Recovery of glucose and acetic acid from Piper betle Linn leaves by subcritical water hydrolysis

  • Nur Lailatul Rahmah Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
  • Siti Mazlina Mustapa Kamal Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
  • Alifdalino Sulaiman Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
  • Farah Saleena Taip Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
  • Shamsul Izhar Siajam Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
Keywords: Glucose and Acetic Acid, Hydrolysis, PBL Leaves, Subcritical Water Hydrolysis, Sugar Degradation

Abstract

Piper betle Linn (PBL) leaves contain high carbohydrate, which can be hydrolysed into glucose and acetic acid by hydrolysis method. Subcritical water hydrolysis (SWH) is an environmentally friendly method that uses water as a solvent and is suitable for the hydrolysis process. Thus, the aim of this study is to evaluate the glucose and acetic acid recovered from PBLleaves using SWH. SWH was performed under different process conditions (temperature range from 100 to 275°C and time range from 5 to 30 min) using a factorial design. Glucose and acetic acid were determined using high performance liquid chromatography (HPLC) with a refractive index (RI) detector. The ANOVA results show that temperature, time, and the interaction of temperature and time have a significant impact on the yield of glucose and the acetic acid concentration. The yield of glucose and acetic acid show opposite trend, with glucose degrading to acetic acid. The highest glucose concentration was obtained at two different conditions of SWH at 175°C for 30 min (6.237 mg/g extract) and 200°C for 5 min (6.143 mg/g extract), while the highest acetic acid concentration was obtained at 275°C for 15 min (2.536 mg/g extract).

Author Biographies

Nur Lailatul Rahmah, Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia

Process and Food Engineering

Alifdalino Sulaiman, Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia

Process and Food Engineering Department

Farah Saleena Taip, Department of Process and Food Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia

Process and Food Engineering Dapartment

Shamsul Izhar Siajam, Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia

Chemical and Environmental Engineering Department

References

Abaide, E. R., Ugalde, G., Di Luccio, M., Moreira, R. de F. P. M., Tres, M. V., Zabot, G. L., and Mazutti, M. A., 2019. "Obtaining fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis in a semi-continuous mode." Bioresour. Technol. 272, 510–520. https://doi.org/10.1016/j.biortech.2018.10.075

Alonso-Riaño, P., Sanz, M. T., Benito-Román, O., Beltrán, S., and Trigueros, E., 2021. "Subcritical water as hydrolytic medium to recover and fractionate the protein fraction and phenolic compounds from craft brewer’s spent grain." Food Chem. 351, 129264. https://doi.org/10.1016/j.foodchem.2021.129264

Amarowicz, R., & Janiak, M., 2018. Hydrolysable Tannins. Encyclopedia of Food Chemistry, pp. 337–343. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21771-X

Basak, S., and Annapure, U. S., 2022. "The potential of subcritical water as a “green” method for the extraction and modification of pectin: A critical review." Food Res. Int. 161, 111849. https://doi.org/10.1016/j.foodres.2022.111849

Cheng, Y., Xue, F., Yu, S., Du, S., and Yang, Y., 2021. "Subcritical water extraction of natural products." Molecules 26(13), 1–38. https://doi.org/10.3390/molecules26134004

Cocero, M. J., Cabeza, Á., Abad, N., Adamovic, T., Vaquerizo, L., Martínez, C. M., and Pazo-Cepeda, M. V., 2018. "Understanding biomass fractionation in subcritical and supercritical water." J. Supercrit. Fluids 133, 550–565. https://doi.org/10.1016/j.supflu.2017.08.012

Cuevas-Aranda, M., Martínez-Cartas, M. L., Mnasser, F., Karim, A. A., and Sánchez, S., 2024. "Optimisation of sugar and solid biofuel co-production from almond tree prunings by acid pretreatment and enzymatic hydrolysis." Bioresour. Bioprocessing 11(1), 30. https://doi.org/10.1186/s40643-024-00743-x

Diedericks, D., van Rensburg, E., and Görgens, J. F., 2013. "Enhancing sugar recovery from sugarcane bagasse by kinetic analysis of a two-step dilute acid pretreatment process." Biomass Bioenerg. 57, 149–160. https://doi.org/10.1016/j.biombioe.2013.07.006

Ebadi, M. T., Azizi, M., Sefidkon, F., & Ahmadi, N., 2015. "Influence of different drying methods on drying period, essential oil content and composition of Lippia citriodora Kunth." J. Appl. res. Med. Aromat. Plants 2(4), 182–187. https://doi.org/10.1016/j.jarmap.2015.06.001

Gallon, R., Draszewski, C. P., Santos, J. A. A., Wagner, R., Brondani, M., Zabot, G. L., Tres, M. V., Hoffmann, R., Castilhos, F., Abaide, E. R., and Mayer, F. D. (2023). Obtaining oil, fermentable sugars, and platform chemicals from Butia odorata seed using supercritical fluid extraction and subcritical water hydrolysis. J. Supercrit. Fluids 203, 106062. https://doi.org/10.1016/j.supflu.2023.106062

Gibson, M., and Newsham, P., 2018. Hydrolysis, oxidation, and reduction in Food Science and the Culinary Arts. Elsevier. https://doi.org/10.1016/C2016-0-01642-X

Ishak, H., Yoshida, H., Muda, N. A., Ismail, M. H. S., and Izhar, S., 2019. "Rapid processing of abandoned oil palm trunks into sugars and organic acids by sub-criticalwater." Processes 7(9), 593. https://doi.org/10.3390/pr7090593

Kim, T. J., Silva, J. L., & Jung, Y. S., 2011. "Enhanced functional properties of tannic acid after thermal hydrolysis." Food Chem. 126(1), 116–120. https://doi.org/10.1016/j.foodchem.2010.10.086

Liu, Z. S., Wu, X. L., Kida, K., and Tang, Y. Q., 2012. "Corn stover saccharification with concentrated sulfuric acid: Effects of saccharification conditions on sugar recovery and by-product generation." Biores. Technol. 119, 224–233. https://doi.org/10.1016/j.biortech.2012.05.107

Makanjuola, S. A., 2017. "Influence of particle size and extraction solvent on antioxidant properties of extracts of tea, ginger, and tea–ginger blend." Food Sci. Nutr. 5(6), 1179–1185. https://doi.org/10.1002/fsn3.509

Mohd Thani, N., Mustapa Kamal, S. M., Taip, F. S., Sulaiman, A., and Omar, R., 2019. "Effect of sub-critical water hydrolysis on sugar recovery from bakery leftovers." Food Bioprod. Process. 117, 105–112. https://doi.org/10.1016/j.fbp.2019.07.002

Mustapa Kamal, S. M., Mohd Thani, N., Taip, F. S., Sulaiman, A., and Omar, R., 2023." Subcritical water hydrolysis of industrial cake leftovers for sugar production." J. Food Meas. Charact. 17(3), 2204–2212. https://doi.org/10.1007/s11694-022-01756-w

Nashiruddin, N. I., Abd Rahman, N. H., A. Rahman, R., Md. Illias, R., Ghazali, N. F., Abomoelak, B., & El Enshasy, H. A., 2022. "Improved sugar recovery of alkaline pre-treated pineapple leaf fibres via enzymatic hydrolysis and its enzymatic kinetics." Fermentation 8(11), 1–13. https://doi.org/10.3390/fermentation8110640

P. Cardenas-Toro, F., C. Alcazar-Alay, S., Forster-Carneiro, T., and Angela A. Meireles, M., 2014. "Obtaining oligo- and monosaccharides from agroindustrial and agricultural residues using hydrothermal treatments." Food and Public Health 4(3), 123–139. https://doi.org/10.5923/j.fph.20140403.08

Pan, L., Shen, Z., Wu, L., Zhang, Y., Zhou, X., and Jin, F., 2010. "Hydrothermal production of formic and acetic acids from syringol." J. Zhejiang Univ. Sci. A 11(8), 613–618. https://doi.org/10.1631/jzus.A1000043

Pin, K. Y., Chuah, T. G., Rashih, A. A., Law, C. L., Rasadah, M. A., & Choong, T. S. Y., 2009. "Drying of betel leaves (Piper betle L.): quality and drying kinetics." Dry. Technol. 27(1), 149–155. https://doi.org/10.1080/07373930802566077

Rahmah, N. L., Mustapa Kamal, S. M., Sulaiman, A., Taip, F. S., and Siajam, S. I., 2023a. "Characterisation and extraction of antioxidant from Piper betle L. leaves using soxhlet method." AIP Conf. Proc. 2907, 050007. https://doi.org/10.1063/5.0172177

Rahmah, N. L., Mustapa Kamal, S. M., Sulaiman, A., Taip, F. S., and Siajam, S. I., 2023b. "Subcritical water extraction of total phenolic compounds from Piper betle L. leaves: effect of process conditions and characterisation." J. Food Meas. Charact. 17(6), 1–13. https://doi.org/10.1007/s11694-023-02068-3

Rizkita, N., Machmudah, S., Wahyudiono, Winardi, S., Adschiri, T., and Goto, M., 2023. "Phytochemical compounds extraction from Orthosiphon aristatus, Andrographis paniculata, Gynura segetum using hydrothermal method: experimental kinetics and modeling." S. Afr. J. Chem. Eng. 46, 330–342. https://doi.org/10.1016/j.sajce.2023.08.010

Sari, F., and Velioglu, Y. S., 2011. "Effects of particle size, extraction time and temperature, and derivatisation time on determination of theanine in tea." J. Food Compost. Anal. 24(8), 1130–1135. https://doi.org/10.1016/j.jfca.2011.04.003

Sarker, T. R., Pattnaik, F., Nanda, S., Dalai, A. K., Meda, V., and Naik, S., 2021. "Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis." Chemosphere 284, 131372. https://doi.org/10.1016/j.chemosphere.2021.131372

Speight, J. G., 2018. Reaction Mechanisms in Environmental Engineering. Elsevier. https://doi.org/10.1016/C2013-0-16045-X

Thani, N. M., Kamal, S. M. M., Taip, F. S., Sulaiman, A., and Omar, R., 2021. "Sugar recovery from bakery leftovers through enzymatic hydrolysis: Effect of process conditions and product characteri-sation." Sains Malays. 50(10), 2977–2991. https://doi.org/10.17576/jsm-2021-5010-12

Valentão, P., Gonçalves, R. F., Belo, C., De Pinho, P. G., Andrade, P. B., and Ferreres, F., 2010. "Improving the knowledge on Piper betle: Targeted metabolite analysis and effect on acetylcholinesterase." J. Sep. Sci. 33(20), 3168–3176. https://doi.org/10.1002/jssc.201000429

Yang, Y., Zhang, M., Zhao, J., & Wang, D., 2023. "Effects of particle size on biomass pretreatment and hydrolysis performances in bioethanol conversion." Biomass Convers. Biorefin. 13(14), 13023–13036. https://doi.org/10.1007/s13399-021-02169-3

Yedro, F. M., Grénman, H., Rissanen, J. V., Salmi, T., García-Serna, J., and Cocero, M. J., 2017. "Chemical composition and extraction kinetics of Holm oak (Quercus ilex) hemicelluloses using subcritical water." J. Supercrit. Fluids 129, 56–62. https://doi.org/10.1016/j.supflu.2017.01.016

Zakaria, S. M., Kamal, S. M. M., Harun, M. R., Omar, R., and Siajam, S. I., 2017. "Subcritical water technology for extraction of phenolic compounds from Chlorella sp. microalgae and assessment on its antioxidant activity." Molecules 22(7), 1105. https://doi.org/10.3390/molecules22071105

Zdunek, A., Kozioł, A., Pieczywek, P. M., & Cybulska, J., 2014. "Evaluation of the nanostructure of pectin, hemicellulose and cellulose in the cell walls of pears of different texture and firmness." Food Bioproc. Technol. 7(12), 3525–3535. https://doi.org/10.1007/s11947-014-1365-z

Zhang, J., Wen, C., Zhang, H., Duan, Y., and Ma, H., 2020. "Recent advances in the extraction of bioactive compounds with subcritical water: A review." Trends Food Sci. Technol. 95, 183–195. https://doi.org/10.1016/j.tifs.2019.11.018.

Published
2025-04-29
How to Cite
Rahmah, N. L., Mustapa Kamal, S. M., Sulaiman, A., Taip, F. S., & Siajam, S. I. (2025). Recovery of glucose and acetic acid from Piper betle Linn leaves by subcritical water hydrolysis. ASEAN Journal of Chemical Engineering, 25(1), 62-74. https://doi.org/10.22146/ajche.14875
Section
Articles