The effect of Zirconium Dioxide nanoparticles concentrations as filler on heat cured acrylic resin denture base toward viability of fibroblast cells (in vitro study)
Rudy S(1), Titik Ismiyati(2), Endang Wahyuningtyas(3*)
(1) Prosthodontics Specialty Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(2) Department of Prosthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(3) Department of Prosthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author
Abstract
Heat cured acrylic resin is the most commonly used denture base materials. Zirconium dioxide (ZrO2) nanoparticles can be applied as additional filler to increase mechanical strength and to reduce the amount of residual monomer. The aim of this research is to analyze the effect of ZrO2 nanoparticles concentrations as filler on heat cured acrylic resin denture base toward viability of fibroblast cells. Twenty four disc-shaped heat cured acrylic resin plate (diameter 5 mm; width 2 mm), were divided into 4 groups (n=6), they were consisted of group I control (acrylic resin), group II acrylic resin with 2.5% ZrO2, group III acrylic resin with 5% ZrO2, and group IV acrylic resin with 7.5% ZrO2. Cell viability was obtained using MTT assay and ELISA plate reader. The result is examined with one way ANOVA followed by LSD post hoc assessment. The result showed highest cell viability percentage on experimental group of 2.5% ZrO2 with value as high as 97.49%. One way ANOVA test and LSD post hoc test showed a significant difference between groups (p<0.05). The conclusion of this research is ZrO2 nanoparticles concentration utilized as filler on heat cured acrylic resin denture base is effect to viability of fibroblast cells, and ZrO2 nanoparticles 2.5% shows the highest viability of fibroblast cell compared to 5% and 7.5% ZrO2 nanoparticles concentrations
Keywords
Full Text:
PDFReferences
1. Khalifa N, Allen PF, Abu Bakar Nh, Abdel Rahman ME. Factor associated with tooth loss and prosthodontics status among sudanese aduts. J Oral Sci. 2012; 54(4): 303-312. doi: 10.2334/josnusd.54.303
2. Loney RW. Removable partial denture manual. Halifax: Dalhousie University; 2011. 1-3.
3. Tarigan S. Pasien prostodonsia usia lanjut: beberapa pertimbangan dalam perawatan, pidato pengukuhan guru besar. Medan: Universitas Sumatera Utara; 2005. 23.
4. Mc Cabe JF, Walls AWG. Applied dental material, 9th ed. Oxford: Blackwell Publishing; 2008. 5-31, 40, 99, 101-9,110-23.
5. Sakaguchi RL, Powers JM. Craigs Restorative Dental Material, 13th Ed. Philadelphia: Mosby Elsevier Inc; 2012. 191-2, 327-48.
6. Meng TR, Latta MA. Physical properties of four acrylic denture base resins. The Journal of Contemporary Dental Practice. 2005; 6(4): 93–100. doi: 10.5005/jcdp-6-4-93
7. Craig RG. Restorative dental materials, 11th ed. New York: Churchill Livingstone Edinburg; 2002. 25-195.
8. Raszewski Z, Nowakowska D. Mechanical properties of heat curing acrylic resin after reinforced with different kinds of fibers. International Journal of Biomedical Materials Research. 2013; 1(1): 9–13. doi: 10.11648/j.ijbmr.20130101.12
9. Anusavice KJ, Shen C, Rawls HR. Phillips science of Dental Materials, 12th ed. St. Louis: Elsevier; 2013. 94, 165-66, 493-4, 721-35.
10. Raharjo P, Rukmo M, Rulianto M. Evaluasi klinis satu tahun pada tumpatan resin komposit kelas VI. Dental Journal (Majalah Kedokteran Gigi). 2002; 35(1): 11-13.
11. Asar NV, Albayrak H, Korkmaz T, Turkyilmaz I. Influence of various metal oxides on mechanical and physical properties of heatcured polymethyl methacrylate denture base resins. J Adv Prosthodont. 2013; 5(3): 241-247.
doi: 10.4047/jap.2013.5.3.241
12. Gad MM, Rahoma A, Al-Thobity AM, Arrejaie AS. Influence of incorporation of
ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases. Int J Nanomedicine. 2016; 11: 5634. doi: 10.2147/IJN.S120054
13. Otsuka T, Chujo Y. Poly(methyl methacrylate) (PMMA)-based Hybrid Materials with Reactive Zirconium Oxide Nanocrystals. Polym J. 2010; 42: 58-65. doi: 10.1038/pj.2009.309
14. Arefian Z, Pishbin F, Negahdary M, Ajdary M. Potential toxic effects of zirconia oxide nanoparticles on liver and kidney factors. Biomedical Research. 2015; 26(1): 89-97.
15. Fu PF, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal. 2014; 22(1): 64-75. doi: 10.1016/j.jfda.2014.01.005
16. Shi DL. Introduction to biomaterial. Beijing: Tsinghua University Press; 2006. 59.
17. Wahyuningtyas E, Siswomihardjo W, Marsetyawan HNE, Sugiatno E. The influence of chicken scrath collagen with local hydroxyapatite as bone substitute material toward the bone remodelling of rattus sprague dawley. FKG UGM Yogyakarta: Disertasi; 2016.
18. Schamlz G. Use of cell cultures for toxicity testing of dental materials: advantages and limitations. Journal of Dentistry. 1994; 22(2): 6-11. doi: 10.1016/0300-5712(94)90032-9
19. Shin-etsu, Silane Coupling Agent. Tokyo, Japan: Shin-Etsu Chemical Co., Ltd; 2017. 1-28.
20. Ammerman NC, Beier Sexton M, Azad AF. Growth and maintenance of vero cell lines. Current Protocols in Microbiology; 2008. 1-7.
21. ISO 10993-5. Biological Evaluation Of Medical Devices-Part 5: Tests for In Vitro Cytotoxicity, International Organization for Standarization, Geneva; 2009. 30-34.
22. Ahuja S, Babu J, Wicks R, Garcia-Godoy FG, Tipton D. Cytotoxic effects of three denture base materials on gingival epithelial cells and fibroblasts: an in vitro study. International Journal of Experimental Dental Science. 2015; 4(1): 11-16.
doi: 10.5005/jp-journals-10029-1088
23. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ. In vitro cytotoxicity of oxide nanoparticles: comparation to asbestos, silica, and the effect of particle solubility. Environ Sci Technol. 2006; 40: 4374-8431. doi: 10.1021/es052069i
24. Zhang XY, Zhang XJ, Huang ZL, Zhu BS, Chen RR. Hybrid effects of zirconia nanoparticles with aluminium borate whiskers on mechanical properties of denture base resin PMMA. Dent Mater J. 2014; 33(1): 141-146. doi: 10.4012/dmj.2013-054
25. Goiato MC, Zuccolotti BCR, Moreno A, Filho AJV, Paulini MB, Santos DMD. Effect
of nanoscale particles incorporation on microhardness of polymers for oral prosthesis. Contemporary Clinical Dentistry. 2016; 7(3): 307-311. doi: 10.4103/0976-237X.188543
26. Saravi ME, Vojdani M, Bahrani F. Evaluation of cellular toxicity of three denture base acrylic resins. J Dent (Tehran). 2012; 9(4): 180-188.
27. Vojdani M, Bagheri R, Khaledi AAR. Effect of aluminum oxide addition on the flexural strength, surface hardness, and roughness of heat-polymerized acrylic resin. Journal of Dental Sciences. 2012; 7(3): 238-244. doi: 10.1016/j.jds.2012.05.008
28. Takamori ER, Cruz R, Goncalves F, Zanetti RV, Zanetti A, Granjeiro JM. Effect of roughness of zirconia and titanium on fibroblast adhesion. Artif Organs. 2008; 32(4): 305-309. doi: 10.1111/j.1525-1594.2008.00547.x
29. Yuan B, Chen Q, Ding WQ, Liu PS, Wu SC, Shen J, Gai Y. Copolymer coatings consisting of 2-methacryloyloxyethyl phosphorylcholine and 3-methacryloxypropyl trimethoxysilane via ATRP to improve cellulose biocompatibility. ACS Appl Mater Interfaces. 2012; 4(8): 4031-4039. doi: 10.1021/am3008399
30. Bural C, Aktas E, Deniz G, Gulsen B. Effect of leaching residual methyl methacrylate concentrations on in vitro cytotoxicity of heat polymerized denture base acrylic resin processed with different polymerization cycles. J Appl Oral Sci. 2011; 19(4): 306-312. doi: 10.1590/s1678-77572011005000002
31. Chen R, Han Z, Huang Z, Karki J, Wang C, Zu B, Zhang X. Antibacterial activity, cytotoxicity and mechanical behavior of nano-enhanced denture base resin with different kinds of inorganic antibacterial agents. Dent Mater J. 2017; 36(6): 693-699. doi: 10.4012/dmj.2016-301
DOI: https://doi.org/10.22146/majkedgiind.44345
Article Metrics
Abstract views : 1882 | views : 1706Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Majalah Kedokteran Gigi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.