Efek Aplikasi *Patch* Gingiva Mukoadesif β -Carotene Akibat Paparan Radiografi Panoramik

Rurie Ratna Shantiningsih* dan Silviana Farrah Diba**

- *Bagian Radiologi Dentomaksilofasial, Fakultas Kedokteran Gigi, Universitas Gadjah Mada, Yogyakarta, Indonesia
- **Mahasiswa Kepaniteraan, Fakultas Kedokteran Gigi, Universitas Gadjah Mada, Yogyakarta, Indonesia
- *JI Denta No 1 Sekip Utara, Yogyakarta, Indonesia; e-mail: rurieratna@ugm.ac.id

ABSTRAK

Pada penelitian sebelumnya diketahui bahwa aplikasi patch gingiva mukoadesif β -carotene berfungsi sebagai bahan proteksi efek paparan radiografi panoramik pada hewan coba kelinci New Zealand. Peningkatan jumlah mikronukleus akibat paparan radiografi panoramik dapat dihambat dengan aplikasi patch β -carotene. Sebagai kelanjutan dari penelitian, dilakukan uji klinis terhadap manusia untuk melihat efek proteksi patch tersebut. Sebanyak 20 orang subjek yang akan dipapar radiografi panoramik dimasukkan secara random dalam 2 kelompok. Kelompok I adalah subjek tanpa aplikasi patch gingiva mukoadesif β -carotene dan Kelompok II adalah subjek yang diaplikasi patch sebelum paparan. Setiap subjek dilakukan apusan pada mukosa gingiva anterior rahang atas sebelum dan 10 hari setelah paparan radiografi panoramik. Apusan diwarnai dengan metode modifikasi Feulgen-Rossenbeck. Efek lain dari aplikasi juga dilihat mengenai lama waktu bertahan patch dan hasil radiograf yang dihasilkan. Hasil penelitian menunjukkan bahwa terdapat penurunan jumlah mikronukleus pada kelompok II walaupun tidak berbeda bermakna (p>0,0,05) terhadap kelompok I. Lama waktu bertahan patch gingiva mukoadesif β -carotene dapat mencapai lebih dari 10 jam dan dilaporkan terasa mengganjal pada awal pemakaian. Hasil analisis patch gingiva mukoadesif p-carotene dapat menurunkan jumlah mikronukleus namun tidak secara signifikan.

Maj Ked Gi Ind. Desember 2015; 1(2): 186 - 192

Kata Kunci: Patch gingiva mukoadesif β -carotene, mikronukleus, paparan radiografi panoramik manusia

Abstract: Effect of β -carotene Gingival Mucoadhesive Patch Application at Panoramic Radiography Exposure. According to previous research, β -carotene gingival mucoadhesive patch has a radiation protection effect on New Zealand Rabbits. The increase in micronucleus after panoramic radiography exposure is avoided because of β -carotene gingival mucoadhesive patch application. In order to continue that research, we try the application of β -carotene gingival mucoadhesive patch into human. Twenty subjects who requested to take panoramic radiography were divided into two groups randomly. Group I was without β -carotene gingival mucoadhesive patch application and Group II was given the application before radiography exposure. Each of the subjects was swabbed on anterior maxillary gingiva before radiography exposure and the 10th day after the exposure. The swab was stained using modified Feulgen Rossenbeck method. The adhesive time and the effect of radiograph were also observed. The result shows that there was a decrease in micronucleus number after β -carotene gingival mucoadhesive patch application but there was no significant difference (p>0,05) between Grup I and II. The adhesive time was more than 10 hours and there was uncomfortable taste in the first time application. Gray scale analysis shows no significant difference (P>0,05) between panoramic radiography application and without application. The conclusion is that β -carotene gingival mucoadhesive patch application reduces micronucleus number although not significantly.

Maj Ked Gi Ind. Desember 2015; 1(2): 186 - 192

Keywords: β-carotene gingival mucoadhesive patch, micronucleus, human panoramic radiography exposure

PENDAHULUAN

Pada penelitian sebelumnya telah ditemukan bahwa patch gingiva mukoadesif β -carotene dapat berfungsi sebagai bahan proteksi dari efek paparan radiografi panoramik pada hewan coba kelinci New Zealand. Efek paparan radiasi yang dapat dicegah dari aplikasi patch gingiva mukoadesif β -carotene berupa peningkatan jumlah mikronukleus dan ekspresi DNA adduct. Penggunaan hewan coba

merupakan suatu tahapan penelitian awal yang diharapkan dapat diekstrapolasikan pada manusia.²

Beta-carotene atau yang sering disebut sebagai β-carotene, merupakan agen antioksidan yang diketahui mampu mencegah mekanisme karsinogenesis dan peran antikanker β-carotene ini lebih tinggi dibandingkan lycopene.³ Mekanisme kerja β-carotene dalam mencegah terjadinya mekanisme karsinogenesis karena memiliki ikatan rangkap yang dapat mengikat radikal bebas

disertai kemampuannya memfasilitasi komunikasi $gap\ junction.^4$ Komunikasi interseluler $gap\ junction$ berperan penting dalam fungsi regulasi proliferasi mitosis sel. Pada beberapa jenis sel kanker ditemukan adanya penurunan kapasitas komunikasi interseluler dan terjadi penurunan jumlah $gap\ junction.^4$ Oleh karena itu, kemampuan β -carotene dalam menghambat transformasi neoplastik berhubungan pula dengan kemampuannya menstimulasi komunikasi $junctional.^6$

Dalam bidang radiologi, paparan radiasi memiliki nilai batas dosis (NBD) yang dipersyaratkan oleh *The International Commission on Radiological Protection* (ICRP). Nilai batas dosis paparan radiasi yang diterima oleh setiap pasien tidak boleh melebihi 0,3 *milisievert* (mSv) pertahun.⁷ Berdasarkan data pada penelitian Kurniawati,⁸ diperoleh hasil bahwa perhitungan laju dosis mesin radiografi panoramik merk Yoshida Panoura di Laboratorium Radiologi Dentomaksilofasial FKG UGM dalam sekali paparan adalah 47 µSv. Hal ini berarti bahwa laju dosis yang dihasilkan dari paparan radiografi panoramik di Kedokteran Gigi UGM sangat kecil karena masih dalam skala mikro.

Dalam penelitian Shantiningsih,1 ternyata ditemukan bahwa paparan radiasi dari radiografi dental panoramik di Laboratorium Radiologi Dentomaksilofasial FKG UGM tetap dapat menyebabkan terjadinya peningkatan jumlah mikronukleus pada mukosa gingiva pasien. Hasil penelitian tersebut sejalan dengan penelitian sebelumnya yang telah menemukan bahwa, radiasi sinar X akibat radiografi dental menggunakan teknik panoramik menyebabkan terjadinya efek genotoksik berupa peningkatan jumlah mikronukleus pada sel epitel gingiva dan mukosa bukal.9 Peningkatan jumlah mikronukleus tersebut maksimal terjadi pada hari ke-10 sesudah paparan dan akan mengalami penurunan pada hari ke-14 setelah paparan dihentikan. 10 Menurut Cerqueira 9 belum diketahui dengan pasti kapan waktu hilangnya mikronukleus secara total pada sel yang telah terpapar radiografi panoramik.

Peningkatan jumlah mikronukleus menunjukkan terjadinya peningkatan frekuensi kerusakan kromosom dan perubahan inti sel akibat paparan radiasi salah satunya radiografi dental teknik panoramik.¹¹ Terlebih lagi, ketika paparan radiasi radiografi panoramik dilakukan pengulangan sehingga terjadi paparan sebanyak 2 kali dalam 1 hari, menyebabkan terjadinya peningkatan jumlah mikronukleus yang lebih tinggi dibandingkan peningkatan mikronukleus akibat paparan radiasi radiografi panoramik satu kali paparan.¹⁰

Berdasarkan penelitian sebelumnya, aplikasi patch gingiva mukoadesif β-carotene ternyata mampu mencegah peningkatan jumlah mikronukleus secara in vivo pada hewan coba.1 Untuk itu, perlu dilakukan penelitian pada sukarelawan sehat untuk melihat efek aplikasi patch gingiva mukoadesif β-carotene terhadap jumlah mikronukleus akibat paparan radiografi panoramik. Penelitian ini merupakan kelanjutan dari penelitian sebelumnya yang telah dilakukan secara in vivo pada hewan coba Kelinci dan juga secara ex vivo. Dengan dilakukannya penelitian ini diharapkan hasil yang diperoleh dapat dikembangkan lebih lanjut untuk dapat dimanfaatkan bagi pasien yang dilakukan paparan radiografi panoramik.

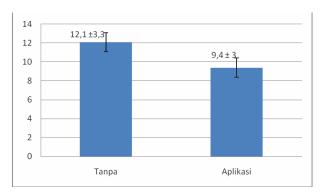
Dalam penelitian Shantiningsih, 1 menunjukkan bahwa tidak terjadi reaksi inflamasi yang signifikan secara statistik (p<0,05) pada mukosa gingiva hewan coba kelinci setelah aplikasi patch gingiva mukoadesif β-carotene. Kemunculan sel radang yang terdiri dari sel leukosit PMN dan sel makrofag hanya terjadi pada 22% dari setiap kelompok perlakuan. Dengan demikian, pada penelitian ini perlu dilakukan konfirmasi untuk uji biokompatibilitas pada sel mukosa manusia yang diaplikasikan patch gingiva mukoadesif β-carotene. Dalam penelitian tersebut juga diperoleh hasil bahwa aplikasi patch gingiva mukoadesif β-carotene tidak memberikan efek yang mengganggu pada image clarity gambaran radiograf yang diambil menggunakan teknik periapikal. Untuk itu akan dilakukan pula konfirmasi pada hasil radiograf dengan menggunakan teknik panoramik dilihat dari kejelasan gambar radiograf yang dihasilkan. Tujuan dari penelitian ini adalah untuk mengetahui apakah patch gingiva mukoadesif β-carotene dapat digunakan mencegah peningkatan jumlah mikronukleus pada mukosa gingiva manusia dan mengetahui pengaruh aplikasi patch gingiva mukoadesif β-carotene terhadap mukosa gingiva manusia serta kejelasan gambaran radiograf.

METODE PENELITIAN

Penelitian ini telah mendapatkan persetujuan etik berupa penerbitan surat Ethical Clearance dari Komisi Etik Penelitian Kesehatan Fakultas Kedokteran Gigi Universitas Gadjah Mada, sehingga dinyatakan memenuhi persyaratan etika penelitian. Pembuatan sediaan patch gingiva mukoadesif β-carotene dilakukan dengan mengikuti prosedur dari Shantiningsih (2014). Komposisi sediaan terdiri dari 2 gram HPMC, 30 mL larutan stok β-carotene yang mengandung 0,2 mg β -carotene, 0,3 gram CMC-Na yang dilarutkan dalam 25 mL akuades dan 0,48 mL propilen glikol yang dicampurkan dengan 10 mL larutan stok kemudian diaduk hingga homogen. Hasil campuran tersebut diaduk dengan magnetic stirrer selama 15 menit dan gelembung udara yang terbentuk dihilangkan menggunakan sonikator selama 5 menit. Setelah homogen formula campuran dimasukkan dalam cetakan berdiameter 35 mm yang sebelumnya telah dilapisi ethyl celullosa.

Sebanyak 20 orang pasien dengan jenis kelamin laki-laki dan perempuan berusia antara 20-25 tahun yang bersedia menjadi subjek penelitian karena memerlukan rontgen foto untuk menegakkan diagnosis dibagi menjadi 2 kelompok secara random. Kelompok I adalah kelompok yang tidak diberikan aplikasi dan kelompok II sebagai kelompok yang diaplikasikan patch gingiva mukoadesif β-carotene sebelum dipapar radiograf panoramik. Pengukuran jumlah mikronukleus dilakukan sebelum dan sesudah paparan radiografi panoramik. Pengambilan sampel dilakukan dengan cara melakukan swab pada mukosa yang terkeratinisasi dari gingiva anterior menggunakan cervical brush. Sampel yang diperoleh dari mukosa epitel gingiva ditempatkan dalam slide yang bersih dan diberi 2 tetes larutan NaCl 0,09% sebelum dilakukan analisis jumlah mikronukleus. Analisis jumlah mikronukleus diawali dengan tahap fiksasi sampel dalam slide menggunakan methanol-acetic acid (3:1). Setelah methanol-acetic acid kering, dilanjutkan perendaman dalam 5M HCL pada suhu ruang selama 15 menit kemudian slide dicuci dengan akuades selama 10-15 menit. Selanjutnya pewarnaan dilakukan menggunakan metode Feulgen-Rossenbeck dalam Schiff's reagen selama

90 menit dan dilakukan *counterstain* dengan *fastgreen* 1% selama 1 menit.


Perhitungan dilakukan dengan menjumlahkan sel yang memiliki gambaran adanya inti tambahan yang disebut mikronukleus. Mikronukleus tersebut berada di sekitar inti utama, memberikan hasil pewarnaan yang sama dengan inti utama dan berukuran lebih kecil, sekitar 1/3 diameter inti utama. Setelah dilakukan perhitungan jumlah mikronukleus awal sebelum paparan dan 10 hari sesudah paparan dari masing-masing kelompok perlakuan, selanjutnya hasil perhitungan dianalisis statistik.

Pemaparan radiografi panoramik dilakukan menggunakan mesin radiografi panoramik merk Yoshida Panoura dengan spesifikasi 80 kVp, 8 mA, 12 detik untuk satu kali paparan dengan laju dosis 47 µSv.8 Aplikasi patch gingiva mukoadesif β-carotene dilakukan sebelum dimulai paparan radiografi panoramik dan tetap dipakai sampai patch terlepas dengan sendirinya. Pasien diinstruksikan untuk tidak makan dan minum selama evaluasi lama waktu bertahan patch pada mukosa gingiva. Efek aplikasi patch gingiva mukoadesif β-carotene dilihat melalui laporan pasien dalam kuesioner yang dibagikan berupa laporan subyektif yang dirasakannya. Penilaian hasil radiograf dilakukan berdasarkan visualisasi kekontrasan dan ketajaman gambar dari area yang dimasukkan sebagai Region of Interest (ROI). Region of Interest tersebut dipilih pada daerah yang diaplikasikan patch gingiva mukoadesif β-carotene dan selanjutnya dilakukan penilaian gray scale menggunakan software image J. Gambaran radiograf yang dilakukan analisis image J diambil secara random menggunakan 3 buah radiograf untuk mewakili hasil radiograf yang dihasilkan dalam penelitian ini.

HASIL PENELITIAN

Berdasarkan pada Gambar 1, nampak bahwa terjadi penurunan jumlah mikronukleus pada kelompok yang diaplikasikan patch gingiva mukoadesif β -carotene dibandingkan jumlah mikronukleus pada kelompok yang tidak diberikan aplikasi. Di lain pihak, setelah dilakukan analisis statistik $student\ t$ -test, penurunan tersebut belum

menunjukkan perbedaan yang signifikan (P>0,05) dengan kelompok yang tanpa aplikasi patch gingiva mukoadesif β -carotene (Tabel 1). Hal ini dapat diartikan bahwa pada kelompok yang diaplikasikan patch gingiva mukoadesif β -carotene sebelum paparan radiograf panoramik tidak menunjukkan penurunan jumlah mikronukleus yang signifikan.

Gambar 1. Rerata jumlah mikronukleus antara kelompok dengan dan tanpa aplikasi *patch* gingiva mukoadesif β -carotene.

Tabel 1. Hasil analisis *student t-test* peningkatan jumlah mikronukleus antar kelompok

		Sig.(2-tailed)
Jumlah	Kelompok I	.078
mikronukleus	Kelompok II	.078

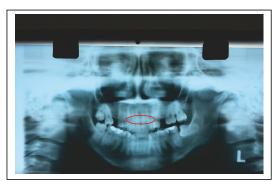

Tabel 2. Efek aplikasi patch gingiva mukoadesif β -carotene

Table 21 Elek apinder pater gingita materials paratier										
La	ma patch bertah	an	Efek yang	dirasakan	subjek					
1-4 jam	5-10 jam	>10 jam	mengganjal	Panas	Gatal	sakit	Lain-lain			
30%	30%	40%	90%	0%	0%	0%	10%			

Dalam Tabel 2 nampak bahwa sebagian besar aplikasi *patch* gingiva mukoadesif *β-carotene* dapat bertahan selama lebih dari 10 jam. Efek yang dilaporkan oleh subjek penelitian adalah adanya rasa mengganjal pada awal pemakaian yang kemudian akan menjadi terbiasa setelah beberapa saat memakai.

Tabel 3. Hasil analisis *t-test gray scale* menggunakan *Image J* dari radiograf yang diberikan dan tanpa aplikasi *patch* gingiva mukoadesif β -carotene

	Perlakuan	N	Mean	Std. Deviation	Signifikansi
Kontras	Aplikasi	3	1.028E2	12.7673	.843
	Tanpa	3	1.013E2	14.2151	.843

Gambar 3. Hasil radiograf pada subjek penelitian yang tidak diberikan aplikasi *patch* gingiva mukoadesif β -carotene. Daerah aplikasi diberikan tanda lingkaran merah.

Gambar 4. Hasil radiograf pada subjek penelitian yang diberikan aplikasi patch gingiva mukoadesif β -carotene. Daerah aplikasi diberikan tanda lingkaran merah.

Perbedaan hasil radiograf yang diaplikasikan patch gingiva mukoadesif β-carotene dengan yang tanpa aplikasi, ditunjukkan dalam Gambar 2 dan 3. Dalam Gambar 2 maupun Gambar 3, tidak menunjukkan perbedaan secara visual dalam kejelasan objek (Image Clarity). Berdasarkan hal tersebut dapat diartikan bahwa aplikasi patch gingiva mukoadesif *B-carotene* tidak menyebabkan perbedaan ketajaman gambar radiograf dibandingkan dengan radiograf yang tidak diberikan aplikasi. Selanjutnya dilakukan analisis statistik menggunakan t-test (Tabel 3) untuk melihat perbedaan hasil penilaian gray scale antara radiograf dari Kelompok I dan Kelompok II dalam area ROI. Hasil analisis *t-test* menunjukkan perbedaan yang tidak signifikan antara kedua kelompok hasil radiograf. Dengan demikian disimpulkan bahwa hasil radiograf antara kelompok yang tanpa dan dengan aplikasi patch gingiva mukoadesif β -carotene memiliki kejelasan gambar ($image\ clarity$) yang tidak berbeda.

PEMBAHASAN

Hasil yang diperoleh menunjukkan bahwa rerata peningkatan jumlah mikronukleus dari kelompok yang diberikan aplikasi patch gingiva mukoadesif β-carotene mengalami penurunan dibandingkan dengan kelompok tanpa aplikasi (Gambar 1). Hasil tersebut meyakinkan bahwa aplikasi patch gingiva mukoadesif β-carotene pada mukosa gingiva manusia sudah memberikan peranan sebagai proteksi terhadap efek paparan radiografi panoramik meskipun belum optimal karena hasil analisis statistik tidak menunjukkan perbedaan yang signifikan. Fungsi patch gingiya mukoadesif β-carotene dalam memproteksi efek paparan radiografi panoramik antara lain melalui mekanisme chain-breaking oxidation reaction untuk menghentikan reaksi oksidasi yang terjadi dan memadamkan singlet oxygen.4

Hasil uji klinik yang dilakukan pada manusia ini menunjukkan penurunan jumlah mikronukleus pada kelompok yang diberikan aplikasi patch gingiva mukoadesif β-carotene namun berdasarkan analisis statistik (Tabel 1) tidak nampak adanya perbedaan yang signifikan (p>0,05) antara kelompok yang dengan dan tanpa aplikasi patch gingiva mukoadesif β -carotene. Kemungkinan penyebab dari hal tersebut karena dosis *β-carotene* yang diaplikasikan sangat kecil. Menurut penelitian sebelumnya, kadar β -carotene maksimal yang dapat dimasukkan dalam formula pembuatan patch gingiva mukoadesif β-carotene adalah sebesar 0,2 mg. Jumlah tersebut diperoleh dari 20 mL larutan stok yang mengandung 10 μg/mL β-carotene.1 Aplikasi *patch* gingiva mukoadesif β-carotene pada uji klinik ini digunakan sebesar 50 mm² dengan lebar 5 mm dan panjang 10 mm dengan kadar β -carotene. Dengan demikian kandungan β -carotene yang digunakan dalam penelitian ini sebesar berkisar antara 2,290-2,775 μ g/50 mm². Kadar β -carotene ini sangat sulit untuk dinaikkan oleh karena terkait dengan sifat kelarutan dari β -carotene terhadap alkohol yang sangat rendah.¹ Salah satu metode untuk meningkatkan kelarutan bahan obat adalah dengan membuat ukuran partikel menjadi skala nanometer. Pembuatan skala nanometer telah banyak dilakukan untuk meningkatkan difusi bahanbahan obat antara lain pada penggunaan pasta gigi.¹² Untuk itu penelitian ini dapat dilanjutkan dengan penelitian lebih lanjut untuk formulasi patch gingiva mukoadesif β -carotene dalam skala nanometer untuk meningkatkan kadar β -carotene.

Kemungkinan lain yang menjadi penyebab patch gingiva mukoadesif β-carotene ini tidak dapat berperan maksimal mencegah peningkatan jumlah mikronukleus adalah frekuensi aplikasi yang hanya dilakukan sekali sebelum paparan radiografi panoramik. Dengan demikian, kadar β-carotene yang terserap dalam mukosa gingiva dan memberi pertahanan melalui mekanisme koneksi gap junction belum dapat berfungsi dengan maksimal. Aplikasi *patch* gingiva mukoadesif *β-carotene* dalam penelitian ini hanya berfungsi sebagai pelindung secara fisik dari paparan radiografi panoramik namun mekanisme kimiawi belum berfungsi secara maksimal. Untuk fungsi patch gingiva mukoadesif β-carotene dalam mencegah peningkatan jumlah mikronukleus menurut Shantiningsih¹ tidak hanya secara fisik memproteksi membran mukosa dari reaksi oksidatif lebih lanjut, namun juga dengan adanya antioksidan dari β-carotene. Ketika terjadi ketidakseimbangan antara kadar antioksidan yang diaplikasikan dengan stress oksidatif yang dihasilkan oleh paparan radiografi panoramik, maka reaksi oksidasi akan tetap terjadi dan berlanjut mencapai sel-sel yang lebih dalam.13

Hasil aplikasi *patch* gingiva mukoadesif β-carotene dilaporkan dapat bertahan lebih dari 5 jam pada sebanyak 70% dari subjek penelitian. Lamanya waktu bertahan terkait dengan adanya backing layer yang digunakan sehingga dapat berfungsi untuk menahan masuknya air ke dalam sediaan *patch*. Dengan demikian proses *swelling* yang terjadi hanya berasal dari 1 sisi, sehingga dapat meningkatkan waktu pelepasan dalam

mucoadhesive time secara ex vivo menjadi bertahan menjadi lebih lama. 12 Efek yang dirasakan dari aplikasi patch gingiva mukoadesif β -carotene yang dilaporkan oleh subjek penelitian adalah rasa mengganjal ketika diaplikasikan. Seiring dengan berjalannya waktu, rasa mengganjal tersebut mulai menghilang. Hal tersebut dikarenakan adanya adaptasi terhadap benda asing dalam mukosa gingiva.

Hasil penilaian image clarity terhadap radiograf yang sebelumnya telah diaplikasikan patch gingiva mukoadesif β-carotene (Gambar 3.) menunjukkan bahwa tidak ada perbedaan secara visual dengan radiograf yang tanpa aplikasi yang ditunjukkan dalam Gambar 2. Hasil analisis gray scale juga menunjukkan tidak adanya perbedaan yang signifikan antara radiograf yang diberi aplikasi maupun tidak. Hal ini sesuai dengan hasil penelitian sebelumnya yang dilakukan dengan teknik periapikal.1 Berdasarkan data tersebut, diyakini bahwa patch gingiva mukoadesif β-carotene tidak menganggu kejelasan gambaran radiograf yang dihasilkan. Dengan demikian untuk kedepan diharapkan aplikasi patch gingiva mukoadesif *β-carotene* dapat digunakan sebagai bahan proteksi dari efek samping paparan radiografi panoramik.

KESIMPULAN

Dari penelitian ini dapat disimpulkan bahwa aplikasi *patch* gingiva mukoadesif β-carotene pada manusia sebelum paparan radiograf panoramik dapat mencegah peningkatan jumlah mikronukleus namun tidak signifikan secara statistik. Sebanyak 40% aplikasi *patch* gingiva mukoadesif β-carotene pada mukosa gingiva manusia dapat bertahan selama lebih dari 10 jam dan tidak mempengaruhi kejelasan gambar (image clarity) dari hasil radiograf. Perlu dilakukan penelitian lebih lanjut dengan meningkatkan frekuensi aplikasi patch gingiva mukoadesif β-carotene pada manusia selama 10 hari berturut-turut dan pengembangan lebih lanjut dengan meningkatkan kadar *β-carotene* terlarut dalam *patch* gingiva mukoadesif β-carotene melalui metode nanoteknologi.

ACKNOWLEDGEMENT

Penelitian ini terselenggara dari Dana Hibah Penelitian Dosen Tahun anggaran 2014 Fakultas Kedokteran Gigi Universitas Gadjah Mada.

DAFTAR PUSTAKA

- Shantiningsih RR. Patch gingiva mukoadesif β-carotene sebagai pencegah efek samping paparan radiografi panoramik (kajian in vivo pada kelinci galur New Zealand). Disertasi. Fakultas Kedokteran Gigi UGM. 2014. H. 73-147.
- 2. Badyal DK, Desai C. Animal use in pharmacology education and research. Indian J Pharmacol. 2014; 46(3): 257-65.
- Arab L, Steck-Scott S, Bowen P. Participation of lycopene and beta-caroten in carcinogenesis: defenders, aggressors, or passive bystanders?, Epidemiol rev. 2001; 23(2): 211-30.
- Britton G, Liaaen-Jensen S, Pfander H. Carotenoids nutrition and health, birkhauser verlag. Berlin. 2009. H. 116-28.
- Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Essential Cell Biology. 4th ed. Garlan Science. New York. 2013. H. 714-8.
- Lahoti SS, Shep SG, Mayee RV, Toshniwal SS. Mucoadhesive drug delivery system: a review. J Pharm Pharmacoal. 2011; 1(3): 243-51.
- Whaites E. Radiography and radiology for dental care professionals. 2nd ed. London: Churchill Livingstone. 2009. H. 29-32.
- Kurniawati L. Kalibarasi spasial citra radiografi dan kalibrasi dosis mesin sinar x panoramik gigi. Tesis, Fakultas Matematika dan Ilmu Pengetahuan Alam UGM. 2013. H. 59-60.
- Cerqueira EMM, Meireles JRC, Lopes MA, Junqueira VC, Gomes-Filho IS, Trindade S, Machado-Santelli GM. Genotoxic effects of X-rays on keratinized mucosa cells during panoramic dental radiography. DMFR. 2008; 37: 398-403.

- Shantiningsih RR. The number of micronucleus between single and repeated x-rays exposure of panoramic radiography patients. Proceeding Book: The 2nd International Joint Symposium on Oral and Dental Sciences di Yogyakarta. 2012. H. 129-33.
- Ribeiro DA, de Oliveira G, de Castro GM, Angelieri F. Cytogenetic biomonitoring in patients exposed to dental X-rays: comparison
- between adults and children. DMFR. 2008; 37: 404-7.
- 12. Florence AT, Attwood D. Physicochemical principles of pharmacy. 4th ed. Pharmaceutical Press. London. 2006. H. 346-9.
- 13. Barrera G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncology. 2012; 1-22.