Effect of Polyaniline on the Ionic Conductivity of PVA/NaCl Composite Electrolyte Membranes

  • Firman Ridwan Department of Mechanical Engineering, Universitas Andalas, 25163, Padang, Indonesia
  • Muhammad Akbar Husin Department of Mechanical Engineering, Universitas Andalas, 25163, Padang, Indonesia
Keywords: Al-air Battery, Composite, Conductivity, PANI, Potato Starch

Abstract

This study investigates the effect of polyaniline (PANI) on the ionic conductivity and performance of polyvinyl alcohol (PVA)/sodium chloride (NaCl) composite electrolyte membranes for application in aluminum-air batteries. PVA/NaCl/potato starch (PS) membranes with varying PANI concentrations (0, 1, 1.5, and 2 g) were prepared and characterized. Tensile strength tests revealed that increasing PANI content led to increased brittleness and decreased elastic properties of the membranes. Electrochemical impedance spectroscopy showed that adding 2 g of PANI resulted in the highest ionic conductivity of 1.69 mS/cm. Galvanostatic discharge tests demonstrated that the membrane with 1.5 g of PANI exhibited the longest operational time of 677 s at 1 mA and the highest initial voltage of 1.42 V. The battery with 1.5 g of PANI in the electrolyte membrane also achieved the highest electrical capacity of 0.188 mAh. However, excessive PANI content (2 g) led to a decrease in battery performance. The results suggest that the optimal PANI concentration for enhancing the performance of PVA/NaCl/PS electrolyte membranes in aluminum-air batteries is 1.5 g. This study highlights the potential of PANI as an additive for improving the ionic conductivity and performance of composite electrolyte membranes in Al-air batteries.

References

Ahuja, D., Kalpna, V., & Varshney, P. K., 2021. "Metal air battery: A sustainable and low cost material for energy storage." J. Phys. Conf. Ser. 1913(1). 012065. https://doi.org/10.1088/1742-6596/1913/1/012065

Ali, M. Z., Mushtaq, M. A., & Ahmed, M., 2016. "Effect of oxidant concentration on the conductivity of polyaniline (PANI)." Department of Polymer and Process Engineering, University of Engineering & Technology, Lahore Pakistan, pp. 45–52.

Aprilman, D., Ridwan, F., Primananda, I., & Dahlan, D., 2025. "Effect of activated charcoal on chitosan based polymer electrolyte membranes." AIP Conf. Proceed. 3223(1), 50004. https://doi.org/10.1063/5.0243229

Indica, A. C., & Indica, A. C., 2013. "A.C. Conductivity study in polymer composite film doped with conducting polymer polyaniline (PANI)." Acta Ciencia Indica XXXIX P (2), 79–82.

Katsoufis, P., Mylona, V., Politis, C., Avgouropoulos, G., & Lianos, P., 2020. "Study of some basic operation conditions of an Al-air battery using technical grade commercial aluminum." J. Power Sources 450, 227624. https://doi.org/10.1016/j.jpowsour.2019.227624

Mayilvel Dinesh, M., Saminathan, K., Selvam, M., Srither, S. R., Rajendran, V., & Kaler, K. V. I. S., 2015. "Water soluble graphene as electrolyte additive in magnesium-air battery system." J. Power Sources 276, 32–38. https://doi.org/10.1016/j.jpowsour.2014.11.079

Oguntosin, V., & Akindele, A., 2021. "Design and testing of an air battery." IOP Conf. Ser. Earth Environ. Sci. 655(1), 012031. https://doi.org/10.1088/1755-1315/655/1/012031

Patil, D. S., Shaikh, J. S., Dalavi, D. S., Kalagi, S. S., & Patil, P. S., 2011. "Chemical synthesis of highly stable PVA/PANI films for supercapacitor application." Mater. Chem. Phys. 128(3), 449–455. https://doi.org/10.1016/j.matchemphys.2011.03.029

Pei, Z., Yuan, Z., Wang, C., Zhao, S., Fei, J., Wei, L., Chen, J., Wang, C., Qi, R., Liu, Z., & Chen, Y., 2020. "A Flexible rechargeable zinc–air battery with excellent low-temperature adaptability." Angew. Chem. Int. Ed. 59(12), 4793–4799. https://doi.org/10.1002/anie.201915836

Raghavan, A., Sarkar, S., & Ghosh, S., 2021. "Development of PANI based ternary nanocomposite with enhanced capacity retention for high performance supercapacitor application." Electrochim. Acta 388, 138564. https://doi.org/10.1016/j.electacta.2021.138564

Ridwan, F., Agusta, D., Husin, M. A., & Dahlan, D., 2024. "Evaluation of the addition of cement ash to the PVA/TEOS/HCl gel electrolyte on the performance of aluminium air batteries." MSEt. 8, 24–31. https://doi.org/10.1016/j.mset.2024.07.003

Ridwan, F., Febriyan, N., Husin, M. A., & Aulia, F., 2024a. "A Study on the effect of cellulose nanocrystalline paper on PVA-KOH electrolyte membranes for increasing ionic conductivity." Int. J. Energy Prod. Manag. 9(2), 113–120. https://doi.org/10.18280/ijepm.090206

Ridwan, F., Febriyan, N., Husin, M. A., & Aulia, F., 2024b. "Developing sustainable reinforcement PLA/NCC from Kapok to improve mechanical and electrical properties composites with PVA matrix." Rev. Compos. Mater Av 34(5), 613–619. https://doi.org/10.18280/rcma.340509

Ridwan, F., Husin, M. A., & Febriyan, N., 2025. "Synthesis of a gel electrolyte membrane based on PVA/KCl/Glycerol doped with CQDs for aluminum ion battery applications." Rev. Compos. Mater. Av. s. 35(1), 87–95. https://doi.org/10.18280/rcma.350111

Safanama, D., Damiano, D., Rao, R. P., & Adams, S. (2014). Lithium conducting solid electrolyte Li1 + xAl xGe2 - X(PO4)3 membrane for aqueous lithium air battery. Solid State Ion. 262, 211–215. https://doi.org/10.1016/j.ssi.2013.11.031

Sankaralingam, R. K., Seshadri, S., Sunarso, J., Bhatt, A. I., & Kapoor, A., 2022. "PVA-based KOH polymer gel electrolyte as a membrane separator for zinc-air flow battery." Mater. Today 64, 1649–1654.

https://doi.org/10.1016/j.matpr.2022.05.222

Santos, F., Urbina, A., Abad, J., López, R., Toledo, C., & Fernández Romero, A. J., 2020. "Environmental and economical assessment for a sustainable Zn/air battery." Chemosphere 250. https://doi.org/10.1016/j.chemosphere.2020.126273

Shin, M. K., Kim, Y. J., Kim, S. I., Kim, S. K., Lee, H., Spinks, G. M., & Kim, S. J., 2008. "Enhanced conductivity of aligned PANI/PEO/MWNT nanofibers by electrospinning." Sens. Actuators B: Chem. 134(1), 122–126. https://doi.org/10.1016/j.snb.2008.04.021

Tanrıverdi, E. E., Uzumcu, A. T., Kavas, H., Demir, A., & Baykal, A., 2011. "Conductivity study of polyaniline-cobalt ferrite (PANI-CoFe2O4) nanocomposite." Nanomicro Lett. 3(2), 99–107. https://doi.org/10.3786/nml.v3i2.p99-107.

Wahyusi, K. N., Puspitawati, I. N., & Wirayudha, A. R., 2023. "The Deep eutectic solvent in used batteries as an electrolyte additive for potential chitosan solid electrolyte membrane." ASEAN J. Chem. Eng. 23(2), 1–11. https://doi.org/10.22146/ajche.77318

Wang, X. H., 2012. "Conductivity of PANI-PVA composite conductive coatings with the doping of different acid." Adv. Mat. Res. 502, 23–27. https://doi.org/10.4028/www.scientific.net/AMR.502.23

Wong, F. L., & Aziz, A. A., 2007"Development of Crack-free alumina sol-gel/poly(vinyl alcohol) membranes for glucose oxidase immobilization." ASEAN J. Chem. Eng. 7(1 & 2), 61.

https://doi.org/10.22146/ajche.50128

Yang, B., Ran, R., Zhong, Y., Su, C., Tadé, M. O., & Shao, Z., 2015. "A carbon-air battery for high power generation." Angew. Chem. Int. Ed. 54(12), 3722–3725. https://doi.org/10.1002/anie.201411039

Yu, J., Pang, Z., Zheng, C., Zhou, T., Zhang, J., Zhou, H., & Wei, Q., 2019. "Cotton fabric finished by PANI/TiO2 with multifunction of conductivity, anti-ultraviolet and photocatalysis activity." Appl. Surf. Sci. 470, 84–90. https://doi.org/10.1016/j.apsusc.2018.11.112

Zhao, S., Wang, K., Tang, S., Liu, X., Peng, K., Xiao, Y., & Chen, Y., 2020. "A new solid-state zinc–air battery for fast charge." Energy Technol. 8(5), 1–8. https://doi.org/10.1002/ente.201901229

Published
2025-08-30
How to Cite
Ridwan, F., & Husin, M. A. (2025). Effect of Polyaniline on the Ionic Conductivity of PVA/NaCl Composite Electrolyte Membranes. ASEAN Journal of Chemical Engineering, 25(2), 198-206. https://doi.org/10.22146/ajche.13878
Section
Articles