The effect of fiber type and position on the transverse strength of an fiber reinforced composite (FRC) bridge

https://doi.org/10.22146/majkedgiind.44616

Pramudya Aditama(1*), Erwan Sugiatno(2), Murti Indrastuti(3)

(1) Department of Prosthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(2) Department of Prosthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(3) Department of Prosthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author

Abstract


Fixed bridge made of porcelain fused to metal (PFM) is one of the widely used dentures. However, this type of denture is easily broken and cracked. As an alternative, a fixed bridge made of fiber-reinforced composite (FRC) is produced with more benefits since it is more efficient in terms of time and cost. The purpose of this research is to find out the effect of type and fiber position on the transverse strength of an FRC bridge. The experiment
involved 35 rod of FRC with the dimensions of 25x2x2 mm3. Subjects were divided into seven groups, each of which containing five subjects. Group I, II, III was reinforced with glass fiber on compression side, neutral side, and tension side. Group IV, V, VI were reinforced with polyethylene (PE) fiber on compression side, neutral side, and tension side. Group VII was not reinforced with any fiber. Rods were tested for transverse strength with universal
testing machine and all data were analyzed with two way ANOVA at 95% confidence level. The results showed that type and position of fiber had a significant effect (p<0.05), while the interaction between type and position of fiber had no significant effect (p>0.05). Least significance different post hoc test showed significant difference (p<0.05) for all groups, except between compression and no fiber. The conclusion of this research was that addition of glass fibers on tension side in bridge FRC increased the transverse strength to be higher than that with PE fibers. Fiber placement on tension side might improve the transverse strength than that of the other side.


Keywords


fiber position; fiber reinforced composite; glass fiber; polyethylene fiber; transverse strength

Full Text:

PDF


References

1. Kementrian Kesehatan RI. Laporan Nasional RISKESDAS 2018. Jakarta: Lembaga Penerbit
Badan Penelitian dan Pengembangan; 2019. 187-189

2. Agtini MD. Persentase Pengguna Protesa di Indonesia. Media Litbang Kesehatan. 2010;
10(2): 50-58.

3. Mohanty AK and Manjusri M. Fiber Technology for Fiber Reinforced Composite. Cambridge:
Woodhead Publishing; 2017. 99-120.

4. Alla RK, Suresh S, Venkata RA, Kishore G, Nagaraj U. Influence of fiber reinforcement on
the properties of denture base resins. Journal of Biomaterials and Nanobiotechnology. 2013;
4(1): 91-97. doi: 10.4236/jbnb.2013.41012

5. Tayab T, Akshay S, Kayalvizhi G. The Clinical applications of fiber reinforced
composites in all specialties of dentistry an overview. International Journal of Composite
Materials. 2015; 5(1): 18-24. doi: 10.5923/j.cmaterials.20150501.03

6. Van Heumen C. Fiber Reinforced Adhesive Bridges Clinical and Laboratory Performance.
Thesis. Dutch: Radboud University Nijmegen. 2010. 11-50.

7. Niewczas A, Jolanta Z, Aneta K, Daniel P, Agata W, Grzegorz B. Influence of fibre
reinforcement on selected mechanical proprties of dental composites. Acta Bioeng
Biomech. 2017; 19(2): 3-10.

8. Nabilah VZ, Lusi H, and Agus S. Flexural strength of microhybrid composite resin
with polyethylene fiber’s layer addition. Proccedings Book FORKINAS VI FKG UNEJ.
2016: 276-284.

9. Spyrides SMM, Maira DP, Renata AS, Fernando LB. Effect of plasma position on flexural
properties of a fiber-reinforced composite. Brazilian Dental Journal. 2015; 26(5):490-496.
doi: 10.1590/0103-644020130225

10. Yanti D, Heriyanti A, Erwan S. Perbedaan kekuatan transversal fiber reinforced
composite dengan struktur leno weave dan long longitudinal polyethylene pada gigi tiruan
cekat adhesif. Jurnal Kedokteran Gigi. 2011; 2(4): 230-235.

11. Tiberio CU, Matheus, Cynthia MF, Kauffman, Ana KS, Claudia CBO, Anderson SL. Fracture
Process Characterization of Fiber-Reinforced Dental Composites Evaluated by Optical Coherence Tomography, SEM and Optical Microscopy. Braz. Dent. J. 2010; 21(5).
doi: 10.1590/S0103-64402010000500008

12. Sakaguchi R, Jack F, John P. Craig’s Restorative Dental Materials. 14 th ed St. Louis: Elsevier; 2018. 252.


13. Fediuk R., Aleksey S, Aleksandr M. Mechanical Properties of Fiber-Reinforced Concrete Using Composite Binders. Hindawi. 2017. 1-13

14. Mallick PK. Fiber Reinforced Composite: Material, Manufacturing, and Design. 3 ed.
France: CRC Press; 2007. 338.

15. Budiharjo A, Endang W, Erwan S. Pengaruh lama pemanasan pasca pemanasan dengan
microwave terhadap sisa monomer dan kekuatan transversa pada reparasi gigi tiruan
resin akrilik. Jurnal Kedokteran Gigi. 2014; 5(2):1-13

16. Vallittu PK. Interpenetrating polymer networks (IPNs) in Dental Polymers and Composite.
Journal of Adhesion Science and Technology. 2009; 23(7-8): 961-972. doi: 0.1163/156856109X432785

17. Al-Darwish M, Hulrey RK, Drummond JL. Flexure strength evaluation of a laboratory processed fiber reinforced composite resin. The Journal of Prosthetic Dentistry. 2007; 97(5): 266-270. doi: 10.1016/j.prosdent.2006.09.001

18. Noort RV. Introduction to Dental Materials. 4 ed. St.Louis: Mosby Ltd; 2013. 164-170

19. Lung CYK, Matinlinna. Aspects of silane coupling agents and surface conditioning in
dentistry: an overview. Dent Mater. 2012; 28(5): 467-477. doi: 10.1016/j.dental.2012.02.009

20. Bahramian N, Mohammad A, Naimi J. Plasma Surface Treated UHMWPE Fibers for Dental
FRCs: Surface Nanostructure and Chemistry. Proccedings of the 8 th International Chemical
Engineering Congress and Exhibition. 2014.


21. Anusavice KJ, Chiayi SH, Ralph R. Phillips’ Science of Dental Materials. 12th Philadelphia: W.B. Saunders; 2012. 108-119.

22. Choksi RH, Mody PV. Flexural properties and impact strength of denture base resin
reinforced with micronized glass flakes. J Indian Prosthodont Soc. 2016; 16(3): 264270.
doi: 10.4103/0972-4052.176532

23. Vakiparta M, Yli-Urpo A, Vallittu PK. Flexural properties of glass fiber reinforced composite with multiphase biopolymere matrix. J Mater Sci Mater Med. 2004; 15(1): 7-11. doi:10.1023/b:jmsm.0000010091.34422.45



DOI: https://doi.org/10.22146/majkedgiind.44616

Article Metrics

Abstract views : 1757 | views : 1453

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Majalah Kedokteran Gigi Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

 View My Stats


real
time web analytics