Chicken bone hydroxyapatite enhances collagen density and osteoblast cell number during bone formation of post-extraction socket wound healing process (an in vivo study)
Maria Bonita Cerebrina Humani(1*), Dayinta Sekar Kintani(2), Pingky Krisna Arindra(3), Vincensia Maria Karina(4), Tetiana Haniastuti(5)
(1) Dental Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
(2) Dental Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
(3) Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
(4) Department of Periodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
(5) Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author
Abstract
Tooth extraction is a common dental procedure. Osteoblasts (bone-forming cells) and collagen are key indicators of wound healing following tooth extraction. Hydroxyapatite is a calcium-rich material that promotes the secretion of Fibroblast Growth Factor (FGF), Platelet-Derived Growth Factor (PDGF), and Transforming Growth Factor Beta (TGF-β)—all of which play critical roles in the wound healing process. Chicken bones, a natural source of hydroxyapatite, contain approximately 85% calcium phosphate minerals. This study aimed to determine the effect of chicken bone-derived hydroxyapatite on osteoblast cell count and collagen density in post-tooth extraction wounds in Wistar rats. Thirty male Wistar rats were randomly divided into treatment and control groups. Tooth extraction was performed on the lower left incisor of each rat. Hydroxyapatite was prepared by calcining chicken bones at 700 °C to remove organic material. The resulting hydroxyapatite powder was implanted into the tooth sockets of rats in the treatment group, while the control group received no implantation. Both groups were sutured and treated with povidone-iodine. Three rats from each group were sacrificed on days 3, 5, 7, 10, 14, and 21. Histological samples were prepared using hematoxylin-eosin and Mallory’s Trichrome staining. Osteoblast cells (100× magnification) and collagen density (400× magnification) were examined using a light microscope and Optilab Viewer, across five fields of view per sample. Two-way ANOVA showed significant differences in both osteoblast cell counts and collagen density between groups and across observation days (p < 0.05). Least Significant Difference (LSD) post hoc analysis also revealed significant differences between groups on all observation days (p < 0.05). In conclusion, chicken bone-derived hydroxyapatite significantly increases osteoblast numbers and collagen density during the post-extraction wound healing process in Wistar rats.
Keywords
Full Text:
5. Maria BonitaReferences
1. Bonanthaya K, Panneerselvam E, Manuel S, Kumar VV, Rai A. Oral and Maxillofacial Surgery for the Clinician. Singapore: Springer; 2021. 259, 279, 292.
2. Koraag JR, Leman MA, Siagian KV. Efektivitas perasan daun pepaya terhadap jumlah osteoblas pasca pencabutan gigi pada tikus wistar jantan. Pharmacon Jurnal Ilmiah Farmasi. 2015; 4(4): 40-46. doi: 10.35799/pha.4.2015.10190
3. Yahya BH, Chaushu G, Hamzani Y. Evaluation of wound healing following surgical extractions using the IPR scale. International Dental Journal. 2021; 71(2): 133-139. doi: 10.1111/idj.12622
4. Krizanova O, Penesova A, Sokol J, Hokynkova A, Samadian A, Babula P. Signaling pathways in cutaneous wound healing. Front Physiol. 2022; 13: 1030851. doi: 10.3389/fphys.2022.1030851
5. Landen NX, Li D, Stahle M. Transition from inflammation to proliferation: a critical step during wound healing. Cellular and Molecular Life Sciences. 2016; 73: 3861-3885. doi: 10.1007%2Fs00018-016-2268-0
6. Primadina N, Basori A, Perdanakusuma DS. Proses penyembuhan luka ditinjau dari aspek mekanisme seluler dan molekuler. Qanun Medika. 2019; 3(1): 31-43. doi: 10.30651/jqm.v3i1.2198
7. Sa’diyah JS, Septiana DA, Farih NN, Ningsih JR. Pengaruh gel ekstrak daun binahong (Anredera cordifolia) 5% terhadap peningkatan osteoblas pada proses penyembuhan luka pasca pencabutan gigi tikus strain wistar. Jurnal Kedokteran Gigi Universitas Padjadjaran. 2020; 32(1): 9-15. doi: 10.24198/jkg.v32i1.26885
8. Park S, Park J, Kang I, Choi B, Lee H, Noh G. Effects of assessing the bone remodeling process in FE analysis for evaluating the biomechanical stability of dental implants. Computer Methods and Programs in Biomedicine. 2022; 221: 1-10. doi: 10.1016/j.cmpb.2022.106852
9. Sri AK, Arthi C, Neya NR, Hikku GS. Nano-hydroxyapatite/collagen composite as scaffold material for bone regeneration. Biomed Mater. 2023; 18(3). doi: 10.1088/1748-605X/acc99e
10. Ranamanggala JA, Laily DI, Annisa YN, Cahyaningrum SE. Artikel review potensi hidroksiapatit dari tulang ayam sebagai pelapis implan gigi. Jurnal Kimia Riset. 2020; 5(2): 141-150. doi: 10.20473/jkr.v5i2.22479
11. Nirwana I, Munadziroh E, Yuliati A, Fadhila AI, Nurliana, Wardhana, AS, Shariff KA, Surboyo MD C. Ellagic acid and hydroxyapatite promote angiogenesis marker in bone defect. Journal of Oral Biology and Craniofacial Research. 2022; 12: 116-120. doi: 10.1016/j.jobcr.2021.11.008
12. Athira RK, Gayathry G, Kumar PRA, Varma PRH, Kasoju N, Komath M. Hydroxyapatite caged with aligned pores for bone grafting - seeding of human osteoblast-like cells in vitro and their response in dynamic culture mode. Ceramics International. 2021; 47: 30051-30060. doi: 10.1016/j.ceramint.2021.07.181
13. Alhasyimi AA, Rosyida NF, Ana ID. Effect of nanoemulsion carbonated hydroxyapatite-statin administration on Acp 5 and Runx-2 expression during orthodontic relapse in rats. J Oral Biol Craniofac Res. 2025; 15(1): 129-135. doi: 10.1016/j.jobcr.2024.12.013
14. Alhasyimi AA, Pudyani PP, Asmara W, Ana ID. Enhancement of post-orthodontic tooth stability by carbonated hydroxyapatite-incorporated advanced platelet-rich fibrin in rabbits. Orthod Craniofac Res. 2018; 21(2): 112-118. doi: 10.1111/ocr.12224
15. Dominguez JHL, Jimenez HT, Cocoletzi HH, Hernandez MG, Banda JAM, Nygren H. Development and in vivo response of hydroxyapatite/whitlockite from chicken bones as bone substitute using a chitosan membrane for guided bone regeneration. Ceramics International. 2018; 44: 22583-22591. doi: 10.1016/j.ceramint.2018.09.032
16. First L, Septaningrum LRD, Pangestuti K, Jufrinaldi, Hidayat R, Khosilawati D. Sintesis & karakterisasi nano kalsium dari limbah tulang ayam broiler dengan metode presipitasi. Jurnal Ilmiah Teknik Kimia. 2019; 3(2): 69-73. doi: 10.32493/jitk.v3i2.3544
17. Adji D, Sutrisno B, Prastiwi A, Anggoro D, Wuryastuti H. Sustainable synthesis of hydroxyapatite from poultry waste for veterinary applications: A calcination approach. Open Vet J. 2025; 15(4): 1695-1701. doi: 10.5455/OVJ.2025.v15.i4.21
18. Wang Y, Feng T, Xia Q, Zhou C, Cao J. The influence of comminuting methods on the structure, morphology, and calcium release of chicken bones. Front Nutr. 2022; 9: 910435. doi: 10.3389/fnut.2022.910435
19. Sinclair-Black M, Garcia RA, Ellestad LE. Physiological regulation of calcium and phosphorus utilization in laying hens. Front Physiol. 2023; 14: 1112499. doi: 10.3389/fphys.2023.1112499
20. Laquerriere P, Grandjean-Laquerriere A, Jallot E, Balossier G, Frayssinet P, Guenounou M. Importance of hydroxyapatite particles characteristics on cytokines production by human monocytes in vitro. Biomaterials. 2003; 24: 2739-2747. doi: 10.1016/s0142-9612(03)00089-9
21. Durlacher-Betzer K, Hassan A, Levi R, Axelrod J, Silver J, Naveh-Many, T. Interleukin-6 Contributes to The Increase in Fibroblast Growth Factor 23 Expression in Acute and Chronic Kidney Disease. Kidney International. 2018; 94: 315-325. doi: 10.1016/j.kint.2018.02.026
22. Cho Y-D, Kim K-H, Lee Y-M, Ku Y, Seol Y-J. Periodontal wound healing and tissue regeneration: a narrative review. Pharmaceuticals. 2021; 14(5): 1-17. doi: 10.3390/ph14050456
23. Alhasyimi AA, Suparwitri S, Christnawati C. Effect of carbonate apatite hydrogel-advanced platelet-rich fibrin injection on osteoblastogenesis during orthodontic relapse in rabbits. Eur J Dent. 2021; 15(3): 412-419. doi: 10.1055/s-0040-1721234
24. Jung GY, Park YJ, Han JS. Effects of HA released calcium ion on osteoblast differentiation. J Mater Sci: Mater Med. 2010; 21: 1649-1654. doi: 10.1007/s10856-010-4011-y
25. Xiong Y, Ren C, Zhang B, Yang H, Lang Y, Min L, Zhang W, Pei F, Yan Y, Li H, Mo A, Tu C, Duan H. Analyzing the Behaviour of a Porous Nano-Hydroxyapatite/Polyamide 66 (n-HA/PA66) Composite for Healing of Bone Defects. International Journal of Nanomedicine. 2014; 9:485-494. doi: 10.2147/ijn.s52990
26. Agbabiaka OG, Oladele IO, Akinwekomi AD, Adediran AA, Balogun AO, Olasunkanm OG, Olayanju TMA. Effect of calcination temperature on hydroxyapatite developed from Waste Poultry Eggshell. Scientific African. 2020; 8: 1-12. doi: 10.1016/j.sciaf.2020.e00452
27. Larjava H. Oral Wound Healing. India: John Wiley & Sons, Inc. 2012. 140.
28. Sabirin IPR, Maskoen AM, Hernowo BS. Peran ekstrak etanol topikal daun mengkudu (Morinda citrifolia L.) pada penyembuhan luka ditinjau dari imunoekspresi CD34 dan kolagen pada tikus galur wistar. Majalah Kedokteran Bandung. 2013; 45(4): 226-233. doi: 10.15395/mkb.v45n4.169
29. Hadi AFN, Aghniya SN, Haidar GA, Sihombing WSM, Sutedjo A, Alhasyimi AA. Post-orthodontic relapse prevention through administration of a novel synthetic carbonated hydroxyapatite-chitosan hydrogel derived from blood cockle shell (Anadara granosa L.). Dent J (Basel). 2024; 12(1): 18. doi: 10.3390/dj12010018.
30. Hariadi A, Karunia D, Christnawati C, Farmasyanti CA, Alhasyimi AA. Effect of blue-light emitting diode exposure on collagen density of periodontal ligament during orthodontic tooth movement in rats. Biointerface Res Appl Chem. 2022; 12: 8231-50. doi: 10.33263/BRIAC126.82318240.
31. Lin P, Zhang G, Li H . The role of extracellular matrix in wound healing. Dermatologic Surgery. 2023; 49(5S): S41-S48. doi: 10.1097/DSS.0000000000003779
32. Gao J, Hao L-S, Ning B-B, Zhu Y-K, Guan J-B, Ren H-W, Yu H-P, Zhu Y-J, Duan J-L. Biopaper based on ultralong hydroxyapatite nanowires and cellulose fibers promotes skin wound healing by inducing angiogenesis. Coatings. 2022; 12(479): 1-19. doi: 10.3390/coatings12040479
33. Samaidan H, Salehi M, Farzamfar S, Vaez A, Ehterami A, Sahrapeyma H, Goodarzi A, Ghorbani S. In vitro and in vivo evaluation of electrospun cellulose acetate/gelatin/ hydroxyapatite nanocomposite mats for wound dressing applications. Artificial Cells, Nanomedicine, and Biotechnology. 2018; 46(51): 5964-5974. doi: 10.1080/21691401.2018.1439842
34. Tracy LE, Minasian RA, Caterson EJ. Extracellular matrix and dermal fibroblast function in the healing wound. Advances in Wound Care. 2016; 5(3):119-136. doi: 10.1089/wound.2014.0561
35. Bee SL, Mariatti M, Ahmad N, Yahaya BH, Hamid ZAA. Effect of the calcination temperature on the properties of natural hydroxyapatite derived from chicken bone wastes. Materials Today: Proceedings, 2019; 16: 1876-1885. doi: 10.1016/j.matpr.2019.06.064
36. Devlin H. Early bone healing events following rat molar tooth extraction. Cells Tissues Organs. 2000; 167:33-37. doi: 10.1159/000016764
37. Nirmalasari L, Oley MC, Prasetyo E, Hatibbie M, Loho LL. Pengaruh pemberian plasma kaya trombosit dan karbonat hidroksiapatit pada proses penutupan defek tulang kepala hewan coba tikus. Jurnal Biomedik. 2016; 8(3): 172-178. doi: 10.35790/jbm.8.3.2016.14152
38. Lunardhi LC, Kresnoadi U, Agustono B. The effect of combination of propolis extract and bovine bone graft on the quantity of fibroblasts, osteoblasts and osteoclasts in tooth extraction sockets. Dental Journal. 2019; 52(3): 126-132. doi: 10.20473/j.djmkg.v52.i3.p126–132
39. Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone grafts and substitutes in dentistry: a review of current trends and developments. Molecules. 2021; 26(10): 3007. doi: 10.3390/molecules26103007
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Majalah Kedokteran Gigi Indonesia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.







