prinsip Nature-based Solutions (NbS) atau solusi berbasis alam. Metode yang digunakan dalam penelitian ini adalah Coastal Hazard Wheel (CHW). Metode tersebut digunakan untuk menerjemahkan karakteristik biogeofisik berupa geological layout, paparan gelombang, rentang pasang surut, flora dan fauna, keseimbangan sedimen, serta storm climate menjadi bahaya kepesisiran. Metode CHW menghasilkan tingkat bahaya yang dapat menjadi landasan untuk menentukan tipe arahan pengelolaan berkelanjutan. Hasil penelitian menunjukan bahwa Pesisir Barat Pangandaran memiliki empat tipe alternatif arahan pengelolaan, yaitu TSR (tidal inlet/sand split/river mouth), BA-5 (barrier), R-1 (sloping hard rock coast), dan PL-5 (sediment plain). Adapun rekomendasi Nature-based Solutions (NbS) yang diberikan untuk masing-masing dari keempat indeks pengelolaan, yaitu pada indeks BA-5 agar difokuskan pada upaya perbaikan sistem transportasi sedimen dan rehabilitasi struktur dinding batu guna mengurangi risiko pendangkalan dan banjir; pada indeks PL-5 penanganan utama dilakukan melalui pembangunan penghalang pantai serta optimalisasi pergerakan sedimen sebagai bentuk dari mitigasi; pada indeks TSR disarankan dilakukan pemulihan lahan basah untuk memperbaiki ekosistem mangrove yang mengalami degradasi akibat tekanan aktivitas alam dan manusia; sedangkan pada indeks R-1 tidak memerlukan tindakan prioritas karena kondisi kawasan dinilai stabil dan relatif aman dari ancaman signifikan.

 

Abstract. Pangandaran Regency, located in the southern part of West Java, features diverse coastal areas that play strategic roles in supporting local economic, social, and ecological activities. However, these coastal zone face various natural hazards including coastal abrasion, tidal flooding, extreme waves, and shoreline changes caused by both natural processes and human activities. Each coastal typology requires a different disaster risk reduction strategy based on its specific potential and threats. Therefore, identifying coastal typologies is crucial for assessing hazards and for guiding coastal management in a way that ensures the sustainability of coastal resources. This study aims to assess the level of coastal hazards and to formulate alternative hazard management strategies based on the principles of Natured-based Solutions (NbS). The method employed in this research is the Coastal Hazard Wheel (CHW), which translates biogeophysical characteristics-such as geological layout, wave exposure, tidal range, flora and fauna, sediment balance, and storm climate into coastal hazard classifications. The CHW method provides hazard level outputs that serve as a foundation for determining appropriate types of sustainable management approaches. The results of the study indicate that the western coast of Pangandaran falls into four management index categories: TSR (tidal inlet/sand split/river mouth), BA-5 (barrier), R-1 (sloping hard rock coast), dan PL-5 (sediment plain). The recommended Nature-based Solutions (NbS) for each of these categories are as follows: for the BA-5 index, efforts should focus on improving sediment transport systems and rehabilitating rock wall structures to reduce sedimentation and flood risks; for the PL-5 index, the main strategy involves constructing coastal barriers and optimizing sediment movement as a form of mitigation; for the TSR index, wetland restoration is recommended to rehabilitate degradaded mangrove ecosystems impacted by both natural and human pressures; and for the R-1 index, no priority action is required, as the area is considered stable and relatively safe from significant threats.


Submitted:2024-11-20 Revisions:2025-08-13 Accepted: 2024-09-11 Published:2025-09-07



Keywords


Kepesisiran; Coastal Hazard Wheel; Nature based Solution

Full Text:

PDF


References

Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539–42559. https://doi.org/10.1007/s11356-022-19718-6

Adalya, N. M., & Mutaqin, B. W. (2022). Modeling of hydro-oceanographic parameters and its possible impact on coral reef cover in Derawan Island waters, East Kalimantan, Indonesia. Modeling Earth Systems and Environment, 8(3), 4191–4203. https://doi.org/10.1007/s40808-022-01355-0

Albert, S., Bronen, R., Tooler, N., Leon, J., Yee, D., Ash, J., Boseto, D., & Grinham, A. (2018). Heading for the hills: climate-driven community relocations in the Solomon Islands and Alaska provide insight for a 1.5 °C future. Regional Environmental Change, 18(8), 2261–2272. https://doi.org/10.1007/s10113-017-1256-8

Anurogo, W., Lubis, M. Z., Khakhim, N., Prihantarto, W. J., & Cannagia, L. R. (2018). Pengaruh pasang surut terhadap dinamika perubahan hutan mangrove di kawasan Teluk Banten. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 11(2), 130–139.

Appelquist, L. R. (2013). Generic framework for meso-scale assessment of climate change hazards in coastal environments. Journal of Coastal Conservation, 17(1), 59–74. https://doi.org/10.1007/s11852-012-0218-z

Appelquist, L. R., Balstrøm, T., & Halsnæs, K. (2016). Managing Climate Change Hazards in Coastal Areas - Main Manual. United Nations Environment Programme.

Appelquist, L. R., & Halsnæs, K. (2015). The Coastal Hazard Wheel system for coastal multi-hazard assessment & management in a changing climate. Journal of Coastal Conservation, 19(2), 157–179. https://doi.org/10.1007/s11852-015-0379-7

Bhable, S., Kayte, S., Mali, S., Kayte, J. N., & Maher, R. (2015). A Review Paper on Coastal Hazard. Journal of Engineering Research and Applications, 5(2), 83–93.

BNPB. (2021). Dokumen KRB Provinsi Jawa Barat. Badan Nasional Penanggulangan Bencana (BNPB). https://inarisk.bnpb.go.id/pdf/Jawa Barat/Dokumen KRB Prov. Jawa Barat_final draft.pdf

Boulenger, A., Lanza, P., Langedock, K., & Semeraro, A. (2024). Nature ‑ based solutions for coastal protection in sheltered and exposed coastal waters : integrated monitoring program for baseline ecological structure and functioning assessment. Environmental Monitoring and Assessment, 196(3), 316. https://doi.org/10.1007/s10661-024-12480-x

Centeno, E. F. (2020). The socio-political construction of climate change: Looking for paths to sustainability and gender justice. Sustainability (Switzerland), 12(8). https://doi.org/10.3390/SU12083382

Chalov, S. R., Bazilova, V. O., & Tarasov, M. K. (2017). Suspended sediment balance in Selenga delta at the late XX–early XXI century: Simulation by LANDSAT satellite images. Water Resources, 44(3), 463–470. https://doi.org/10.1134/S0097807817030071

Chang, S. W., Clement, T. P., Simpson, M. J., & Lee, K. K. (2011). Does sea-level rise have an impact on saltwater intrusion? Advances in Water Resources, 34(10), 1283–1291. https://doi.org/10.1016/J.ADVWATRES.2011.06.006

Chen, Y., & Mai, R. (2024). Rising Tides: Long term Impact of Sea Level Rise on Marine Ecosystems. International Journal of Marine Science, 14(2), 102–110. https://doi.org/10.5376/ijms.2024.14.0013

Daniel, E., Harari, J., de Camargo, R., Soares, S., Mascagni, M. L., & Fetter Filho, A. F. H. (2025). Sea level variation along the Brazilian coastline from the perspective of climate change. Regional Studies in Marine Science, 89, 104309. https://doi.org/10.1016/J.RSMA.2025.104309

de Luca, C., Naumann, S., Davis, M., & Tondelli, S. (2021). Nature‐based solutions and sustainable urban planning in the european environmental policy framework: Analysis of the state of the art and recommendations for future development. Sustainability (Switzerland), 13(9). https://doi.org/10.3390/su13095021

Dey, M., S. Priyaa, S., & Jena, B. K. (2021). A Shoreline Change Detection (2012 - 2021) and forecasting using Digital Shoreline Analysis System (DSAS) Tool. Indonesian Journal of Geography, 53(2), 295–309. https://doi.org/http://dx.doi.org/10.22146/ijg.56297

Gao, G. F., Song, L., Zhang, Y., & Chu, H. (2024). Expedited loss of soil biodiversity in blue carbon ecosystems caused by rising sea levels. Soil Biology and Biochemistry, 191, 109348. https://doi.org/10.1016/J.SOILBIO.2024.109348

Gijón Mancheño, A., Vuik, V., van Wesenbeeck, B. K., Jonkman, S. N., van Hespen, R., Moll, J. R., Kazi, S., Urrutia, I., & van Ledden, M. (2024). Integrating mangrove growth and failure in coastal flood protection designs. Scientific Reports, 14(1), 1–19. https://doi.org/10.1038/s41598-024-58705-4

Gómez Martín, E., Máñez Costa, M., & Schwerdtner Máñez, K. (2020). An operationalized classification of Nature Based Solutions for water-related hazards: From theory to practice. Ecological Economics, 167, 106460. https://doi.org/https://doi.org/10.1016/j.ecolecon.2019.106460

Gopinath, G., Thodi, M. F., Surendran, U. P., Prem, P., Parambil, J. N., Alataway, A., Al-Othman, A. A., Dewidar, A. Z., & Mattar, M. A. (2023). Long-Term Shoreline and Islands Change Detection with Digital Shoreline Analysis Using RS Data and GIS. In Water (Vol. 15, Issue 2). https://doi.org/10.3390/w15020244

Hossen, M. F., & Sultana, N. (2023). Shoreline change detection using DSAS technique: Case of Saint Martin Island, Bangladesh. Remote Sensing Applications: Society and Environment, 30, 100943. https://doi.org/10.1016/J.RSASE.2023.100943

Ichsari, L. F., Handoyo, G., Setiyono, H., Ismanto, A., Marwoto, J., Yusuf, M., & Rifai, A. (2020). Studi Komparasi Hasil Pengolahan Pasang Surut Dengan 3 Metode (Admiralty, Least Square Dan Fast Fourier Transform) Di Pelabuhan Malahayati, Banda Aceh. Indonesian Journal of Oceanography, 2(2), 121–128. https://doi.org/10.14710/ijoce.v2i2.7985

Israil, Al Imran, H., Haidir, Lisdawati, Rahmat, A., & Virlayani, A. (2023). Analisis Karakteristik Gelombang Dan Proses Abrasi Di Pesisir Pantai Popo Galesong Selatan. Jurnal Teknik Hidro, 16(2), 71–80.

IUCN. (2020). Global standard for nature-based solutions. A user-friendly framework for the verification, design and scaling up of NbS. IUCN. https://portals.iucn.org/library/node/48923

Kim, K. H., & Agnes, W. (2016). A review of coastal hazard management performances. Applied Engineering, Materials and Mechanics, 141–146. https://doi.org/10.1142/9789813146587_0022

Lolong, M., & Masinambow, J. (2011). Penentuan Karakteristik dan Kinerja Hidro Oceanografi Pantai (Study Kasus Pantai Inobonto). Jurnal Ilmiah Media Engineering, 1(2), 127–134.

Mangor, K., Drønen, N. K., Kærgaard, K. H., & Kristensen, S. E. (2017). Shoreline management guidelines. In DHI Water and Environment (Issue April).

Micallef, S., Micallef, A., & Galdies, C. (2018). Application of the Coastal Hazard Wheel to assess erosion on the Maltese coast. Ocean & Coastal Management, 156, 209–222. https://doi.org/https://doi.org/10.1016/j.ocecoaman.2017.06.005

Motta Zanin, G., Muwafu, S. P., & Máñez Costa, M. (2024). Nature-based solutions for coastal risk management in the Mediterranean basin: A literature review. Journal of Environmental Management, 356, 120667. https://doi.org/10.1016/J.JENVMAN.2024.120667

Nevermann, H., Becerra Gomez, J. N., Fröhle, P., & Shokri, N. (2023). Land loss implications of sea level rise along the coastline of Colombia under different climate change scenarios. Climate Risk Management, 39, 100470. https://doi.org/10.1016/J.CRM.2022.100470

Norton, R. K., Buckman, S., Meadows, G. A., & Rable, Z. (2019). Using Simple, Decision-Centered, Scenario-Based Planning to Improve Local Coastal Management. Journal of the American Planning Association, 85(4), 405–423. https://doi.org/10.1080/01944363.2019.1627237

Paulik, R., Stephens, S., Wild, A., Wadhwa, S., & Bell, R. G. (2021). Cumulative building exposure to extreme sea level flooding in coastal urban areas. International Journal of Disaster Risk Reduction, 66, 102612. https://doi.org/10.1016/J.IJDRR.2021.102612

Rilov, G., David, N., Guy-Haim, T., Golomb, D., Arav, R., & Filin, S. (2021). Sea level rise can severely reduce biodiversity and community net production on rocky shores. Science of The Total Environment, 791, 148377. https://doi.org/10.1016/J.SCITOTENV.2021.148377

Rosendahl Appelquist, L. (2013). Generic framework for meso-scale assessment of climate change hazards in coastal environments. Journal of Coastal Conservation, 17(1), 59–74. https://doi.org/10.1007/s11852-012-0218-z

Rosendahl Appelquist, L., & Halsnæs, K. (2015). The Coastal Hazard Wheel system for coastal multi-hazard assessment & management in a changing climate. Journal of Coastal Conservation, 19(2), 157–179. https://doi.org/10.1007/s11852-015-0379-7

Roth, S., Söderberg, L., Aspegren, H., & Haghighatafshar, S. (2024). The compound impact of rainfall, river flow and sea level on a watercourse through a coastal city: Methodology in making. City and Environment Interactions, 23, 100153. https://doi.org/10.1016/J.CACINT.2024.100153

Roy, P., Pal, S. C., Chakrabortty, R., Chowdhuri, I., Saha, A., & Shit, M. (2023). Effects of climate change and sea-level rise on coastal habitat: Vulnerability assessment, adaptation strategies and policy recommendations. Journal of Environmental Management, 330, 117187. https://doi.org/10.1016/J.JENVMAN.2022.117187

Schwartz, M. (2006). Encyclopedia of coastal science. Springer Science & Business Media.

Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskander, I., Kossin, J., & Lewis, S. (2021). Weather and climate extreme events in a changing climate (Chapter 11).

Septiarani, B., & Handayani, W. (2020). Community Group networking on the Community-based Adaptation measure in Tapak Village, Semarang coastal area. Indonesian Journal of Geography, 35(2), 181–189. https://doi.org/10.22146/IJG.39053

Setiawati, M. D., Nandika, M. R., Hernawan, U. E., Rachman, H. A., Chatterjee, U., Adi, N. S., Alifatri, L. O., Eguchi, T., Supriyadi, I. H., Hanifa, N. R., Prayudha, B., Djamil, Y. S., Oktaviani, A., Wouthuyzen, S., Sulha, S., Renyaan, J., & Muslim, A. M. (2024). Application of coastal hazard index to advance nature based protection for coastal communities in the small islands. Discover Applied Sciences, 6(9), 462. https://doi.org/10.1007/s42452-024-06164-x

Sigren, J. M., Figlus, J., & Armitage, A. R. (2014). Coastal sand dunes and dune vegetation: Restoration, erosion, and storm protection. https://api.semanticscholar.org/CorpusID:134823563

Su, Q., Kambale, R. D., Tzeng, J. H., Amy, G. L., Ladner, D. A., & Karthikeyan, R. (2025). The growing trend of saltwater intrusion and its impact on coastal agriculture: Challenges and opportunities. Science of The Total Environment, 966, 178701. https://doi.org/10.1016/J.SCITOTENV.2025.178701

Su, Q., Li, Z., Li, G., Zhu, D., & Hu, P. (2021). Application of the Coastal Hazard Wheel for Coastal Multi-Hazard Assessment and Management in the Guang-Dong-Hongkong-Macao Greater Bay Area. In Sustainability (Vol. 13, Issue 22). https://doi.org/10.3390/su132212623

UNEP/MAP, & Bleu, P. (2020). State of the Environment and Development in the Mediterranean. UNEP/MAP. https://planbleu.org/wp-content/uploads/2021/04/SoED_full-report.pdf

van der Geest, K., & van den Berg, R. (2021). Slow-onset events: a review of the evidence from the IPCC Special Reports on Land, Oceans and Cryosphere. Current Opinion in Environmental Sustainability, 50, 109–120. https://doi.org/https://doi.org/10.1016/j.cosust.2021.03.008

Vos, K., Splinter, K. D., Harley, M. D., Simmons, J. A., & Turner, I. L. (2019). CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environmental Modelling & Software, 122, 104528. https://doi.org/https://doi.org/10.1016/j.envsoft.2019.104528

Wang, X., Xu, L. L., Cui, S. H., & Wang, C. H. (2020). Reflections on coastal inundation, climate change impact, and adaptation in built environment: progresses and constraints. Advances in Climate Change Research, 11(4), 317–331. https://doi.org/10.1016/J.ACCRE.2020.11.010

Wilson, G. A., Kelly, C. L., Briassoulis, H., Ferrara, A., Quaranta, G., Salvia, R., Detsis, V., Curfs, M., Cerda, A., El-Aich, A., Liu, H., Kosmas, C., Alados, C. L., Imeson, A., Landgrebe-Trinkunaite, R., Salvati, L., Naumann, S., Danwen, H., Iosifides, T., … Zhang, P. (2017). Social Memory and the Resilience of Communities Affected by Land Degradation. Land Degradation & Development, 28(2), 383–400. https://doi.org/https://doi.org/10.1002/ldr.2669

Yang, D., Zhang, H., Wang, Z., Zhao, S., & Li, J. (2022). Changes in anthropogenic particulate matters and resulting global climate effects since the Industrial Revolution. International Journal of Climatology, 42(1), 315–330. https://doi.org/10.1002/joc.7245

Zoysa, S., Basnayake, V., Samarasinghe, J. T., Gunathilake, M. B., Kantamaneni, K., Muttil, N., Pawar, U., & Rathnayake, U. (2023). Analysis of Multi-Temporal Shoreline Changes Due to a Harbor Using Remote Sensing Data and GIS Techniques. Sustainability (Switzerland), 15(9). https://doi.org/10.3390/su15097651



DOI: https://doi.org/10.22146/mgi.101717

Article Metrics

Abstract views : 1826 | views : 612

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Authors and Majalah Geografi Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 164/E/KPT/2021

Volume 35 No 2 the Year 2021 for Volume 39 No 1 the Year 2025

ISSN  0215-1790 (print) ISSN 2540-945X  (online)

 

website statistics Statistik MGI