The effect of sisal (Agave Sisalana) nanofiber in epoxy resin sealer on root canal obturation’s push-out bond strength

Astriani Amanda(1), Diatri Nari Ratih(2), Ema Mulyawati(3*)

(1) RSUD R Syamsudin, Sukabumi, West Java
(2) Department of Conservative Dentistry, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(3) Department of Conservative Dentistry, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author


Sisal nanofiber can be used as an additional filler to increase the adhesion strength of the resin epoxy sealer. The aim of this study was to observe the effect of sisal nanofiber addition to epoxy resin sealer on push-out bond strength of root canal obturation material against the root canals. Twenty-five mandibular premolars (n= 25) were prepared until file F3 and obturated using 0%, 0.25%, 0.5%, 0.75%, and 1% sisal nanofiber sealer. After the specimens were stored at incubator, they were horizontally sectioned at apical third. Root sections were tested with push-out technique, and observed under a stereo microscope to determine the failure type. Data were analyzed with one-way ANOVA and LSD pos hoc at 95% confidence level (α=0.05). A one-way ANOVA test revealed that the addition of sisal nanofiber in epoxy resin sealer had a significant effect on the push out bond strength of the obturation material against the root canals. The failure type was observed predominantly in the cohesive type and the lowest in the adhesive type. The addition of sisal nanofiber to the epoxy resin sealer could increase the push-out bond strength of the obturation material against the root canals. Epoxy resin sealers with the addition of sisal nanofiber at a concentration group of 0.75% resulted in the highest push-out strength of root canal obturation materials followed by 0.5% concentration group.


epoxy resin sealer; push-out bond strength; sisal nanofiber

Full Text:



1. Garg N and Garg A. Textbook of Endodontics, 3rd ed. New Delhi: Jaypee Brothers Medical
Publisher; 2014. 1, 28. Available at

2. Hargreaves KM, Berman LH. Cohen’s Pathways of the Pulp Expert Consult, 11th ed.
Missouri: Elsevier: 2016. 316.

3. Mishra P, Sharma A, Mishra S, Gupta M. Push-out bond strength of different endodontic
obturation material at three different sites- In-vitro study. Journal of Clinical and Experimental Dentistry. 2017; 9(6): e733–e737. doi: 10.4317/jced.53647

4. Rahimi M, Jainaen A, Parashos P, Messer H. Bonding of resin-based sealers to root dentin.
J Endod. 2009; 35(1): 121-124. doi: 10.1016/j.joen.2008.10.009

5. Nugroho DA, Widjijono, Nuryono, Asmara W, Wajar D. Efek jumlah kandungan filler
nanosisal terhadap ketahanan fraktur resin komposit. Insisiva Dental Journal. 2017; 6(1):
17–23. doi: 10.18196/di.6176

6. Morán JI, Alvarez, VA, Cyras, VP. Extraction of cellulose and preparation of nanocellulose
from sisal fibers. Cellulose. 2008; 15: 149–159. doi: 10.1007/s10570-007-9145-9

7. Omrani A, Simon LS, Rostami AA. Influnces of cellulose nanofiber on the epoxy network
formation. Materials Science and Engineering: A. 2008; 490(1-2): 131-137.
doi: 10.1016/j.msea.2008.01.012.

8. Mulyawati E, Soesatyo MHNE, Sunarintyas S, Handajani J. Apical sealing ability of calcitesynthesized hydroxyapatite as a filler of epoxy resin-based root canal sealer. Contemp Clin
Dent. 2020; 11(2): 136-140. doi: 10.4103/ccd.ccd_447_19

9. Sosiati H, Wijayanti DA, Triyana K, Kamiel B. Morphology and crystallinity of sisal nanocellulose after sonication, 4th International Conference on the Advancement
of Materials and Nanotechnology (ICAMN IV 2016), AIP Publishing. 2017

10. Powers JM, Sakaguchi RL. Craig’s Restorative Dental Material _, 12th ed. Philadelphia:
Mosby Elsevier; 2012. 329-330.

11. Baldissera R, Rosa RA, Wagner MH, Kuga MC, Grecca FS, Bodanezi A, Frasca LCF,
So MVR. Adhesion of real seal to human root dentin treated with different solution. Braz
Dent J. 2012; 23(5): 521-526. doi: 10.1590/s0103-64402012000500009

12. Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Yasmine S, Sheltami RM. Effects
of hydrolisis conditions on the morphology, crystallinity, and thermal stability of cellulose
nanocrystals extracted from kenaf bast fibers. Cellulose. 2012; 19: 855-866.
doi: 10.1007/s10570-012-9684-6

13. González MG, Cabanelas JC, Baselga JJ. Applications of FTIR on epoxy resins -
identification, monitoring the curing process, phase separation and water uptake. Materials
Science, Engineering and Technology. 2012. doi: 10.5772/36323.

14. Anusavice KJ, Shen C, Rawls HR. Philip′s Science of Dental Materials, 12th ed. St. Louis:
Saunders, Elsevier; 2013 17, 26-28, 105, 384.

15. Liu JC, Moon, RJ, Rudie A, Youngblood JP. Mechanical performance of cellulose nanofibril
film-wood flake laminate. Holzforschung. 2014; 68(3): 283-290. doi: 10.1515/hf-2013-0071

16. Heux L, Dinand E, Vignon MR. Structural aspects in ultrathin cellulose microfibrils
followed by C-13 Cp-Nmr. Carbohydrate Polymers. 1999; 40(2): 115-124.
doi: 10.1016/S0144-8617(99)00051-X

17. Lee WJ, Clancy AJ, Kontturi E, Bismarck A, Shaffer MSP. Strong and stiff: highperformance
cellulose Nanocrystal/Poly(vinyl alcohol) composite fibers. ACS Appl Mater
Interfaces. 2016; 8(46): 31500–31504. doi: 10.1021/acsami.6b11578

18. Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP. Cellulose nanocrystals vs.
cellulose nanofibrils: a comparative study on their microstructures and effects as polymer
reinforcing agents. ACS Appl Mater Interfaces. 2013; 5(8): 2999–3009. doi: 10.1021/am302624t

19. Neelakantan P, Sharma S, Shemesh H, Wesselink PR. Influence of irrigation sequence
on the adhesion of root canal sealers to dentin: a fourier transform infrared spectroscopy and
push-out bond strength analysis. Journal of Endodontics. 2015; 41(7): 1108–1111.
doi: 10.1016/j.joen.2015.02.001

20. Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, Alothman OY,
Sain M. Thermal and dynamic mechanical properties of cellulose nanofibers reinforced
epoxy composites. International Journal of Biological Macromolecules. 2017; 102: 822–
828. doi: 10.1016/j.ijbiomac.2017.04.074

21. Shrestha S. Effect of nanocellulose reinforcement on the propeties of polymer
composite. School of Materials Engineering, Purdue University: Thesis. 2019.

22. Mondal S. Review on nanocellulose polymer nanocomposites. Polymer-Plastics Technology
and Engineering. 2017; 57(13): 1377–1391. doi:10.1080/03602559.2017.1381253.

23. Bergshoef MM, Vansco GJ. Transparent nanocomposites with ultrathin, electrospun
nylon-4,6 fiber reinforcement. Advanced Materials. 1999; 11(16): 1362-1365.
doi:10.1002/(SICI)1521-4095(199911)11: 16<1362::AID-ADMA1362>3.0.CO;2-X

24. Musanif IS, Topayung DO, Sompie OB. Pengaruh perlakuan alkali terhadap wettability
pada komposit serat sabut kelapa–polyester (effects of alkali treatment on wettability of
coconut fiber – polyester composites). J. Ilmu Teknol Kayu Tropis. 2014; 12(2): 127-133.

25. Jainaen A, Palamara JEA, Messer HH. Pushout bond strengths of the dentine-sealer
interface with and without a main cone. Int Endod J. 2007; 40(11): 882–890.
doi: 10.1111/j.1365-2591.2007.01308.x.

26. Tedesco M, Chain MC, Felippe WT, Alves AMH, Garcia LFR, Baortoluzzi EA, Cordeiro
MR, Teixeira CS. Correlation between bond strength to dentin and sealers penetration by push-out test and CLSM analysis. Braz Dent J. 2019; 30(6): 555–562. doi: 10.1590/0103-6440201902766.

27. Abada HM, Farag AM, Aldhainy HA, Darrag AM. Push-out bond strength of different root
canal obturation systems to root canal dentin. Tanta Dental Journal. 2015; 12(3): 185-191.
doi: 10.1016/j.tdj.2015.05.006


Article Metrics

Abstract views : 269 | views : 220


  • There are currently no refbacks.

Copyright (c) 2021 Majalah Kedokteran Gigi Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Currently, Majalah Kedokteran Gigi Indonesia indexed by:







 View My Stats

time web analytics