Deteksi pengaruh gelombang Kelvin pada fluktuasi uap air di tropopause menggunakan model inversi

https://doi.org/10.22146/mgi.54759

Dita Fatria Andarini(1*), Noersomadi Noersomadi(2)

(1) Pusat Sains dan Teknologi Atmosfer (PSTA), Lembaga Penerbangan dan Antariksa Nasional (LAPAN)
(2) Pusat Sains dan Teknologi Atmosfer (PSTA), Lembaga Penerbangan dan Antariksa Nasional (LAPAN)
(*) Corresponding Author

Abstract


Analisis pengaruh gelombang ekuatorial Kelvin terhadap fluktuasi uap air (H2O) di lapisan tropopause (paras tekanan udara 100 hPa), dilakukan dengan  memanfaatkan data Microwave Limb Sounder (MLS) Aura versi 4.2 dan angin zonal NCEP DOE Reanalysis II sepanjang tahun 2017. Model inversi gelombang melalui pendekatan Newtonian diterapkan untuk mencari parameter amplitudo (A) dan fasa (φ) gelombang dominan pada variasi anomali H2O (H2O*). Hasil penyelarasan model inversi menunjukkan perambatan H2O* positif ke arah timur bersesuaian dengan angin zonal (U) positif (angin baratan) yang identik dengan pergerakan gelombang Kelvin. Perambatan ini didominasi oleh bilangan gelombang k1 dengan A1 dan φ1 berturut–turut sebesar 0,44 dan 21,1°.  Penulis menemukan bahwa variasi uap air dipengaruhi oleh perubahan angin baratan menjadi angin timuran dan konvergensi sebesar 0,15 × 10–5 s–1. Analisis komposit diagram relatif terhadap nilai maksimum H2O* menunjukkan adanya pengaruh gelombang ekuatorial Kelvin terhadap distribusi uap air di tropopause. Penelitian terkait pengembangan model kopel troposfer dan stratosfer perlu mempertimbangkan proses dinamika gelombang Kelvin dan proses radiatif dari konsentrasi uap air di tropopause.

 

Analysis on the influence of equatorial Kelvin wave on the fluctuations in water vapor (H2O) at tropopause (100 hPa air pressure level) has been done utilizing Microwave Limb Sounder (MLS) Aura version 4.2 and zonal wind (U) from NCEP DOE Reanalysis II data throughout the year of 2017. The inverse wave model using Newtonian approximation has been applied to determine the dominant of both wave amplitude (A) and phase (φ) parameters on the H2O anomaly (H2O*). The fitting of inverse modeling result showed an eastward propagation of positive H2O* associated with positive U (westerly wind) which is identical as Kelvin wave movement. The propagation is dominated by wavenumber k1 where A1 and φ1 is 0.44 and is 21.1°, respectively.  The authors found that water vapor variations were influenced by the reversal of zonal wind from easterly to easterly and the convergence as large as 0,15 × 10–5 s–1. The composite analysis relative to the maximum value H2O* showed the influence of equatorial Kelvin wave in the water vapor distribution at tropopause. The research on the development of the troposphere –stratosphere coupling model may need to consider the dynamical process of the equatorial Kelvin wave and radiative process of water vapor concentration in the tropopause.

 


Keywords


uap air; gelombang Kelvin; tropopause; model inversi

Full Text:

PDF


References

Fueglistaler, A., Dessler, A. E., Dunkerton, T.J., Folkins, I., Fu, Q., & Mote, P.W. (2009). Tropical Tropopause Layer. Review of Geophysics, 47, RG1004.

Fujiwara, M., Hasebe, F., Shiotani, M., Nishi, N., Vo ¨mel, H., & Oltmans, S.J. (2001). Water vapor control at the tropopause by equatorial Kelvin waves observed over the Gala ´pagos. Geophysics Research Letters, 28, 3143–3146.

Gettleman, A., Holton, J.R., & Douglass, A.R. (2000). Simulations of water vapor in the lower stratosphere and upper troposphere. Journal of Geophysical Research, 105, D7, 9003-9023. doi:10.1029/1999JD901133.

Grandis, H. (2009). Pengantar Pemodelan Inversi Geofisika. Himpunan Ahli Geofisika (HAGI).

Hasebe, F., Aoki, S., Morimoto, S., Inai, Y., Nakazawa, T., Sugawara, S., Ikeda, C., Honda, H., Yamazaki, H., Halimurrahman, Komala, N., Putri, F.A., Budiyono, A., Soedjarwo, M., Ishidoya, S., Toyoda, S., Shibata, T., Hayasi, M., Eguchi, N.,… & Sugidachi, T. (2018). Coordinated Upper-Troposphere-to-Stratosphere Balloon Experiment in Biak. Bulletion of the American Meteorological Society, https://doi.org/10.1175/BAMS-D-16-0289.1.

Holton, J.R., Haynes, P.T., Mclntyre, M.E., Douglass A.R., Rood, R.B., & Pfister, L. (1995). Stratosphere-Troposphere Exchange. Reviews of Geophysics, 3 (4), 403–439.

Holton, J.R. (2004). An Introduction to Dynamic Meteorology Fourth Edition. Elsevier Academic Press.

Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S-K., Hnilo, J.J., Fiorino, M., & Potter, G.L. (2002). NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc. 1631-1643.

Kawatani, Y., Lee, J.N., & Hamilton, K. (2014). Interannual Variations of Stratospheric Water Vapor in MLS Observations and Climate Model Simulations. Journal of The Atmospheric Sciences, 71, 4071–4085. doi: 10.1175/JAS-D-14-0164.1.

Kedzierski, R.P., Neef, L & Matthes, K. (2016). Tropopause sharpening by data assimilation. Geophysical Research Letters, 43, 8298–8305. doi:10.1002/2016GL069936.

Kiladis, G.N., Wheeler, M.C., Haertel, P.T., Staub, K.H., & Roundy, P.E. (2009). Convectively Coupled Equatorial Waves. Reviews of Geophysics, 47, RG2003, doi:10.1029/2008RG000266.

Lambert, A., Read, W.G., Livesey, N.J., Santee, M.L., Manney, G.L., Froidevaux, L., Wu, D.L., Schwartz, M.J., Pumphrey, H.C., Jimenez, C., Nedoluha, G.E., Cofield, R.E., Cuddy, D.T., Daffer, W.H., Druin, B.J., Fuller, R.A., Jarnot, R.F., Knosp, B.W., Pickettm H.M., Perun, V.S., Snyder, W.V., Stek, P.C., Thurstans, R.P., Wagner, P.A., Waters, J.W., Jucks, K.W., Toon, G.C., Stachnik, R.A., Bernath, P.F., Boone, C.D., Walker, K.A., Urban, J.M., Murtagh, D., Elkins, J.W., & Atlas, W. (2007). Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements. Journal of Geophysical Research, 112. doi:10.1029/2007JD008724.

Livesey, N.J., Read, W.G., Foidevaux, L., Lambert, A., Manney, G.L., Pumphrey, H.C., Santee, M.L., Schwartz, M.J., Wang, S., Cofield, R.E., Cuddy, D.T., Fuller, R.A., Jarnot, R.F., Jiang, J.H., Knosp, B.W., stek, P.C., Wagner, P.A., & Wu, D.L. (2013). EOS MLS version 3.3 and 3.4 Level 2 data quality and description document. Tech. rep., Jet Propulsion Laboratory, http://mls.jpl.nasa.gov/

Mori, S., Hamada, J. I., Tauhid, Y. I., Yamanaka, M. D., kamoto, N., Murata, F., Sakurai, N., Hashiguchi, H., & Sribimawati, T. (2004). Diurnal land-sea rainfall peak migration over Sumatera Island, Indonesian maritime continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 2021−2039.

Nishimoto, E., & Yoden, S. (2017). Influence of the Stratospheric Quasi-Biennial Oscillation on the Madden–Julian Oscillation during Austral Summer. Journal of the Atmospheric Sciences, 74, 1105–1125.

Noersomadi, & Hadi, T. W. (2010). Downward Propagating Equatorial Kelvin Wave over the Eastern Indian Ocean as Revealed from Radiosonde and GPS Radio Occultation (CHAMP) Data. Jurnal Matematika Dan Sains, vol. 15 nomor 1.

Randel, W.J., & Wu, F. (2005). Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements. Journal of Geophysical Research, 10, D03102. doi:10.1029/2004JD005006.

Solomon, S., Rosenlof, K.H., Portmann, R.W., Daniel, J.S., Davis, S.M., Sanford, T.J., & Plattner, G. (2010). Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming. Science, 327 (5970), 1212–1223.

Son, S.W., Lim, Y., Yoo, C., Hendon, H.H., & Kim, J. (2017). Stratospheric Control of the Madden-Julian Oscillation. American Meteorological Society, https://doi.org/10.1175/JCLI-D-16-0620.1

Stone, E.M., Pan, L., Sandor, B.J., Read, W.G., & Waters, J.W. (2000). Spatial distributions of upper tropospheric water vapor measurements from the UARS Microwave Limb Sounder. Journal of Geophysical Research, 105, D10, 12,149-12,161. doi:10.1029/2000JD900125

Thompson, M.A., Allen, A.L., Lee, S., Miller, K., & Witte, J.C. (2011). Gravity and Rossby wave signatures in the tropical troposphere and lower stratosphere based on Southern Hemispere Additional Ozonsondes (SHADOZ), 1998–2007. Journal of Geophisical Research, 116, D05302. doi:10.1029/2009JD013429

Thompson, M.A., Witte, J.C., Sterling, C., Jordan, A., Johnson, B.J., Oltmans, S.J., Fujiwara, M., Vomel, H., Allaart, M., Piters, A., Coetzee, G.J.R., Posny, F., Corrales, E., Diaz, J.A., Felix, C., Komala, N., Lai, N., Nguyen, H.T.A, Maata, M.,… Thiongo, K. (2017). First Reprocessing of Southern Hemisphere Additionla Ozonesondes (SHADOZ) Ozone Profiles (1998–2016): 2. Comparisons with Satellites and Ground-Based Instruments. Journal of Geophysical Research: Atmospheres, 122, 13,000–12,025. https://doi.org/10.1002/2017JD027406.

Trenberth, K.E., & Hoar, T.J. (1997). EL Nino and Climate Change. Geophysical Research Letters, Vol.24, No 23, 3057–3060.

Tsai, H-F., Tsuda, T., Hajj, G.A., Wickert J., & Aoyama, Y. (2004). Equatorial Kelvin Waves Observed with GPS Occultation Measurements (CHAMP and SAC-C). Journal of Meteorological Society of Japan, 82, 397–406.

Wheeler, M., & Kiladis, G.N. (1999). Convectively Coupled Equatorial Waves: Analysis of Cloud and Temperature in the Wavenumber–Frequency Domain. Journal of Atmospheric Sciences, 56, 374–399.



DOI: https://doi.org/10.22146/mgi.54759

Article Metrics

Abstract views : 3193 | views : 2187

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Dita Fatria Andarini, Noersomadi - -

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 164/E/KPT/2021

Volume 35 No 2 the Year 2021 for Volume 39 No 1 the Year 2025

ISSN  0215-1790 (print) ISSN 2540-945X  (online)

 

website statistics Statistik MGI