Optimalisasi Model Artificial Neural Network Menggunakan Certainty Factor (C-ANN) Untuk Pemetaan Kerawanan Tanah Longsor Skala Semi-Detil di DAS Bendo, Kabupaten Banyuwangi
Syamsul Bachri(1*), Kresno Sastro Bangun Utomo(2), Sumarmi Sumarmi(3), Mohammad Naufal Fathoni(4), Yulius Eka Aldianto(5)
(1) Jurusan Geografi, Fakultas Ilmu Sosial, Universitas Negeri Malang, Indonesia
(2) Jurusan Geografi, Fakultas Ilmu Sosial, Universitas Negeri Malang, Indonesia
(3) Jurusan Geografi, Fakultas Ilmu Sosial, Universitas Negeri Malang, Indonesia
(4) Jurusan Geografi, Fakultas Ilmu Sosial, Universitas Negeri Malang, Indonesia
(5) Jurusan Geografi, Fakultas Ilmu Sosial, Universitas Negeri Malang, Indonesia
(*) Corresponding Author
Abstract
Kerawanan longsor di DAS Bendo termasuk dalam kerawanan kelas sedang hingga tinggi. Sampai dengan saat ini, pemetaan rawan longsor di DAS Bendo baru dilakukan pada skala pemetaan 1:250.000. Penelitian ini bertujuan untuk melakukan pemodelan pemetaan kerawanan longsor di DAS Bendo pada skala semi-detil. Metode yang digunakan dalam penelitian ini adalah optimalisasi model artificial neural network menggunakan certainty factor (C-ANN). Peta kerawanan dibangun berdasarkan faktor pengontrol tanah longsor yang berkorelasi positif terhadap kejadian longsor menggunakan Certainty Factor. Sedangkan pemodelan prediksi kerawanan menggunakan model ANN, khususnya arsitektur BPNN (back-propagation neural network). Hasil pemodelan menunjukkan bahwa model C-ANN (7 variabel independen) memiliki nilai AUC (0,916) lebih tinggi daripada model ANN (0,778). Faktor redundansi data, multikolinieritas data, dan proporsi kejadian longsor terhadap cakupan wilayah penelitian mengakibatkan ketidakpastian dalam data variabel independen. Melalui penelitian ini ditemukan hasil bahwa kondisi kerawanan longsor di DAS Bendo masuk kategori tinggi, khususnya pada lereng atas Gunung Ijen, Rante, dan Merapi.
Landslide disaster in DAS Bendo is categorized as moderate to highly susceptible. Until today, landslide hazard mapping in DAS Bendo has been carried out with a scale 1:250.000. This study aimed to model landslide susceptibility mapping on a semi-detailed scale. The method used in this research was the integration of the Certainty Factor with Artificial Neural Network models (C-ANN).The development of susceptibility mapping based on factors that positively correlate to landslide events using Certainty Factor. While the susceptibility prediction model using the ANN model, specifically the BPNN (back-propagation neural network) architecture. Modelling results show that the C-ANN model (7 independent variables) has an AUC value (0.916) higher than the ANN model (0.778). Data redundancy factors, multicollinearity of data, and the proportion of landslide events to the study area's coverage resulted in uncertainty in the independent variable data. This research found that the Landslide hazard in the Bendo Watershed is in the high category, especially on the upper slopes of Mount Ijen, Rante, and Merapi.
Keywords
Full Text:
PDFReferences
Andrew P., B. (1997). The Use of the Area Under the ROC Curve in the Evaluation of Machine Learning Algorithms. Patttern Recognition, 30(7), 1145–1159. https://doi.org/https://doi.org/10.1016/S0031-3203(96)00142-2
Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1–2), 15–31. https://doi.org/10.1016/j.geomorph.2004.06.010
Bachri, S., & Shresta, R. P. (2010). Landslide hazard assessment using analytic hierarchy processing ( AHP ) and geographic information system in Kaligesing mountain area of Central Java Province Indonesia. Annual International Workshop & Expo on Sumatra Tsunami, 108–112.
Bachri, S., Sumarmi, Yudha Irawan, L., Utaya, S., Dwitri Nurdiansyah, F., Erfika Nurjanah, A., Wahyu Ning Tyas, L., Amri Adillah, A., & Setia Purnama, D. (2019). Landslide Susceptibility Mapping (LSM) in Kelud Volcano Using Spatial Multi-Criteria Evaluation. IOP Conference Series: Earth and Environmental Science, 273(1). https://doi.org/10.1088/1755-1315/273/1/012014
BIG. (2008). DEMNAS. http://tides.big.go.id/DEMNAS/
Binaghi, E., Luzi, L., Madella, P., Pergalani, F., & Rampini, A. (1998). Slope instability zonation: a comparison between certainty factor and fuzzy Dempster-Shafer approaches. Natural Hazards, 17(1), 77–97. https://doi.org/10.1023/A:1008001724538
Blaszczynski, J. S. (1997). Landform characterization with geographic information systems. Photogrammetric Engineering and Remote Sensing, 63(2), 183–191.
BMKG. (2019). BMKG | Badan Meteorologi, Klimatologi, dan Geofisika. https://www.bmkg.go.id/
BNPB. (2015). Kajian Risiko Bencana Jawa Timur 2016 - 2020. BNPB.
BNPB. (2019). Data Informasi Bencana Indonesia (DIBI). http://bnpb.cloud/dibi/tabel1a
Brunsden, D. (1993). Mass movement; the research frontier and beyond: a geomorphological approach. Geomorphology, 7, 85–128.
Carrara, A., Guzzetti, F., Cardinali, M., & Reichenbach, P. (1999). Use of GIS technology in the prediction and monitoring of landslide hazard. Natural Hazards, 20(2–3), 117–135. https://doi.org/10.1023/A:1008097111310
Cascini, L. (2008). Applicability of landslide susceptibility and hazard zoning at different scales. Engineering Geology, 102(3–4), 164–177. https://doi.org/10.1016/j.enggeo.2008.03.016
Chung, C. J. F., & Fabbri, A. G. (1993). The representation of geoscience information for data integration. Nonrenewable Resources, 2(2), 122–139. https://doi.org/10.1007/BF02272809
CRED. (2018). 2018 REVIEW OF DISASTER EVENTS.
Dehnavi, A., Aghdam, I. N., Pradhan, B., & Morshed Varzandeh, M. H. (2015). A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran. Catena, 135, 122–148. https://doi.org/10.1016/j.catena.2015.07.020
Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., Dhital, M. R., & Althuwaynee, O. F. (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Natural Hazards, 65(1), 135–165. https://doi.org/10.1007/s11069-012-0347-6
Dietrich, W. E., McKean, J., Bellugi, D., & Perron, T. (2007). The prediction of shallow landslide location and size using a multidimensional landslide analysis in a digital terrain model. International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, 319–329.
Dou, J., Yamagishi, H., Pourghasemi, H. R., Yunus, A. P., Song, X., Xu, Y., & Zhu, Z. (2015). An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Natural Hazards, 78(3), 1749–1776. https://doi.org/10.1007/s11069-015-1799-2
ESA. (2020). Sentinel-2 MSI Introduction.
Guzzetti, F., Cesare, A., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K. (2012). Landslide inventory maps : New tools for an old problem. Earth Science Reviews, 112(1–2), 42–66. https://doi.org/10.1016/j.earscirev.2012.02.001
Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., & Galli, M. (2006). Estimating the quality of landslide susceptibility
models. Geomorphology, 81(1–2), 166–184. https://doi.org/10.1016/j.geomorph.2006.04.007
He, H., Hu, D., Sun, Q., Zhu, L., & Liu, Y. (2019). A landslide susceptibility assessment method based on GIS technology and an AHP-weighted information content method: A case study of southern Anhui, China. ISPRS International Journal of Geo-Information, 8(6). https://doi.org/10.3390/ijgi8060266
Highland, L. M., & Bobrowsky, P. (2008). The Landslide Handbook — A Guide to Understanding Landslides.
Hong, H., Pradhan, B., Sameen, M. I., Chen, W., & Xu, C. (2017). Spatial prediction of rotational landslide using geographically weighted regression, logistic regression, and support vector machine models in Xing Guo area (China). Geomatics, Natural Hazards and Risk, 8(2), 1997–2022. https://doi.org/10.1080/19475705.2017.1403974
Hung, L. Q., Van, N. T. H., Son, P. Van, Ninh, N. H., Tam, N., & Huyen, N. T. (2017). Landslide Inventory Mapping in the Fourteen Northern Provinces of Vietnam: Achievements and Difficulties. Advancing Culture of Living with Landslides, 501–510. https://doi.org/10.1007/978-3-319-59469-9
Kanungo, D. P., Arora, M. K., Sarkar, S., & Gupta, R. P. (2006). A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, 85(3–4), 347–366. https://doi.org/10.1016/j.enggeo.2006.03.004
Lee, S., Ryu, J. H., Won, J. S., & Park, H. J. (2004). Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Engineering Geology, 71(3–4), 289–302. https://doi.org/10.1016/S0013-7952(03)00142-X
Li, L., Qiang, Y., Zheng, Z., & Zhang, J. (2019). Research on the Relationship between the Spatial Resolution and the Map Scale in the Satellite Remote Sensing Cartographies. Advances in Intelligent System Research, 168(Masta), 194–199. https://doi.org/10.2991/masta-19.2019.33
Lineback Gritzner, M., Marcus, W. A., Aspinall, R., & Custer, S. G. (2001). Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology, 37(1–2), 149–165. https://doi.org/10.1016/S0169-555X(00)00068-4
Liu, J., & Duan, Z. (2018). Quantitative assessment of landslide susceptibility comparing statistical index, index of entropy, and weights of evidence in the Shangnan Area, China. Entropy, 20(11), 9–11. https://doi.org/10.3390/e20110868
Mandaglio, M. C., Gioffrè, D., Pitasi, A., & Moraci, N. (2016). Qualitative Landslide Susceptibility Assessment in Small Areas. Procedia Engineering, 158, 440–445. https://doi.org/10.1016/j.proeng.2016.08.469
Másson, E., & Wang, Y. J. (1990). Introduction to computation and learning in artificial neural networks. European Journal of Operational Research, 47(1), 1–28. https://doi.org/10.1016/0377-2217(90)90085-P
Ngadisih, Samodra, G., Bhandary, N. P., & Yatabe, R. (2017). Landslide Inventory: Challenge for Landslide Hazard Assessment in Indonesia. In In GIS Landslide. Springer. https://doi.org/10.1007/978-4-431-54391-6
Ortiz, J. A. V., & Martínez-Graña, A. M. (2018). A neural network model applied to landslide susceptibility analysis (Capitanejo, Colombia). Geomatics, Natural Hazards and Risk, 9(1), 1106–1128. https://doi.org/10.1080/19475705.2018.1513083
Polykretis, C., & Chalkias, C. (2018). Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models. Natural Hazards, 93(1), 249–274. https://doi.org/10.1007/s11069-018-3299-7
Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., Mohammadi, M., & Moradi, H. R. (2013). Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arabian Journal of Geosciences, 6(7), 2351–2365. https://doi.org/10.1007/s12517-012-0532-7
Pradhan, B., & Lee, S. (2010). Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling and Software, 25(6), 747–759. https://doi.org/10.1016/j.envsoft.2009.10.016
PVMBG. (2016). Peta Geologi G. Kawah Ijen | Galeri Pusat Vulkanologi dan Mitigasi Bencana Geologi. https://vsi.esdm.go.id/gallery/picture.php?/73
Rumelhart, D. E., Hinton, G. E., & William, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536.
Sarkar, D. P. K. S., & Sharma, S. (2011). Combining neural network with fuzzy , certainty factor and likelihood ratio concepts for spatial prediction of landslides. 59, 1491–1512. https://doi.org/10.1007/s11069-011-9847-z
Sartohadi, J., Sianturi, R. S., Rahmadana, A. D. W., Maritimo, F., Munawaroh, D. W., Suryani, T., & Pratiwi, E. S. (2014). Bentang Sumberdaya Lahan Kawasan Gunungapi Ijen dan Sekitarnya (M. A. Setiawan (ed.); 1st ed.). Penerbit Pustaka Pelakar.
Soma, A. S., Kubota, T., & Mizuno, H. (2019). Optimization of causative factors using logistic regression and artificial neural network models for landslide susceptibility assessment in Ujung Loe Watershed, South Sulawesi Indonesia. Journal of Mountain Science, 16(2), 383–401. https://doi.org/10.1007/s11629-018-4884-7
Varnes, D. J. (1978). Slope Movement Types and Processes (Vol. 176).
Wang, Qianqian, Wang, D., Huang, Y., Wang, Z., Zhang, L., Guo, Q., Chen, W., Chen, W., & Sang, M. (2015). Landslide susceptibility mapping based on selected optimal combination of landslide predisposing factors in a large catchment. Sustainability (Switzerland), 7(12), 16653–16669. https://doi.org/10.3390/su71215839
Wang, Qiqing, Guo, Y., Li, W., He, J., & Wu, Z. (2019). Predictive modeling of landslide hazards in Wen County, northwestern China based on information value, weights-of-evidence, and certainty factor. Geomatics, Natural Hazards and Risk, 10(1), 820–835. https://doi.org/10.1080/19475705.2018.1549111
Xiong, J., Sun, M., Zhang, H., Cheng, W., Yang, Y., Sun, M., Cao, Y., & Wang, J. (2019). Application of the Levenburg-Marquardt back propagation neural network approach for landslide risk assessments. Natural Hazards and Earth System Sciences, 19(3), 629–653. https://doi.org/10.5194/nhess-19-629-2019
DOI: https://doi.org/10.22146/mgi.57869
Article Metrics
Abstract views : 4518 | views : 4011Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Syamsul Bachri, Kresno Sastro Bangun Utomo, sumarmi sumarmi, Mohammad Naufal Fathoni, Yulius Eka Aldianto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Volume 35 No 2 the Year 2021 for Volume 39 No 1 the Year 2025
ISSN 0215-1790 (print) ISSN 2540-945X (online)
Statistik MGI