Karakterisasi bovine tooth scaffold dalam bentuk nanopartikel dengan uji x-ray diffraction (XRD) untuk terapi periodontitis

https://doi.org/10.22146/mkgk.104301

Anggi Salwa Adisty(1*), Desi Sandra Sari(2), Melok Aris Wahyukundari(3)

(1) Program Studi Kedokteran Gigi, Fakultas Kedokteran Gigi, Universitas Jember, Jember, Jawa Timur, Indonesia
(2) Departemen Periodonsia, Fakultas Kedokteran Gigi, Universitas Jember, Jember, Jawa Timur, Indonesia
(3) Departemen Periodonsia, Fakultas Kedokteran Gigi, Universitas Jember, Jember, Jawa Timur, Indonesia
(*) Corresponding Author

Abstract


Kerusakan tulang alveolar akibat periodontitis memiliki prevalensi tertinggi di Indonesia. Pencegahan kerusakan tulang alveolar dapat dilakukan dengan terapi regenerasi periodontal. Desain scaffold telah menjadi fokus utama untuk regenerasi jaringan tulang. Bovine teeth scaffold berukuran nanopartikel saat ini sedang dikembangkan sebagai solusi untuk mengatasi keterbatasan scaffold berukuran mikro. Scaffold harus memiliki karakteristik tertentu yang mendukung pertumbuhan dan diferensiasi sel untuk regenerasi jaringan periodontal yang dapat diketahui melalui uji karakterisasi X-ray diffraction. Penelitian ini bertujuan untuk mengetahui karakterisasi bovine teeth scaffold dalam bentuk nanopartikel melalui uji X-ray diffraction (XRD) untuk terapi periodontitis. Metode yang digunakan dalam penelitian ini adalah penelitian deskriptif kuantitatif untuk mendeskripsikan karakterisasi bovine teeth scaffold dalam bentuk nanopartikel dan data dianalisis secara deskriptif dengan tabel, kurva, dan nilai persentase. Hasil uji XRD menunjukkan bahwa terdapat dua fasa yang terdeteksi, yaitu hidroksiapatit dan whitlockite. Puncak-puncak difraksi hidroksiapatit muncul pada sudut difraksi 2θ sebesar 25,82˚; 31,67˚; 33,91˚; 49,33˚; 50,30˚ dengan puncak tertinggi pada sudut difraksi 31,67˚. Puncak-puncak difraksi whitlockite muncul pada sudut difraksi 2θ sebesar 28,86˚; 32,72˚; 39,58˚; 46,56˚ dengan puncak tertinggi pada sudut difraksi 32,72˚. Grafik menunjukkan pola difraksi sempit, tinggi, dan tajam yang mengindikasikan bahwa bovine teeth scaffold memiliki struktur kristal. Bovine teeth scaffold dalam bentuk nanopartikel mengandung 65% Hidroksiapatit (Ca10(PO4)6OH) dan 35% Whitlockite (Ca10NaMg(PO4)6(CO3) (OH)3). Karakterisasi bovine teeth scaffold dalam bentuk nanopartikel dengan menggunakan uji XRD diperoleh fasa hidroksiapatit sebesar 65% dan fasa whitlockite sebesar 35%.

Keywords


bovine teeth scaffold; nanopartikel; periodontitis; resorpsi tulang alveolar; x-ray diffraction



References

1. Desyaningrum H, Epsilawati L, Rusyandi Y. Karakteristik kerusakan tulang alveolar pada penderita periodontitis kronis dan agresif dengan pencitraan cone beam computed tomography. Padjadjaran J Dent Res Students. 2017; 1(1): 1–6. doi: 10.24198/pjdrs.v1i1.22116

2. Rahmitasari F. Scaffold 3D kitosan dan kolagen sebagai graft pada kasus kerusakan tulang. Jurnal Material Kedokteran Gigi. 2018; 5(2): 1-7. doi: 10.32793/jmkg.v5i2.246

3. Newman MG. Newman and Carranza’s Clinical Periodontology. 13th ed. Vol. 4. United States: Elsevier Ltd; 2019. 1–23.

4. Jolly J, Mohd Fozi NF, Chin KY, Wong S, Chua K, Alias E, et al. Skeletal microenvironment system utilising bovine bone scaffold co‑cultured with human osteoblasts and osteoclast‑like cells. Exp Ther Med. 2021; 22(1): 1–8. doi: 10.3892/etm.2021.10112

5. Junaidi H, Pawitan JA. Advantages of selected natural and synthetic materials as Scaffolds in vascular tissue engineering. Health Biotechnology and Biopharma. 2022; 6(3): 11–22. doi: 10.22034/HBB.2022.20

6. Sari DS, Maduratna E, Ferdiansyah, Latief FDE, Satuman, Nugraha AP, et al. Osteogenic differentiation and biocompatibility of bovine teeth scaffold with rat adipose-derived mesenchymal stem cells. Eur J Dent. 2019; 13(2): 206–212. doi: 10.1055/s-0039-1694305

7. Setiawatie EM, Ulfah N, Wahjuningrum DA, Sari DS, Rubianto M. VIiability bovine tooth hydroxiapatite on bone marrow mesenchymal stem cells. Int Med Device Technol Conf. 2017: 78–81.

8. Mahanani ES. The characteristics of scaffold design for bone regeneration: a literature review. Odonto: Dental Journal. 2022; 9(1): 16-23. doi: 10.30659/odj.9.0.16-23

9. Percival KM, Paul V, Husseini GA. Recent advancements in bone tissue engineering: integrating smart scaffold technologies and bio-responsive systems for enhanced regeneration. Int J Mol Sci. 2024; 25(11):
6012. doi: 10.3390/ijms25116012

10. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 2000; 21(17): 1803–1810. doi: 10.1016/s0142-9612(00)00075-2

11. Harini G, Bharathi R, Sankaranarayanan A, Shanmugavadivu A, Selvamurugan N. Nanoceramics-reinforced chitosan scaffolds in bone tissue engineering. Mater Adv. 2023; 4(18): 3907–3928. doi: 10.1039/D3MA00422H

12. Habibzadeh F, Sadraei SM, Mansoori R, Singh Chauhan NP, Sargazi G. Nanomaterials supported by polymers for tissue engineering applications: a review. Heliyon. 2022; 8(12): e12193. doi: 10.1016/j.heliyon.2022.e12193

13. Das A, Debnath A, Banerjee K, Bhattacharjee S, Deb A, Chatterjee S, et al. Nanoparticles in bone tissue engineering. Nanostructured Mater Tissue Eng. 2023: 427–56. doi: 10.1016/B978-0-323-95134-0.00012-2

14. Wahyuni MS, Hastuti E. Karakterisai cangkang kerang menggunakan xrd dan x-ray physics basic unit. J Neutrino. 2010; 3(1): 32–43. doi: 10.18860/neu.v0i0.1622

15. Samik S, Kusumawati N, Sianita MM, Maharani DK, Purnamasari AP, Imaduddin M, et al. Karakterisasi abu sekam padi dengan menggunakan XRD. Unesa J Chem. 2023; 11(3): 153–159.

16. Ngapa YD. Sintesis dan karakterisasi hidroksiapatit (HAp) dari limbah cangkang kerang lokan (Batissa violecea L) dengan metode basah presipitasi. Jurnal Dinamika Sains. 2018; 2(1): 67-72.

17. Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive calcium phosphate materials and applications in bone regeneration. Biomaterials Research. 2019; 23(4): 1–11. doi: 10.1186/s40824-018-0149-3

18. Levingstone TJ, Herbaj S, Dunne NJ. Calcium phosphate nanoparticles for therapeutic applications in bone regeneration. Nanomaterials. 2019; 9(11): 1–22. doi: 10.3390/nano9111570

19. Arifin A, Mahyudin F, Edward M. The Clinical and radiological outcome of bovine hydroxyapatite (Bio Hydrox) as bone graft. J Orthop Traumatol Surabaya. 2020; 9(1): 9.

20. Lelo I, Calabrese G, De Luca G, Conoci S. Recent advances in hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics. Int J Mol Sci. 2022; 23(17): 9721. doi: 10.3390/ijms23179721

21. Liu Y, Li H, Xu J, TerBush J, Li W, Setty M, et al. Biodegradable metal-derived magnesium and sodium enhances bone regeneration by angiogenesis aided osteogenesis and regulated biological apatite formation. Chem Eng J. 2021; 410: 127616. doi: 10.1016/j.cej.2020.127616

22. Kim DH, Min KH, Pack SP. Efficient bioactive surface coatings with calcium minerals: stepwise
biomimetic transformation of vaterite to carbonated apatite. Biomimetics. 2024; 9(7): 402. doi: 10.3390/biomimetics9070402



DOI: https://doi.org/10.22146/mkgk.104301

Article Metrics

Abstract views : 1426 | views : 691

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 MKGK (Majalah Kedokteran Gigi Klinik) (Clinical Dental Journal) UGM

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View my stats

site
stats