Exploring Microwave-Assisted Pyrolysis of Sargassum sp. for Optimal Process Parameters and Product Insights

  • Teta Fathya Widawati Center for Energy Studies, Universitas Gadjah Mada, Sekip K1A, Yogyakarta 55281, Indonesia
  • Muhammad Fuad Refki Center for Energy Studies, Universitas Gadjah Mada, Sekip K1A, Yogyakarta 55281, Indonesia
  • Rochmadi Carbon Research Group, Universitas Gadjah Mada, Jl. Grafika No. 2, Kampus UGM, Yogyakarta, 55281, Indonesia
  • Arief Budiman Department of Chemical Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Kampus UGM, Yogyakarta, 55281, Indonesia
Keywords: Bio-oil, Macroalgae, Microwave absorber, Parameters, Volatiles

Abstract

Microwave-assisted pyrolysis (MAP) offers a promising alternative to fast pyrolysis for scaling up biomass conversion processes, facilitating accelerated reactions without significant temperature elevation. This study investigated the optimum process parameters for MAP of Sargassum sp., the predominant macroalgae in Indonesia. Parameters explored included Sargassum sp. particle sizes (10-40, 40-70, 70-100, >100 mesh), final temperatures (300, 350, 400, 450 °C), and coconut activated carbon (CAC)-to-feedstock ratios (1:2, 1:1, 3:2), with CAC acted as a microwave absorber. Experimental results indicated that the highest volatile yield (57.64%) occurred at a 40-70 mesh particle size and a final temperature of 450 °C, yielding bio-oil and gas at 24.88% and 32.76%, respectively. Increasing CAC loading enhanced bio-oil and char yields while reduced gas production, with a 1:1 ratio, yielded an optimal calorific value. Bio-oil density ranged from 0.9557 to 0.9968 g/mL. Gas chromatography-mass spectrometry (GC-MS) analysis revealed significant sterol derivatives and butanoic acid in the bio-oil, with lower concentrations of N-aromatic compounds. Fourier-transform infrared spectroscopy (FTIR) identified key peaks characteristic of aromatic (1400 and 1500 cm-1), carbonyl (1700 cm-1), C-N bonds (2100-2200 cm‑1), amide and amine (3300-3400 cm-1), and hydroxyl and carboxylic acid (3450 cm‑1). These findings underscored the efficacy of MAP in achieving high volatile yields at relatively moderate temperatures compared to conventional methods. Moreover, butanoic acid's presence in the bio-oil highlighted its potential as a valuable resource for safe food preservation and chemical synthesis. However, detecting sterol derivatives and complex N-aromatic compounds suggested incomplete decomposition at 350 °C.

Author Biographies

Muhammad Fuad Refki, Center for Energy Studies, Universitas Gadjah Mada, Sekip K1A, Yogyakarta 55281, Indonesia

Fresh graduate from Master of Chemical Engineering Department, Gadjah Mada University

Rochmadi, Carbon Research Group, Universitas Gadjah Mada, Jl. Grafika No. 2, Kampus UGM, Yogyakarta, 55281, Indonesia

Professor in Department of Chemical Engineering, Gadjah mada University

Arief Budiman, Department of Chemical Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Kampus UGM, Yogyakarta, 55281, Indonesia

Professor in Department of Chemical Engineering, Gadjah Mada University

References

Ahmed, A.S., Uliu, C.H., Hossain, A.B.M.S., Alrudayni, H.A., and Kapilan, N., 2023. “Microwave assisted pyrolysis of Moringa seed and Karanja for bio-oil production.” Int. J. Renew. Energy Res. 13, 14-24.

Ali-Ahmad, S., Karbassi, A. R., Ibrahim, G., and Slim, K., 2020. “Pyrolysis optimization of Mediterranean microalgae for bio-oil production purpose.” Int. J. Env. Sci. and Technol. 17, 4281-4290.

Amrullah, A., Fatriasari, W., Sholeha, N. A., Hartulistiyoso, E., & Farobie, O., 2024. “Sustainable biofuel production from brown and green macroalgae through the pyrolysis.” J. Renew. Mater. 12(6), 1087-1102

Atwater, J.E. and Wheeler, Jr R.R., 2004. “Temperature dependent complex permittivities of graphitized carbon blacks at microwave frequencies between 0.2 and 26 GHz.” J. Mater. Sci. 39, 151–7.

Cazetta, A. L., Vargas, A. M. M., Nogami, E. M., Kunita, M. H., Guilherme, M. R., Martins, A. C., Silva, T. L., Moraes, J. C. G., and Almeida, V. C., 2011. “NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from methylene blue adsorption.” Chem. Eng. J. 174, 117-125.

Cheng, J. B., Shi, H. G., Cao, M., Wang, T., Zhao, H. B., and Wang, Y. Z., 2020. “Porous carbon materials for microwave absorption.” Mater. Adv. 1, 2631-2645.

Chitraningrum, N., Marlina, R., Arundina, R. Y., Suryani Togatorop, E. R., Sulistyaningsih, Arisesa, H., Budiman, I., Daud, P., and Hamzah, M., 2022. “Microwave absorption properties of porous activated carbon-based palm oil empty fruit bunch.” AIP Adv. 12, 35083–35093.

Chuayjumnong, S., Karrila, S., Jumrat, S., and Pianroj, Y., 2020. “Activated carbon and palm oil fuel ash as microwave absorbers for microwave-assisted pyrolysis of oil palm shell waste.” RSC Adv. 10, 32058-32068.

Du, Z., Li, Y., Wang, X., Wan, Y., Chen, Q., Wang, C., Lin, X., Liu, Y., Chen, P., and Ruan, R., 2011. “Microwave-assisted pyrolysis of microalgae for biofuel production.” Bioresour. Technol. 102, 4890–4896.

Ellabban, O., Abu-Rub, H. and Blaabjerg, F., 2014. “Renewable energy resources: Current status, future prospects and their enabling technology.” Renew. Sustain. Energy Rev. 39, 748-764.

Ethaib S., Omar R., Kamal S. M. M., Biak, D. R. A., and Zubaidi, S. L., 2020. “Microwave-Assisted pyrolysis of biomass waste: A mini review.” Processes 8, 1–17.

Farobie, O., Amrullah, A., Syaftika, N., Anis, L. A., and Hartulistiyoso, E., 2022. “In-depth study of bio-oil and biochar production from macroalgae Sargassum sp. via slow pyrolysis.” RSC Adv. 12, 9567-9578.

Feng, Y. and Meier, D., 2017. “Supercritical carbon dioxide extraction of fast pyrolysis oil from softwood.” J. Supercrit. Fluid 128, 6-17.

Fricler, V.Y., Nyashina, G.S., Vershinina, K.Yu., Vinogrodskiy, K.V., Shvets, A.S., and Strizhak, P.A. “Microwave pyrolysis of agricultural waste: Influence of catalysts, absorbers, particle size and blending components.” J. Anal. Appl. Pyrol. 171, 105962.

Ghodke, P. K., Ramanjaneylu, B., and Kumar, S., 2023. “Stabilization of bio-oil derived from macroalgae biomass using reactive chromatography.” Biomass Convers. Bioref. 13, 5261–5272.

Gratuito, M. K. B., Panyathanmaporn, T., Chumnanklang, R.-A., Sirinuntawittaya, N., and Dutta, A., 2008. “Production of activated carbon from coconut shell: Optimization using response surface methodology.” Bioresour. Technol. 99, 2887-4895.

Gupta, G. K. and Mondal, M. K., 2022. Chapter 14 – Pyrolysis: an alternative approach for utilization of biomass into bioenergy generation. Gurunathan, B., Sahadevan, R., and Zakaria, Z.A., eds., Biofuels and Bioenergy. Elsevier, Amsterdam.

Haeldermans, T., Claesen, J., Maggen, J., Carleer, R., Yperman, J., Adriaensens, P., Samyn, P., Vandamme, D., Cuypers, A., Vanreppelen, K., and Schreurs, S., 2018. “Microwave assisted pyrolysis of MDF: the influence of microwave power and microwave absorbers on the pyrolysis process and biochar characteristics. A comparison with conventional pyrolysis.” J. Anal. Appl. Pyrol. 138, 218-230.

Huang, Y-F., Kuan, W-H., and Chang, C-Y., 2018. “Effects of particle size, pretreatment, and catalysis on microwave pyrolysis of corn stover.” Energy. 143, 696-703.

Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., and Budiman, A. 2019. “Valuable chemicals derived from pyrolysis liquid products of Spirulina platensis residue.” Indones. J. Chem. 19, 703–711.

Jendoubi, N., Broust, F., Commandre, J. M., Mauviel, G., Sardin, M. and Lédé, J., 2011. “Inorganic distribution in bio-oils and char produced by biomass fast pyrolysis: The key role of aerosols” J. Anal. Appl. Pyrol. 92, 59-67.

Jesus, M. S. de, Martinez, C. L. M., Costa, L. J., Pereira, E. G., and Carneiro, A. C. O. de., 2020. "Thermal conversion of biomass: a comparative review of different pyrolysis processes.” Revista Ciência da Madeira - RCM, 11. 12–22.

Jie, X., Chen, R., Biddle, T., Slocombe, D. R., Dilworth, J. R., Xiao, T., and Edwards, P. P., 2022. “Size-dependent microwave heating and catalytic activity of fine iron particles in the deep dehydrogenation of hexadecane.” Chem. Mater. 34, 4682-4693.

Kalina, M., Sovova, S., Svec, J., Trudicova, M., Hajzler, J., Kubikova, L., and Enev, V., 2022. “The effect of pyrolysis temperature and the source biomass on the properties of biochar produced for the agronomical applications as the soil conditioner.” Materials 15, 2–13.

Kan, T., Strezov, V., and Evans, T.J., 2016. “Lignocellulosic biomass pyrolysis : A review of product properties and effects of pyrolysis parameters.” Renew. Sustain. Energy Rev. 57, 1126–1140.

Karimi, G. and Vahabzadeh, M., 2014. Butyric Acid. Wexler, P., ed., Encyclopedia of Toxicology. Elsevier. Amsterdam. 597-601.

Khelfa, A., Rodrigues, F. A., Koubaa, M., and Vorobiev, E., 2020. “Microwave‐assisted pyrolysis of pine wood sawdust mixed with activated carbon for bio‐oil and bio‐char production.” Processes 8, 1–12.

Lin, H., Zhu, H., Guo, H., and Yu L. 2008. “Microwave-absorbing properties of Co-filled carbon nanotubes.” Mater. Res. Bull. 43, 2697–2702.

Mashuni and Jahiding, M., 2021. The Biomass Waste Pyrolysis for Biopesticide Application. Bartoli, M., ed., Recent Perspectives in Pyrolysis Research Intechopen, London.

Marland, S., Merchant, A., and Rowson, N., 2001. “Dielectric properties of coal.” Fuel 80, 1839–49.

McGrath, T. E., Chan, W. G., and Hajaligol, M. R., 2003. “Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose.” J. Anal. Appl. Pyrol. 66, 51-70.

Mierzwa-Hersztek, M., Gondek, K., Jewiarz, M., and Dziedzic, K., 2019. “Assessment of energy parameters of biomass and biochars, leachability of heavy metals and phytotoxicity of their ashes.” J. Mater. Cycles Waste Manag. 21, 786–800.

Mokhtar, M. N., and Ethaib, S., 2018. “Effects of Microwave Absorbers on The Products of Microwave Pyrolysis of Oily Sludge.” J. Eng. Sci. Technol., 13 (10), 3313 - 3330.

Mushtaq, F., Mat, R., and Nasir, F., 2014. “A review on microwave assisted pyrolysis of coal and biomass for fuel production.” Renew. Sustain. Energy Rev. 39, 555–574.

Nam, H., Choi, J., and Capareda, S. C., 2016. “Comparative study of vacuum and fractional distillation using pyrolytic microalgae (Nannochloropsis oculata) bio-oil.” Algal Res. 17, 87–96.

Omar, R., Idris, A., Yunus, R., Khalid, K., and Aida Isma, M.I., 2011. “Characterization of empty fruit bunch for microwave-assisted pyrolysis.” Fuel 90, 1536–44.

Presley, M.A. and Christensen, P.R., 2010. “Thermal conductivity measurements of particulate materials: 4. Effect of bulk density for granular particles.” J. Geophys. Res. 115, E07003.

Pourkarimi, S., Hallajisani, A., Alizadehdakhel, A., and Nouralishahi, A., 2019. “Biofuel production through micro- and macroalgae pyrolysis – A review of pyrolysis methods and process parameters.” J. Anal. Appl. Pyrol. 142, 1–19.

Pradana, Y. S., Sudibyo, H., Suyono, E. A., Indarto, and Budiman, A. 2017., “Oil algae extraction of selected microalgae species grown in monoculture and mixed cultures for biodiesel production.” Energy Procedia. 105, 277–282.

Saka, C., 2012. “BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from corn shell by chemical activation with ZnCl2”. J. Anal. Appl. Pyrol. 95, 21-24.

Salosso, Y., 2019. “Nutrient and alginate content of macroalgae Sargassum sp. from Kupang bay waters, East Nusa Tenggara, Indonesia.” AACL Bioflux. 12, 2130–2136.

Shang, H., Lu, R-R., Shang, L., and Zhang, W-H., 2015. “Effect of additives on the microwave-assisted pyrolysis of sawdust.” Fuel Process. Technol. 131, 167-174.

Shi, C., Shi, H., Li, H., Liu, H., Mostafa, E., Zhao, W., and Zhang, Y., 2023. “Efficient heating of activated carbon in microwave field.” J. Carbon Res. 9, 48.

Smołka-Danielowska, D., and Jabłońska, M., 2022. “Chemical and mineral composition of ashes from wood biomass combustion in domestic wood-fired furnaces.” Int. J. Environ. Sci. Technol. 19, 5359–5372.

Sodiq, A. Q., and Arisandi, A., 2020. “Identifikasi dan Kelimpahan Makroalga di Pantai Selatan Gunungkidul.” Juvenil: Jurnal Ilmiah Kelautan dan Perikanan, 1, 325–330.

Torgovnikov GI. 1993. Dielectric properties of wood and wood-based materials. Springer-Verlag, Berlin.

Tripathi, M., Sahu, J. N., Ganesan, P., and Dey, T. K., 2015. “Effect of temperature on dielectric properties and penetration depth of oil palm shell (OPS) and OPS char synthesized by microwave pyrolysis of OPS.” Fuel 153, 257–266.

Vignesh, N. S., Soosai, M. R., Chia, W. Y., Wahid, S. N., Varalakshmi, P., Moorthy, I. M. G., Ashokkumar, B., Arumugasamy, S. K., Selvarajoo, A., and Chew, K. W., 2022. “Microwave-assisted pyrolysis for carbon catalyst, nanomaterials and biofuel production.” Fuel 313, 123023.

Wallace, C. A., Afzal, M. T., and Saha, G. C., 2019. “Effect of feedstock and microwave pyrolysis temperature on physio-chemical and nano-scale mechanical properties of biochar.” Biores. Bioprocess, 6 (33), 1-11.

Wang, D., Li, X., Hao, X., Lv, J., and Chen, X., 2022. “The effects of moisture and temperature on the microwave absorption power of poplar wood.” Forests 13, 309.

Wang, H., Meyer, P. A., Santosa, D. M., Zhu, C., Olarte, M. v., Jones, S. B., and Zacher, A. H., 2021. “Performance and techno-economic evaluations of co-processing residual heavy fraction in bio-oil hydrotreating.” Catal. Today 365, 357–364.

Wang, S-W., Li, D-X., Ruan, W-B., Jin, C-L., and Farahani, M.R., 2018. “A techno-economic review of biomass gasification for production of chemicals.” Energy Sources B: Econ. Plan. Policy. 13, 351-356.

Wang, X., Li, C., Chen, M., and Wang, J., 2021. “Microwave-assisted pyrolysis of seaweed biomass for aromatics-containing bio-oil production.” E3S Web Conf. 261, 02045.

Wibowo, W. A., Cahyono, R. B., Rochmadi, R., and Budiman, A., 2023. “Kinetics of in-situ catalytic pyrolysis of rice husk pellets using a multi-component kinetics model.” Bull. Chem. React. Eng. Catal. 18, 85-102.

Widawati, T.F., Refki, M.F., Rochmadi, Wintoko, J., & Budiman, A., 2024. “Comprehensive study of lumped kinetic models and bio-oil characterization in microwave-assisted pyrolysis of Sargassum sp”. React. Chem. Eng. 9, 1959-1980.

Yadav A., Ansari K.B., Simha, P., Gaikar, V.G., and Pandit, A.B., 2016. “Vacuum pyrolyzed biochar for soil amendment.” Resource-Efficient Technologies 2, S177-S185.

Yang, C., Li, R., Zhang, B., Qiu, Q., Wang, B., Yang, H., and Wang, C., 2019. “Pyrolysis of microalgae: A critical review.” Fuel Process. Technol. 186, 53–72.

Yao, Y., Jänis, A., and Klement, U., 2008. “Characterization and dielectric properties of β-SiC nanofibres.” J. Mater. Sci. 43, 1094–1101.

Yusuf, J. Y., Soleimani, H., Yahya, N., Sanusi, Y. K., Kozlowski, G., Öchsner, A., Adebayo, L. L., Wahaab, F. A., Sikiru, S., and Balogun, B. B., 2022. “Electromagnetic wave absorption of coconut fiber-derived porous activated carbon.” Boletin de La Sociedad Espanola de Ceramica y Vidrio 61, 417–427.

Zhang, Y., Chen P., Liu, S., Fan, L., Zhou, N., Min, M., Cheng, Y., Peng, P., Anderson, E., Wang, Y., Wan, Y., Liu, Y., Xi, B., and Ruan, R., 2017. Microwave-Assisted Pyrolysis of Biomass for Bio-Oil Production. Samer, M., ed., Pyrolysis. IntechOpen, London.

Zhang, Y., Liang, Y., Li, S., Yuan, Y., Zhang, D., Wu, Y., Xie, H., Brindhadevi, K., Pugazhendhi A., and Xia, C., 2023. “A review of biomass pyrolysis gas: Forming mechanisms, influencing parameters, and product application upgrades.” Fuel 347, 128461.

Zhou, N., Dai, L., Lyu, Y., Li, H., Deng, W., Guo, F., Chen, P., Lei, H., and Ruan, R., 2021. “Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production.” Chem. Eng. J. 418, 129412.

Published
2024-08-30
How to Cite
Widawati, T. F., Refki, M. F., Rochmadi, & Budiman, A. (2024). Exploring Microwave-Assisted Pyrolysis of Sargassum sp. for Optimal Process Parameters and Product Insights. ASEAN Journal of Chemical Engineering, 24(2), 210-228. https://doi.org/10.22146/ajche.12871
Section
Articles