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ABSTRACT 

Oil palm empty fruit bunch (OPEFB) fibers have emerged as a promising natural alternative to synthetic fibers due 
to their mechanical strength and biocompatibility, although research on their use as a reinforcing in composite resin 
remains limited. This study aimed to evaluate the effect of OPEFB fiber incorporation on the compressive strength 
of flowable composite resin. A true experimental design with a post-test-only control group was employed. The 
OPEFB fibers underwent chemical and double silane treatments and were randomly oriented prior to incorporation. 
Fifteen cylindrical specimens (6 mm × 12 mm) were allocated into three groups based on fiber volume fraction 
(0%, 1%, and 1.5%). Compressive strength was tested using a universal testing machine following ASTM D-695 
standards. Data were analyzed using one-way ANOVA (p < 0.05) followed by a post-hoc Least Significant Difference 
(LSD) test. The mean compressive strength of flowable composite resins at 0%, 1%, and 1.5% OPEFB fiber volume 
fractions were 261.99 ± 17.64, 301.20 ± 19.26, 368.52 ± 14.90 MPa. One-way ANOVA test showed that the mean 
compressive strength in the three groups was significantly different (p < 0.05). The post-hoc LSD test showed 
significant differences (p < 0.05) among all groups. This study concluded that the incorporation of OPEFB fiber can 
enhance the compressive strength of flowable composite resin, with the highest reinforcement observed at the 1.5% 
OPEFB fiber volume fraction.
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INTRODUCTION
Tooth restoration is a treatment aimed at restoring 
and repairing the anatomical structure and function 
of teeth that have been damaged due to dental 
caries, trauma, or masticatory wear.1 The selection 
of an appropriate restorative material plays a 
crucial role in the success of a restoration.2,3 With 
the increasing demand from patients who expect 
restorations not only to support oral health but 
also to meet esthetic requirements, manufacturers 
continue to develop materials to meet these 
needs, such as glass ionomer cement (GIC) and 
composite resin.3

Excellent aesthetics, tooth-like color, 
resistance to abrasive forces, adhesion to tooth 
structures, and ease of handling are the advantages 
of composite resin, making it increasingly popular 

for use in both anterior and posterior teeth. The 
main components of composite resin consist of 
a matrix, coupling agent, filler, and an activator-
initiator system.1,2 Based on usage characteristics, 
composite resins are classified into packable 
composite resin and flowable composite resin. 
Flowable composite resin is characterized by its 
high fluidity and excellent marginal adaptation. 
It can be used for Class I, II, and V restorations 
and is also effective as a cavity liner. However, 
its low filler content results in inferior mechanical 
properties.4 Since mastication primarily generates 
compressive forces, especially in posterior teeth, 
the compressive strength of restorative materials 
should approximate that of natural tooth structures.1

Compressive strength refers to the ability 
of a material to withstand an applied load before 
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fracture occurs. It is essential for resisting occlusal 
forces and maintaining masticatory function.5 To 
overcome the limitation of flowable composite 
resin in terms of compressive strength, fiber 
reinforcement can be incorporated, forming 
a fiber-reinforced composite (FRC). FRC has 
various clinical applications such as splinting, 
fixed partial dentures, dentin replacement, and 
post-endodontic restorations. FRC is commonly 
combined with flowable composite resin as it 
provides a more stable bond between the tooth 
structure and the fibers.6,7 Fibers in FRC distribute 
stresses more evenly and reduce external loads, 
thereby enhancing the compressive strength of 
flowable composite resin.8 The amount of fiber 
in FRC is expressed as a volume fraction, as the 
mechanical properties of FRC depend on the fiber 
volume used. These properties generally increase 
with higher fiber volume fractions.7,8

Fibers in FRC may be synthetic or natural. 
Commonly used fibers include synthetic ones 
such as e-glass and polyethylene fibers due to 
their strength and esthetic qualities. However, 
their limited availability and high cost in Indonesia 
make natural fibers a promising alternative.9 As 
environmental sustainability becomes a global 
priority, natural fibers are increasingly employed 
as renewable reinforcements, driven by recent 
findings that confirm their mechanical strength and 
eco-friendly characteristics. Natural fibers may be 
derived from plants such as sisal, cotton, kenaf, coir, 
oil palm empty fruit bunch (OPEFB), and others.10,11

OPEFB fiber is an agricultural waste product 
from palm oil (Elaeis guineensis Jacq.) processing 
that is largely underutilized, commonly used only 
as compost or land filler, which can contribute 
to environmental pollution.12,13 Indonesia is the 
world’s largest palm oil producer, with the Central 
Bureau of Statistics reporting a production of 
46.2 million tons in 2022. Approximately 22% of 
this yield consists of OPEFB waste.14 OPEFB 
fibers have high cellulose content, giving them 
good mechanical properties.13,15 Moreover, 
OPEFB fibers demonstrate superior performance 
compared to other natural fibers such as jute, 
hemp, linen, kenaf, and sisal.16 

Previous studies on natural fibers as 
reinforcement materials for composite resins have 
been conducted by several researchers. Hadianto 
et al demonstrated that sisal fiber enhanced 
the flexural strength of composite resin at a 1% 
volume fraction, although the strength decreased 
at higher fractions due to inadequate fiber wetting 
by the coupling agent.17 Similarly, Wan Theng et 
al reported that kenaf fibers at 1% and 2% did not 
improve the flexural or compressive strength of 
composite resin, owing to insufficient fiber surface 
characteristics to establish strong bonding with the 
resin matrix.18 Research by Fransiska et al  on silk 
fibers indicated an optimal flexural strength at a 
5% volume fraction, which declined as the fraction 
increased because of weak interfacial adhesion.9 
Abdullah et al further reported that OPEFB 
fibers exhibit favorable mechanical properties 
and a rough, porous surface that promotes 
strong adhesion when used to reinforce polymer 
composites.15

However, studies on the reinforcement of 
flowable composite resin using OPEFB fiber in 
dentistry remain limited. Therefore, this study aims 
to determine the effects of adding OPEFB fibers 
at 0%, 1%, and 1.5% volume fractions on the 
compressive strength of flowable composite resin.

MATERIALS AND METHODS
This was a laboratory-based experimental study. 
The experiment was conducted at the Central 
Laboratory, Andalas University, the Materials 
Chemistry Laboratory, Faculty of Mathematics 
and Natural Sciences, Andalas University, and 
the Metallurgy Laboratory, Faculty of Engineering, 
Andalas University. Plant identification was 
confirmed by the Herbarium of Andalas University 
(ANDA). Ethical clearance for this study was 
obtained from the Ethics and Advocacy Committee, 
Faculty of Medicine, Andalas University (No.11/
UN.16/KKEP-FK/2025). 

A total of 15 fiber-reinforced composite (FRC) 
samples were prepared, divided into three groups 
with fiber volume fractions of 0%, 1%, and 1.5% 
(n = 3). The volume fraction was calculated by 
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converting the volume percentage into weight 
using the formula:19

Vf (%) =  (Wf / rf) / (Wf / rf + Wr / rr) x 100%                (1)

Description:

Vf (%) = OPEFB fiber volume (%)
Wf = OPEB fiber weight (g)
rf = OPEFB fiber density (g/cm3)
Wr = Weight of resin matrix without fiber (g)
rr = Resin matrix density (g/cm3)

The collected OPEFB fibers (PT. Agrindo Indah 
Persada, Merangin, Jambi) were chemically treated 
using the method described by Susi et al. (2023). 
OPEFB fibers were washed, manually separated, 
soaked in 2% soap solution for 5 hours, rinsed, 
and then dried in an oven at 60 °C for 48 hours. 
Bleaching was carried out using 3.22% NaClO₂ 
solution (1:25 w/v) at 75 °C ± 5 °C with pH adjusted 
to 4–4.5 using acetic acid for 1 hour and repeated 
twice. The fibers were rinsed with distilled water 
until a neutral pH was achieved and subsequently 
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alkalized with 10% NaOH solution (1 : 20 w/v) at 
room temperature for 2 hours, followed by rinsing 
to neutral pH.12 After oven drying at 60 °C for 24 
hours, the fibers were cut to approximately 1 mm 
and weighed to determine the amount according to 
the designated fiber volume fractions of 0%, 1%, 
and 1.5%. Weighing was performed using a digital 
analytical balance with 0.0001 g accuracy (ABS 
220, Kern, Germany).

A cylindrical metal mold with dimensions of 6 
mm diameter and 12 mm height, following ASTM 
D-695 (ASTM, 2023), was marked at every 2 mm 
for light-curing guidance and placed on a glass 
plate. The OPEFB fibers were treated with silane 
(Ultradent Products Inc., USA) in a ratio of 2.0 µl 
silane per 1.0 mg fiber, applied twice for a total 
of 60 seconds. The fibers were randomly oriented 
and manually mixed with flowable composite resin 
(Filtek Z350 XT Flowable, 3M ESPE, USA) using 

a figure-eight motion, then inserted into the mold 
using a layer-by-layer technique (every 2 mm) 
followed by light curing.9 The FRC surface was 
covered with a celluloid strip and cured with a light-
curing unit perpendicularly at the marked levels. 
Curing was repeated at the bottom of the specimen 
in the same manner. After curing, the specimens 
were removed from the mold and excess resin 
was finished using Enhance burs.

The specimens were stored in an incubator 
at 37 °C for 24 hours before compressive strength 
testing was performed using a universal testing 
machine (UTM AMU-10, Torsee, Japan) according 
to ASTM D-695:2023. The data obtained were 
then calculated using the following formula:

CS = 4P / πD2	 (2)

Description:
CS = Compressive strength

P = Axial load (N)

πD2 = Surface area (mm2)

Subsequently, parametric statistical analysis 
was carried out using one-way analysis of variance 
(ANOVA) to evaluate the effect of OPEFB fiber 
volume fraction on the compressive strength of 
fiber-reinforced composite, with a significance 
level of p < 0.05. Post-hoc LSD testing was then 
performed to determine the magnitude of the mean 
differences between groups. 

Figure 3. Stages of compressive strength testing using a 
universal testing machine
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Table 1. Compressive strength of flowable composite resin with OPEFB fiber reinforcement

Groups n Mean ± SD (MPa) Min (MPa) Max (MPa)

0% OPEFB Fiber 5 262.00 ± 17.65 235.97 282.82

1% OPEFB Fiber 5 301.21 ± 19.26 284.56 326.20

1.5% OPEFB Fiber 5 368.53 ± 14.90 350.49 386.93

Table 2. One-Way ANOVA results for compressive strength of flowable composite resin with OPEFB fiber reinforcement

Groups n Mean ± SD (MPa) p

0% OPEFB Fiber 5 262.00 ± 17.65

< 0.0011% OPEFB Fiber 5 301.21 ± 19.26

1.5% OPEFB Fiber 5 368.53 ± 14.90
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RESULTS
The mean compressive strength values of flowable 
composite resin reinforced with OPEFB fibers 
at various volume fractions are presented in the 
following Table:

Based on Table 1, the mean compressive 
strength of flowable composite resin reinforced 
with 1% OPEFB fiber was 301.21 ± 19.26 MPa. 
The highest mean compressive strength was 
observed in the 1.5% OPEFB fiber group at 368.53 
± 14.90 MPa, while the lowest mean was found in 
the control group without fiber reinforcement (0%) 
(262.00 ± 17.65 MPa). 

Normality testing in each group using the 
Shapiro-Wilk test showed p values greater than 
0.05, indicating that the data were normally 
distributed. Homogeneity testing with Levene’s 
test also demonstrated homogeneity (p > 0.05). 
Therefore, a parametric analysis using one-way 
ANOVA was appropriate, as the assumptions of 
normality and homogeneity were satisfied. 

The results of the one-way ANOVA presented 
in Table 2 show p < 0.001, indicating a statistically 
significant difference in compressive strength 
among the three groups. Following the significant 
ANOVA result, a post-hoc Least Significant 
Difference (LSD) test was conducted to determine 
the specific differences between groups. Based on 
Table 3, significant differences were observed in 
compressive strength when the 1.5% OPEFB fiber 
group was compared with both the 0% and 1% 
OPEFB fiber groups (p < 0.05).

DISCUSSION
This study was conducted to evaluate the 
compressive strength of flowable composite resin 
reinforced with OPEFB fibers at various volume 
fractions. Compressive strength is defined as the 

capacity of flowable composite resin to withstand 
stress until fracture or deformation occurs.5 The 
compressive strength of flowable composite resin 
generally ranges from 210 to 300 MPa.1 In this 
study, the highest mean compressive strength was 
observed in the 1.5% OPEFB fiber group, while the 
lowest was found in the 0% OPEFB fiber group. 
This indicates that the addition of OPEFB fibers to 
flowable composite resin increases its compressive 
strength compared to the non-reinforced group.

Fibers within the composite resin distribute 
stresses more evenly and reduce external loads, 
thereby enhancing compressive strength.8 OPEFB 
fibers contain cellulose ranging between 42.7%–
65%.16 Cellulose, a semicrystalline polysaccharide 
derived from plant-based natural fibers, consists 
of fibrils that form hydrogen bonds, providing 
strength, rigidity, and biocompatibility to OPEFB 
fibers.14 This finding is consistent with studies by 
Cevanti et al  and Nugroho et al, which reported 
that cellulose-based plant fibers can enhance the 
compressive strength of composite resin. This 
effect occurs because cellulose contains hydroxyl 
groups that can bond with the resin matrix.20,21

Cellulose is insoluble in water, alcohol, 
or ether, and does not undergo melting even 
when heated to 260–270 °C.22 OPEFB cellulose 
fibers have a rough and porous surface, which 
facilitates bonding with the resin matrix.15,23 In 
this study, cellulose isolation from OPEFB fibers 
was performed using alkalization and bleaching, 
following the method developed by Susi et al. 
This process is essential to remove amorphous 
layers that hinder fiber–resin bonding.12 This 
finding aligns with Widyasrini and Sunarintyas, 
who reported that alkalization disrupts amorphous 
surface layers, creating a rougher surface that 
enhances fiber–resin adhesion.24

Table 3. Post-Hoc LSD test results for compressive strength of flowable composite resin with OPEFB fiber reinforcement

Groups 0% OPEFB Fiber 1% OPEFB Fiber 1.5% OPEFB Fiber 

0% OPEFB Fiber 0.004* < 0.001*

1% OPEFB Fiber < 0.001*

1.5% OPEFB Fiber 
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Another factor influencing compressive 
strength is the application of silane as a coupling 
agent. Silane acts through hydrolysis and 
condensation processes.6 During hydrolysis, 
silanol (Si–OH) or alkoxysilane groups are 
formed, which then undergo condensation from 
monoalkoxysilane to dialkoxysilane and eventually 
trialkoxysilane.25 Drying promotes condensation, 
indicated by the physical transformation from 
liquid to more solid form. Trialkoxysilane groups 
are responsible for adhesion between the fibers 
and the resin composite.26,27 In this study, silane 
was applied twice with two drying steps. This 
agrees with Faizah and Pratiwi, who stated that 
repeated silane application allows successive 
hydrolysis of the outer and intermediate layers, 
leading to optimal mechanical properties when 
applied twice.28

Fiber orientation also contributes to the 
compressive strength of flowable composite resin. 
This study used short randomly oriented chopped 
fibers of approximately 1 mm in length. Randomly 
oriented fibers exhibit isotropic properties, 
providing reinforcement in multiple directions.29,30 
This is consistent with Fonseca et al, who reported 
that randomly distributed short fibers increase the 
compressive strength and fracture toughness of 
composite resins.31

The increase in compressive strength is also 
influenced by fiber volume fraction. Based on the 
post-hoc LSD test (Table 3), significant differences 
were observed between groups with fiber fractions 
of 0%, 1%, and 1.5%. Volume fraction refers to the 
quantity of fibers incorporated into the composite 
resin to enhance its mechanical properties.6 
This is consistent with studies by Fransiska et al 
and Lassila et al, which demonstrated that fiber 
volume fraction affects the mechanical properties 
of composite resin. This effect occurs due to 
differences in thickness between the composite 
resin matrix and the additional reinforcing fibers.9,32

This study has several limitations, particularly 
in material characterization. Because the research 
focused solely on evaluating the compressive 
strength of the flowable composite resin, FTIR 
and XRD analyses were not performed, limiting 

the understanding of fiber crystallinity that 
may influence fiber–matrix interactions. SEM 
analysis was also not conducted, preventing 
direct observation of surface morphology and 
failure patterns. Therefore, future studies should 
incorporate these characterization techniques, 
expand mechanical testing, and optimize the 
alkaline treatment of OPEFB fibers to support their 
potential as reinforcement materials for composite 
resins in dentistry.

CONCLUSION
The present study demonstrated that the 
incorporation of OPEFB fibers significantly 
increased the compressive strength of flowable 
composite resin. The highest compressive 
strength was observed in the 1.5% fiber volume 
group, followed by the 1% group, while the 
lowest was in the control group without fiber 
reinforcement. These findings indicate that higher 
fiber volume fractions lead to improved mechanical 
performance, highlighting the potential of OPEFB 
fibers as a natural alternative reinforcement 
material in dental composite resins.
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