Kuantifikasi Penyusutan Gletser di Pegunungan Jayawijaya dan Relasinya dengan Perubahan Iklim
Mutia Rahma Apriani(1), Zulfikar Adlan Nadzir(2*)
(1) Program Studi Teknik Geomatika, Institut Teknologi Sumatera, Indonesia
(2) Institute of Geodesy and Geoinformation, University of Bonn, Germany.
(*) Corresponding Author
Abstract
Abstrak. Gletser tropis di Pegunungan Jayawijaya adalah indikator iklim yang sensitif dan telah mencair secara signifikan selama beberapa dekade terakhir. Kajian jangka panjang yang mengaitkan dinamika luas gletser Jayawijaya dengan indikator iklim global masih terbatas. Studi ini menggunakan citra Landsat selama 28 tahun (1995-2023) dan algoritma Normalized Difference Snow Index (NDSI) dalam platform Google Earth Engine untuk memantau pencairan gletser. Untuk mengidentifikasi hubungan antara pencairan gletser dan indikator perubahan iklim lainnya, yaitu perubahan suhu permukaan tanah dan perubahan permukaan air laut, uji korelasi dan kesesuaian model regresi berbasis linier dilakukan. Ekstrapolasi ke masa depan dan masa lalu juga diestimasi untuk memprediksi dan meramalkan area gletser. Hasil menunjukkan bahwa pada 2023, 95,95% area gletser telah hilang dibandingkan tahun 1995 dan lebih cepat 2,6 dan 6 kali daripada penyusutan di gletser lintang tinggi. Tiga dari lima gletser telah lenyap, menyisakan East Northwall Firn dan Carstensz. Berdasarkan hasil, diperkirakan seluruh gletser akan menghilang pada tahun 2024. Selain itu, ditemukan hubungan kuat antara pencairan gletser dengan suhu dan muka laut (r = -0,89 dan 0,90). Temuan ini memperkuat pemahaman tentang dampak iklim di wilayah tropis melalui data dengan resolusi spasial dan temporal tinggi dan menegaskan percepatan dampak iklim di daerah tropis.
Abstract. Tropical glaciers in the Jayawijaya Mountains are sensitive climate indicators and have retreated markedly over recent decades. Long-term studies linking Jayawijaya glacier-area dynamics to global climate indicators remain limited. This study uses 28 years of Landsat imagery and the Normalized Difference Snow Index (NDSI) on the Google Earth Engine platform to monitor glacier loss. To identify relationships with other climate-change indicators—namely land surface temperature and sea-level change—we performed correlation tests and simple linear regression model fitting. We also used extrapolation to hindcast and forecast glacier area. Results show that by 2023, 95.95% of glacier area had disappeared relative to 1995, of which 2.6 and 6 times faster than the retreat rate on high-latitude glaciers. Three of five glaciers have vanished, leaving only East Northwall Firn and Carstensz. Based on our results, all glaciers were projected to disappear by 2024. We find strong relationships between glacier retreat and temperature and sea level (r = −0.89 and 0.90). These findings enhance understanding of tropical climate impacts using long, high-resolution satellite records and underscore accelerating climate risks in the tropics.
Submitted: 2025-03-11 Revisions: 2025-09-11 Accepted: 2024-09-11 Published: 2025-09-22
Keywords
Full Text:
PDFReferences
Asuero, A. G., Sayago, A., & González, A. G. (2006). The Correlation Coefficient: An Overview. Critical Reviews in Analytical Chemistry, 36(1), 41–59. https://doi.org/10.1080/10408340500526766
Bliss, A., Hock, R., & Radić, V. (2014). Global response of glacier runoff to twenty‐first century climate change. Journal of Geophysical Research: Earth Surface, 119(4), 717–730. https://doi.org/10.1002/2013JF002931
Bolch, T. (2007). Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. Global and Planetary Change, 56(1–2), 1–12. https://doi.org/10.1016/j.gloplacha.2006.07.009
Bonanno, R., Ronchi, C., Cagnazzi, B., & Provenzale, A. (2014). Glacier response to current climate change and future scenarios in the northwestern Italian Alps. Regional Environmental Change, 14(2), 633–643. https://doi.org/10.1007/s10113-013-0523-6
Ceballos, J. L., Euscátegui, C., Ramírez, J., Cañon, M., Huggel, C., Haeberli, W., & Machguth, H. (2006). Fast shrinkage of tropical glaciers in Colombia. Annals of Glaciology, 43, 194–201. https://doi.org/10.3189/172756406781812429
Edelmann, D., Móri, T. F., & Székely, G. J. (2021). On relationships between the Pearson and the distance correlation coefficients. Statistics & Probability Letters, 169, 108960. https://doi.org/10.1016/j.spl.2020.108960
Fell, S. C., Carrivick, J. L., & Brown, L. E. (2017). The Multitrophic Effects of Climate Change and Glacier Retreat in Mountain Rivers. BioScience, 67(10), 897–911. https://doi.org/10.1093/biosci/bix107
Hastenrath, S. (1995). Glacier recession on Mount Kenya in the context of the global tropics. Bulletin de l’Institut français d’études andines, 24(3), 633–638. https://doi.org/10.3406/bifea.1995.1213
Hock, R., & Huss, M. (2021). Glaciers and climate change. Dalam Climate Change (hlm. 157–176). Elsevier. https://doi.org/10.1016/B978-0-12-821575-3.00009-8
Huggel, C., Kääb, A., Haeberli, W., Teysseire, P., & Paul, F. (2002). Remote sensing based assessment of hazards from glacier lake outbursts: A case study in the Swiss Alps. Canadian Geotechnical Journal, 39(2), 316–330. https://doi.org/10.1139/t01-099
Ibel, D., Mölg, T., & Sommer, C. (2025). Brief communication: Tropical glaciers on Puncak Jaya (Irian Jaya/West Papua, Indonesia) close to extinction. https://doi.org/10.5194/egusphere-2025-415
IPCC. (2023). Climate Change 2023: Synthesis Report | UNEP - UN Environment Programme. 35–115. https://doi.org/10.59327/IPCC/AR6-9789291691647
Joughin, I., Abdalati, W., & Fahnestock, M. (2004). Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature, 432(7017), 608–610. https://doi.org/10.1038/nature03130
Kaser, G. (1999). A review of the modern fluctuations of tropical glaciers. Global and Planetary Change, 22(1–4), 93–103. https://doi.org/10.1016/S0921-8181(99)00028-4
Kiyoki, Y., Uraki, A., Sasaki, S., & Chen, Y. (2024). A Time-Series Semantic-Computing Method for 5D World Map System Applied to Environmental Changes. Dalam M. Tropmann-Frick, H. Jaakkola, B. Thalheim, Y. Kiyoki, & N. Yoshida (Ed.), Frontiers in Artificial Intelligence and Applications. IOS Press. https://doi.org/10.3233/FAIA231147
Klein, A. G., & Kincaid, J. L. (2006). Retreat of glaciers on Puncak Jaya, Irian Jaya, determined from 2000 and 2002 IKONOS satellite images. Journal of Glaciology, 52(176), 65–79. https://doi.org/10.3189/172756506781828818
Li, Y.-J., Ding, Y.-J., Shangguan, D.-H., & Wang, R.-J. (2019). Regional differences in global glacier retreat from 1980 to 2015. Advances in Climate Change Research, 10(4), 203–213. https://doi.org/10.1016/j.accre.2020.03.003
Luo, W., Zhang, G., Chen, W., & Xu, F. (2020). Response of glacial lakes to glacier and climate changes in the western Nyainqentanglha range. Science of The Total Environment, 735, 139607. https://doi.org/10.1016/j.scitotenv.2020.139607
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2020). Introduction to linear regression analysis (Fifth edition). Wiley.
Munawaroh, M., Wicaksono, P., & Rudiastuti, A. W. (2023). Pemetaan cepat batimetri perairan dangkal menggunakan citra Sentinel-2 dan Google Earth Engine di Perairan Tanjung Kelayang – Pulau Belitung. Majalah Geografi Indonesia, 37(2), Article 2. https://doi.org/10.22146/mgi.80414
Nadzir, Z. A., Simarmata, N., & Aliffia, A. (2020). Pengembangan Algoritma Identifikasi Sawah Padi Berdasarkan Spektra Fase Padi (Studi Kasus: Lampung Selatan) (Paddy Field Identification Algorithm Development Using Spectral Value of Paddy Field (Case Study: South Lampung)). JURNAL SAINS INFORMASI GEOGRAFIS, 3(1), 23. https://doi.org/10.31314/jsig.v3i1.537
Palmer, M. D., Domingues, C. M., Slangen, A. B. A., & Boeira Dias, F. (2021). An ensemble approach to quantify global mean sea-level rise over the 20th century from tide gauge reconstructions. Environmental Research Letters, 16(4), 044043. https://doi.org/10.1088/1748-9326/abdaec
Paul, F., Rastner, P., Azzoni, R. S., Diolaiuti, G., Fugazza, D., Le Bris, R., Nemec, J., Rabatel, A., Ramusovic, M., Schwaizer, G., & Smiraglia, C. (2020). Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2. Earth System Science Data, 12(3), 1805–1821. https://doi.org/10.5194/essd-12-1805-2020
Permana, D. S. (2015). Reconstruction Of Tropical Pacific Climate Variability From Papua Ice Cores, Indonesia. Ohio: The Ohio State University.
Permana, D. S., Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P.-N., Nicolas, J. P., Bolzan, J. F., Bird, B. W., Mikhalenko, V. N., Gabrielli, P., Zagorodnov, V., Mountain, K. R., Schotterer, U., Hanggoro, W., Habibie, M. N., Kaize, Y., Gunawan, D., Setyadi, G., Susanto, R. D., … Mark, B. G. (2019). Disappearance of the last tropical glaciers in the Western Pacific Warm Pool (Papua, Indonesia) appears imminent. Proceedings of the National Academy of Sciences, 116(52), 26382–26388. https://doi.org/10.1073/pnas.1822037116
Poussin, C., Timoner, P., Chatenoux, B., Giuliani, G., & Peduzzi, P. (2023). Improved Landsat-based snow cover mapping accuracy using a spatiotemporal NDSI and generalized linear mixed model. Science of Remote Sensing, 7(February), 1–13. https://doi.org/10.1016/j.srs.2023.100078
Poveda, G., & Pineda, K. (2009). Reassessment of Colombia’s tropical glaciers retreat rates: Are they bound to disappear during the 2010–2020 decade? Advances in Geosciences, 22, 107–116. https://doi.org/10.5194/adgeo-22-107-2009
Rabatel, A., Francou, B., Soruco, A., Gomez, J., Cáceres, B., Ceballos, J. L., Basantes, R., Vuille, M., Sicart, J.-E., Huggel, C., Scheel, M., Lejeune, Y., Arnaud, Y., Collet, M., Condom, T., Consoli, G., Favier, V., Jomelli, V., Galarraga, R., … Wagnon, P. (2013). Current state of glaciers in the tropical Andes: A multi-century perspective on glacier evolution and climate change. The Cryosphere, 7(1), 81–102. https://doi.org/10.5194/tc-7-81-2013
Raper, S. C. B., & Braithwaite, R. J. (2006). Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature, 439(7074), 311–313. https://doi.org/10.1038/nature04448
Roe, G. H., Baker, M. B., & Herla, F. (2017). Centennial glacier retreat as categorical evidence of regional climate change. Nature Geoscience, 10(2), 95–99. https://doi.org/10.1038/ngeo2863
Roustaei, N. (2024). Application and interpretation of linear-regression analysis. Medical hypothesis discovery and innovation in ophthalmology, 13(3), 151–159. https://doi.org/10.51329/mehdiophthal1506
Schaduw, J. N. W. (2019). Struktur Komunitas dan Persentase Penutupan Kanopi Mangrove Pulau Salawati Kabupaten Kepulauan Raja Ampat Provinsi Papua Barat. Majalah Geografi Indonesia, 33(1), Article 1. https://doi.org/10.22146/mgi.34745
Scherler, D., Bookhagen, B., & Strecker, M. R. (2011). Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, 4(3), 156–159. https://doi.org/10.1038/ngeo1068
Seehaus, T., Malz, P., Sommer, C., Lippl, S., Cochachin, A., & Braun, M. (2019). Changes of the tropical glaciers throughout Peru between 2000 and 2016 – mass balance and area fluctuations. The Cryosphere, 13(10), 2537–2556. https://doi.org/10.5194/tc-13-2537-2019
Simarmata, N., Nadzir, Z. A., & Agustina, L. K. (2022). Application Of Spot6/7 Satellite Imagery for Rice Field Mapping Based On Transformative Vegetation Indices. Jurnal Geografi, 14(1), 69. https://doi.org/10.24114/jg.v14i1.29036
Song, J., Tong, G., Chao, J., Chung, J., Zhang, M., Lin, W., Zhang, T., Bentler, P. M., & Zhu, W. (2023). Data driven pathway analysis and forecast of global warming and sea level rise. Scientific Reports, 13(1), 5536. https://doi.org/10.1038/s41598-023-30789-4
Stillinger, T., Rittger, K., Raleigh, M. S., Michell, A., Davis, R. E., & Bair, E. H. (2023). Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets. Cryosphere, 17(2), 567–590. https://doi.org/10.5194/tc-17-567-2023
Sun, C., Xu, X., Zhao, T., Yao, T., Zhang, D., Wang, N., Ma, Y., Ma, W., Chen, B., Zhang, S., & Cai, W. (2022). Distinct impacts of vapor transport from the tropical oceans on the regional glacier retreat over the Qinghai-Tibet Plateau. Science of The Total Environment, 823, 153545. https://doi.org/10.1016/j.scitotenv.2022.153545
Tennant, C., Menounos, B., Wheate, R., & Clague, J. J. (2012). Area change of glaciers in the Canadian Rocky Mountains, 1919 to 2006. The Cryosphere, 6(6), 1541–1552. https://doi.org/10.5194/tc-6-1541-2012
Veettil, B. K., & Wang, S. (2018). State and fate of the remaining tropical mountain glaciers in australasia using satellite imagery. Journal of Mountain Science, 15(3), 495–503. https://doi.org/10.1007/s11629-017-4539-0
Vuille, M., Francou, B., Wagnon, P., Juen, I., Kaser, G., Mark, B. G., & Bradley, R. S. (2008). Climate change and tropical Andean glaciers: Past, present and future. Earth-Science Reviews, 89(3–4), 79–96. https://doi.org/10.1016/j.earscirev.2008.04.002
Wang, X., Siegert, F., Zhou, A., & Franke, J. (2013). Glacier and glacial lake changes and their relationship in the context of climate change, Central Tibetan Plateau 1972–2010. Global and Planetary Change, 111, 246–257. https://doi.org/10.1016/j.gloplacha.2013.09.011
Xie, Y., Jin, M., Zou, Z., Xu, G., Feng, D., Liu, W., & Long, D. (2022). Real-Time Prediction of Docker Container Resource Load Based on a Hybrid Model of ARIMA and Triple Exponential Smoothing. IEEE Transactions on Cloud Computing, 10(2), 1386–1401. https://doi.org/10.1109/TCC.2020.2989631
Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., Xu, B., Shi, J., & Dickinson, R. (2013). The role of satellite remote sensing in climate change studies. Nature Climate Change, 3(10), 875–883. https://doi.org/10.1038/nclimate1908
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B., Bajracharya, S., Baroni, C., Braun, L. N., Càceres, B. E., Casassa, G., Cobos, G., Dàvila, L. R., Delgado Granados, H., Demuth, M. N., … Vincent, C. (2015). Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228), 745–762. https://doi.org/10.3189/2015JoG15J017
Zhao, F., Gong, W., Bianchini, S., & Yang, Z. (2024). Linking glacier retreat with climate change on the Tibetan Plateau through satellite remote sensing. The Cryosphere, 18(12), 5595–5612. https://doi.org/10.5194/tc-18-5595-2024
Zhou, H., Wang, X., & Zhu, R. (2022). Feature selection based on mutual information with correlation coefficient. Applied Intelligence, 52(5), 5457–5474. https://doi.org/10.1007/s10489-021-02524-x
Zhu, Z., & Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144, 152–171. https://doi.org/10.1016/j.rse.2014.01.011
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Authors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Volume 35 No 2 the Year 2021 for Volume 39 No 1 the Year 2025
ISSN 0215-1790 (print) ISSN 2540-945X (online)






