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A simple algorithm originally proposed by Choong, Paterson and Scott (2002) was
tested on a model of an isothermal controlled-cycled stirred tank reactor with substrate

inhibition kinetics, ['= — ) In previous work, this reacting system had been

1+ KC
shown to exhibit steady-state multiplicity. The transition period of this system to the
stable steady state is sometimes characterized by very slow change followed by a very
rapid convergence to the stable steady state. Tests of the Choong-Paterson-Scott
algorithm showed that the feature, which prevents premature termination of the
calculations prior to reaching the true steady state, is very useful for this system.
However, tests of the stopping criterion showed that the other feature of reducing the

INTRODUCTION

Many chemical processes are operated
cyclically. In such systems, the process is started
with a pre-determined set of initial conditions and
then allowed to go through one cycle after which
the output from the initial cycle determines the
initial conditions for the succeeding cycle. In
many cases, simulating such systems involve
solving a number of ordinary differential
equations (ODE’s) or partial differential equations
(PDE’s) thousands of times before the so-called
“cyclic steady state” is achieved.

Ideally, a cyclic steady state is achieved when

Vi —Va=0 (1)

computing time was not realized in this system.
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where ;Ml and ;n are the vectors of state

variables at corresponding portions of the cycle
at cycles n and n+1 respectively. Verbally, we say
that “cyclic steady state” has been achieved when
the output form succeeding cycles are identical.

While condition (1) may be intuitively
obvious, it is impossible to achieve. Hence, a
common criterion for achieving cyclic steady state
is used to

yn+l_—;n£8 (2)

where ¢ is a previously selected small number.
The transient behaviors of these systems are

often characterized by either very slow or

extremely rapid transitions to steady state.
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Hence, the use of condition (2) may sometimes
result in a premature termination of the
simulations before the time cyclic steady state is
achieved. To address this concern, Choong,
Paterson and Scott (2002) proposed a rational
stopping criterion for determining when the cyclic
steady state has been achieved.

THE RATIONAL STOPPING
CRITERION

In this section, the essential fixtures and
equations of the Choong, Paterson and Scott
(2002) algorithm are discussed. The reader is
referred to the original paper for a more extensive
discussion. (The author has taken the liberty of
modifying the original notation slightly to aid in
clarity.)

The Choong Paterson and Scott algorithm has
two features, which may make it useful for the
simulation of cyclic processes. First, it provides
an unambiguous criterion for determining when
cyclic steady state has been achieved. Second,
the algorithm may result in savings in computer
time as the algorithm provides for a prediction of
the values of the state variables at cyclic steady
state.

To achieve these two features, the algorithm
numbers use of the behavior of the difference in
the values of the state variables in two succeeding
cycle. In a system with a single state-variable, the
difference between successive cycles (the
“advance”) may be represented as:

Aquyn_yn—ll (3)

If the advances are plotted vs. number of

cycles in a semi log plot, the slope k_at the n-th
cycle is expressed as

k,=InAy, ~InAy, , @)

A quasi-linear region is said to have been
identified when

k n_ kn-l

—k-——' <0.1 ( 5)

and

k <0 (6)

n

When these conditions are met, k, =k can

be said to be almost constant and a prediction
for cyclic steady state can be derived such that

exp(k)

=y, +A
Yo =Wy ynm

(7

where y. is the prediction of the final cyclic:
steady state. An extension of this derivation will
provide a criterion such that the simulation can
be stopped when

wid = 8"
Ay, <0.49 x 10 “[T] ®)

where & is the number of significant figures
required in the final product or outcome.

THE CONTROLLED-CYCLED
STIRRED TANK REACTOR

The operation of the first stage of a
controlled-cycled stirred tank reactor is similar
to that of a batch reactor. However, in
succeeding stages, not all of the reacting mixture
is emptied. A fraction is allowed to remain
behind. The next stage is then started with a
mixture of the fraction that remains behind and
a fresh batch of feed. The operation of a CCTR
is diagrammed in Figure 1.

Cycle No. 1

Figure 1. Operation of a Controlled-Cycled
Stirred Tank Reactor
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N. B. Le (1982) created some simple models
of a CCTR including that of an exothermic first-
order reaction occurring in a diabatic CCTR.
In her work, N. B. Le (1982) found some very
complex behavior including very long-period
oscillations and “chaotic” behavior. An
isothermal CCTR, while simpler, can also be
shown to exhibit some fairly complex behavior.
In this situation, only a mass-balance needs to
be derived. The mass- balance for the n-th
batch of a CCTR is similar to that of any other
batch reactor:

ac, _
===HE) 9)

subject to the initial condition C, =C,(0) where
C, is the concentration of the n-th batch after
start-up and r(C,) is the reaction rate.

- The CCTR differs from a batch reactor in
that the initial condition for a particular batch
is derived from the previous batch. Defining
C,,(l') as the concentration in the reactor at the
time the reaction is stopped, t*, the initial
concentration in the (n+1)-st batch can then
‘be obtained via the mass balance.

V,C,..0)=v,C,((')+V.C, (10)
‘where V. is the total reactor volume, V, is the
“amount of reacting fluid allowed to remain and
V, is the amount of feed fed into the reactor at
the beginning of each cycle and C|. is the feed
concentration.

When simple first-order and second-order
reactions are conducted in a CCTR, the steady
state has been shown to be always unique and
stable (Razon, 1988). However, it has been
shown that when a reaction represented by
substrate-inhibition Kinetics

-kC
E 1= -
r(c.) TS KC. (11)
isconducted in a CCTR, steady state multiplicity
“may be possible (Razon, 1988).
In this system, the conversion for the n-
th batch,

Cc.—C
X,.(r)=FT"(') 0<x,()<1 (12)

! o

can be computed numerically from the implicit
non-linear algebraic equation.

,n<f —XM.(o)‘+
rhi-x,(0

x’[x,(n)- L'(o)]+ Da =0 e
7
2
where K =KC,, =3 Da =kt
T

The behavior of this system is complicated
by the fact that equation (13) becomes undefined

if at any time X, (0)=1. In this case,

X,.0)=r (14)

and the succeeding batch is defined instead by

f_Xu+2(0)+ *

With these model equations, some simple
numerical simulations can be done. Depending
on the initial condition and the results from the
previous batch, either equation (13) or the
combination of equations (14) and (15) are solved
successively, using the secant method, to
determine the conversion at each cycle.

Some results are demonstrated in Figure 2.
It can be seen in curve (a) that the transient state
of such reactor is sometimes characterized by
very long induction period followed by a rapid
convergence onto the steady state. Hence, the
system makes a good test for the usefulness of
the Choong, Paterson and Scott algorithm.

NUMERICAL SIMULATIONS—
TRIALS OF THE CHOONG-
PATERSON-SCOTT ALGORITHM

Effectiveness of the Choong-Paterson-Scott
algorithm was tested by comparing it to the
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Figure 2. Conversion vs. Number of Cycles for Four Different Initial Conditions

Effectiveness of the simple stopping criterion
represented by Eq. (2). Effectiveness of each can
then be judged according to the following criteria:

1. What value is predicted by the algorithm to
be the steady-state value?

2. At which cycle does each stopping criterion
predict the value of the steady-state?

A comparison can then be made to the
true steady-state value for each set of
parameters.

Comparisons were made using a set of
parameters where it is predicted that the system
will exhibit multiple steady states (Kazon, 1988).
The chosen parameters wereDa = 6 —1n(2), /=0.5
and K*= 8. At this set of parameters, steady states
are predicted at

X » =[0.45008034 ,0.75,1.04991966 | -

Direct simulations in previous work have
shown that the first steady state is stable and
that the middle one is unstable (Razon,
1988). The third steady state is physically

impossible. Treatment of the third steady
state is discussed below.

Three initial conditions were chosen which
could be considered typical examples of the
variety of behavior that is usually observed in this
system. At an initial condition X,(0) = 0.72, a
short, rapid transition to steady state is observed.
This is illustrated in curve (a) of Figure 2. The
second type [curve (b) in Figure 2] is one, which
starts with a very long induction period, followed
by a rapid transition to steady state. The third
initial condition illustrates behavior that is rather
unusual and may be unique to this system. In
this case, the system makes a slow approach toa
high conversion, until it reaches a predicted
conversion of greater than 100% [curve (c) in
Figure 2]. Since this is not possible, the system
should be simulated by Equation (14) and (15)
instead of Equation (13). Because of this, a lower
value of X = f = 0.5 is immediately predicted in
the next cycle and the system once again goes to
the lower steady state. Curve (d) in Figure 2 shows
the behavior when the initial condition is set
exactly at x,(0) = 0.75, the value of the unstable
steady state. Curve (d) was drawn only to show
the location of the unstable steady state.




74 L.F. Razon

Table 1 shows the results from applying the
Choong-Paterson-Scott Algorithm [Equation (7)]
to these situations. A comparison is made to the
simple criterion represented by Equation (2). In
the simulations summarized in Table 1, a desired
accuracy of three significant figures was chosen.
Hence, in applying Equation (7), a value of &4 =
‘3was used. In applying Equation (2), a value of
a = 0.49 x 10 ® was used. The “true” value is
10.45008034, the lower steady state.

The comparison in Table 1 shows the obvious
advantage of using Equation (7). If Equation (2)
is used, the simulation is stopped far too early
and hence the simulation would have been
stopped after only two cycles. Equation (7), in
conjunction with the other criteria set by the
Choong-Paterson-Scott algorithm, predicts the
value of the steady state to a reasonable accuracy.
The slow transition from the initial condition,
which could be deceiving, was accurately
determined to be merely a transition.

The rapid transition to steady state, however,
causes Equation (7) to predict a steady state only
after a large number of cycles. In fact, it
consistently predicts that the computations should
be stopped only eight cycles before accuracy to 6
significant figures is achieved. Hence, we do not
get much savings in computing time.

A few other trials not reported here, showed
results consistent with the results summarized

in Table 1.

CONCLUSIONS

The Choong-Paterson-Scott algorithm
provides a simple-to-implement and accurate
means of determining the attainment of cyclic
steady state. Simulations with a controlled-cycled

stirred tank reactor showed that the algorithm
accurately detected a slow transition. Steady state
was correctly predicted to occur later in the
transition. Therefore, it provides a simple,
effective and conservative criterion for
determining cyclic steady-state. The other
possible benefit, reduced computing time, was
however not achieved, as the Choong-Paterson-
Scott did not make a prediction until a
considerable number of cycles had been
simulated.

Further tests of the Choong-Paterson-Scott
algorithm can be done on systems that are more
complex. More work can also perhaps be done
on developing algorithms of this type.
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NOTATION

Roman Letters

€. concentration of the feed for each
batch.

C concentration of the reactant for the
n-th cycle

Da Damkohler number, kt*

¥ fraction of the reacting mixture
removed at the end of the cycle, V/
V’I"

k rate constant

k slope of a semi log plot of advances

vs. number of cycles

Table 1. Performance of Stopping Criteria

Equation (7) Equation (2) Cycle
Initial Predicted Deviation Cycle Predicted Deviation Cycle number
Con- value of from number value of from number when
dition | steady-state “true” when steady-state “true” when conver-
X4(0) X value stopped Xz value stopped gencfe _to 6
s.f. is
{ detected
| 0.74 0.46969323 2.33% 1360 0.7399964 64.4% 2] 1368
' 0.76 0.46578914 3.49% 1434 0.7600035 68.8% 2 | 1442
0.72 0.46060825 2.34% 138 0.7198985 60.0% 2] 146
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K equilibrium constant

n cycle number

t time

t* time when the reaction for the n-th
batch is stopped

v, total volume of reactant

V, volume of reacting fluid allowed to
remain

Ve volume of reactant fed into each
batch

X (t) conversion of reactant at time t for
the n-th batch.

7 generic state variable, determined at
the n-th cycle

Y., predicted value of the steady state (n

“

Greek Letters

d number of significant figures required
in the final product

a an arbitrarily chosen small number
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