Effect of glass fiber non-dental’s length and position on the flexural strength of FRC

https://doi.org/10.22146/majkedgiind.40074

Adella Syvia Maharani(1*), Widjijono Widjijono(2), Endang Wahyuningtyas(3)

(1) Department of Prosthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(2) Departement of Biomaterials, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(3) Department of Prosthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author

Abstract


Glass fiber non-dental has a similar composition to E-glass fiber dental that commonly used as fiber reinforced composite (FRC) materials in resin bonded prosthesis. Fiber effectiveness can be determined by the length and the position. The aim of this study was to examine the effect of glass fiber non dental’s length and position on the flexural strength of FRC in resin bonded prosthesis. This study has been done used 36 FRC samples with beam shaped (15 mm x 2 mm x 2 mm). Fiber reinforced composite  samples were consisted of 9 groups (a combination between length: 4 mm, 6 mm, and 12 mm and position: compression, neutral, tension zone). The flexural strength was tested by universal testing machine and statistically analyzed using two-way ANOVA (p<0.05). The result showed that the lowest (compression, 4 mm) and the highest (tension, 12 mm) flexural strength were 104.30 ± 13.90 MPa and 166.18 ± 8.59 MPa. The two-way ANOVA test showed that variation of position, length, and interaction between placement-length had a significant effect on the flexural strength (p<0.05). The conclusion of this study was fiber position on compression zone with 4 mm length had the lowest flexural strength. In addition, fiber position on tension zone with 12 mm length had the highest flexural strength. 


Keywords


flexural strength; FRC; glass fiber non-dental; length; position

Full Text:

PDF


References

1. Shillingburg HT, Hobo S, Whitsett LD, Jacobi R, Bracket SE. Fundamentals of fixed prosthodontics. 4 rd ed, USA: Quintessence Publishing; 2012. 1-3.


2. Anonim. Hubungan lama pemakaian gigi tiruan lengkap dan fungsi mastikasi pemakai gigi tiruan lengkap pasien RSGM Prof. Soedomo Diukur dengan Color-Changeable Chewing Gum; 2016. Available from:http://etd.repository.ugm.ac.id/downloadfile/101298/S1-2016-296467-introduction.pdf.


3. Garoushi S, Vallittu PK, Lassila LVJ. Use of short fiber-reinforced composite with semi-interpenetrating polymer network matrix in fixed partial dentures. J Dent. 2007; 35: 403–408. doi: 10.1016/j.jdent.2006.11.010.


4. Garoushi S, Valittu P. Fiber-reinforced composite in fixed partial denture. Libyan J Med. 2006. 1(1): 73-82. doi: 10.4176/060802.


5. Zhang M, Matinlinna JP. E-Glass fiber reinforced composites in dental applications. Silicon. 2012. 4: 73–78. doi: 10.1007/s12633-011-9075-x.

 

6. Stomberg. Glass fiber reinforced gypsum. 2016. Available from: http://www/strombergarchitectural.com/materials/gfrg.

 

7. Faizah A, Widjidjono, Nuryono. Pengaruh komposisi beberapa glass fiber non-dentalterhadap kelarutan komponen fiber reinforced composite. Majalah Kedokteran Gigi Indonesia. 2016; 2(1): 13-19. doi: 10.22146/majkedgiind.11249.


8. Murdiyanto D. Sitotoksisitas non-dentalglass fiber reinforced composite terhadap sel fibroblas metode methyl tetrazolium test. JIKG. 2017; 1(1): 45-51.

 

9. Van WP. A modified technique for direct, fibre- reinforced, resin-bonded bridges: clinical case reports. J Canadian Dent. 2000; 66: 367-371.

 

10. Omid T, Venus MM, Farahnaz S. Effect of glass fiber length on flexural strength of fiber-reinforced composite resin. World J Dent. 2012; 3(2): 131–136. doi: 10.5005/jp-journals-10015-1143.

 

11. Garoushi S, Lassila LV, Vallittu PK. The effect of span length of flexural testing on properties of short fiber reinforced composite. J Mater Sci. 2012; 23: 325-328. doi: 10.1007/s10856-011-4480-7.

 

12. Matilinna JP. Handbook of biomaterials. Singapore: Pan Stanford Publishing Pte Ltd; 2014. 262.

 

13. Anusavice KJ, Shen C, Rawls HR. Phillip’s science of dental material. 12th ed. Mosby Elsevier: Missouri; 2013. 48-59.

 

14. Lassila LV, Valittu P. The effect of fiber position and polymerization condition on the flexural properties of fiber-reinforced composite. J Contemp Dent Pract. 2004; 5(2): 14-26.


15. Kogel JE, Trivedi N, Barker JM. Industrial Mineral & Rock-Commodities, Market and Uses. 7th ed. USA: SME.Inc; 2006. 839.


16. Wang RM, Zheng SR, Zheng YP. Polymer Matrix Composites: Reinforced Materials. St.Louis: Elsevier; 2011. 32-33.

 

17. Atmaja WD, Widjijono, Sunarintyas. Pengaruh kombinasi posisi fiber terhadap kekuatan fleksural dan ketangguhan retak fiber reinforced composite polyethylene. Insisiva Dent J. 2013. 2(2): 1-8.


18. Yulianti A, Harijanto E. Buku ajar ilmu material kedokteran gigi I. Surabaya: Airlangga University Press; 2015. 48-49.


19. Alander P, Lassila LV, Vallittu PK. The span length and cross-sectional design affect values of strength. Dent Mater J. 2005; 21(4): 347–353. doi: 10.1016/j.dental.2004.05.009.



DOI: https://doi.org/10.22146/majkedgiind.40074

Article Metrics

Abstract views : 16 | views : 13

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Majalah Kedokteran Gigi Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Currently, Majalah Kedokteran Gigi Indonesia indexed by:

         

 

 

 

 

 

 View My Stats


real
time web analytics