Synergetic Effect of TiO2–PCC/Zeolite Nanocomposite on the Photodegradation of Phenolic Compound in Wastewater
Abstract
Phenol is an organic compound commonly found in the water bodies contained polluted wastewater from industrial, agricultural, and domestic activities. This compound exhibits carcinogenic properties and can impact human health at certain concentrations. Therefore, excessive phenol must be degraded. Various techniques dealing with phenol waste have been developed, including the adsorption method. However, secondary pollutants might form after the adsorption process. One potential alternative for handling phenolic compounds in wastewater without generating secondary waste is the photocatalytic process. It has been proven that, when combined with adsorption, the degradation activity can be enhanced. In this paper, phenol degradation was investigated by carrying out degradation using a semiconductor catalyst, such as TiO2, that synergizes with adsorbents like precipitated calcium carbonate (PCC) and zeolite. The highest phenol degradation was achieved with the variables 80% TiO2 - 20% PCC and 80% TiO2 - 20% zeolite, resulting in 74.3% and 69.22% of phenol degradation, respectively. In comparison, the TiO₂–PCC nanocomposite exhibits superior performance to the TiO₂–zeolite nanocomposite. The observation of the functional groups revealed that PCC has a larger functional group area, supporting the synergy of the adsorption-photocatalysis process compared to the TiO2–zeolite nanocomposite.
References
Alalm, M. G., Tawfik, A., & Chemicals, A., 2014. “Solar photocatalytic degradation of phenol in aqueous solutions using titanium dioxide.” Int. J. Environt. Ecol. Eng. 8(2), 136–139.
Ariyanti, D., Maillot, M., & Gao, W., 2018. “Photo-assisted degradation of dyes in a binary system using TiO2 under simulated solar radiation.” J. Environt. Chem. Eng. 6(1), 539–548. https://doi.org/10.1016/j.jece.2017.12.031
Bibi, A., Bibi, S., Abu-Dieyeh, M., & Al-Ghouti, M. A., 2023. “Towards sustainable physiochemical and biological techniques for the remediation of phenol from wastewater: A review on current applications and removal mechanisms.” J. Clean Prod. 417, 137810. https://doi.org/10.1016/j.jclepro.2023.137810
Bizerea Spiridon, O., Preda, E., Botez, A., & Pitulice, L., 2013. “Phenol removal from wastewater by adsorption on zeolitic composite.” Environt. Sci. Pollut. Res. Int. 20(9), 6367–6381. https://doi.org/10.1007/s11356-013-1625-x
Chong, M. N., Tneu, Z. Y., Poh, P. E., Jin, B., & Aryal, R., 2015a. “Synthesis, characterization and application of TiO2-zeolite nanocomposites for the advanced treatment of industrial dye wastewater.” J. Taiwan Inst. Chem. Eng. 50, 288–296. https://doi.org/10.1016/j.jtice.2014.12.013
Copland, E., Webster, N., Tsuda, T., Hussey, C. L., Gapontsev, V. V, Gazizova, D. D., & Streltsov, S. V., 2018. “Characteristics of TiO2 particles prepared by simple solution method using TiCl3 precursor.” J. Phys.: Conf. Ser. 1080, 012042. https://doi.org/10.1088/1742-6596/1080/1/012042
Cui, Y., Kang, W., & Hu, J., 2023. “Effectiveness and mechanisms of the adsorption of phenol from wastewater onto N-doped graphene oxide aerogel.” J. Water Process Eng. 53, 103665. https://doi.org/10.1016/j.jwpe.2023.103665
Fatimah, N. F. and B. U., 2017. “Sintesis dan analisis spektra IR, difraktogram XRD, SEM pada material katalis berbahan Ni/zeolit alam teraktivasi dengan metode impregnasi.” J. Cis-Trans 1(1), 35-39.
Jati, B. N., Naimah, S., Aviandharie, S. A., & Ermawati, R., 2012. “Komposit nano TiO2 dengan PCC, zeolit atau karbon aktif untuk menurunkan total krom dan zat organik pada air limbah industri penyamakan kulit.” J. Kim. Kemasan 34(1), 231-236.
Tanjung, R. H. R., Yonas, M. N., Suwito, S., Maury, H. K., Sarungu, Y., Hamuna, B., 2022. “Analysis of surface water quality of four rivers in Jayapura Regency, Indonesia: CCME-WQI approach.” J. Ecol. Eng. 23(1), 73-82. https://doi.org/10.12911/22998993/143998.
Kusumawardani, L. J., Syahputri, Y., & Fathurrahman, M., 2025. “TiO2/zeolite coal fly ash nanocomposite for photodegradation of naphthol blue black dye: Optimization and mechanism under visible light.” J. Kim. Valensi 11(1), 92–104. https://doi.org/10.15408/jkv.v11i1.45036
Liu, Y., & Lu, H., 2020. “Synthesis of ZSM-5 zeolite from fly ash and its adsorption of phenol, quinoline and indole in aqueous solution.” Mater. Res. Express 7(5), 055506. https://doi.org/10.1088/2053-1591/ab8fec
Motamedi, M., Mollahosseini, A., & Negarestani, M., 2022. “Ultrasonic-assisted batch operation for the adsorption of rifampin and reactive orange 5 onto engineered zeolite–polypyrrole/TiO2 nanocomposite.” Int. J. Environ. Sci. Tech. 19(8), 7547–7564. https://doi.org/10.1007/s13762-022-03951-0
Panuh, D., Aldio, R. Z., & Hidayah, A. S., 2019. “Degradation of phenol by photocatalysis using C-doped TiO2 catalyst.” J. Litbang Industri 9(1), 51–57. https://doi.org/http://dx.doi.org/10.24960/jli.v8i2.4675.51-57
Permata, D. G., Diantariani, N. P., & Widihati, I. A. G., 2016. “Degradasi fotokatalitik fenol menggunakan fotokatalis ZnO dan sinar UV.” J. Kimia 10 (2), 263–269. https://doi.org/10.24843/jchem.2016.v10.i02.p13
Rani, M., & Shanker, U., 2023. Removal of Organic Dyes by Functionalized Nanomaterials. In Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and Applications: Volume 1-4 (Vol. 2, pp. 1267–1298). Spinger, Cham, Switzerland.
Saravy, H. I., Safari M., Darbam A. K., Rezaei, A., 2014. “Synthesis of titanium dioxide nanoparticles for photocatalytic degradation of cyanide in wastewater.” Anal. Lett. 47(10), 1772–1782. https://doi.org/10.1080/00032719.2014.880170
Sharafinia, S., Rashidi, A., Babaei, B., & Orooji, Y., 2023. “Nanoporous carbons based on coordinate organic polymers as an efficient and eco-friendly nano-sorbent for adsorption of phenol from wastewater.” Sci. Rep. 13(1), 13127. https://doi.org/10.1038/s41598-023-40243-0
Slamet, Yuliusman, Dwijayanti, A., & Kartika, S., 2020. “Characteristics of activated carbon from melinjo shells composed of TiO2 nanoparticles.” J. Phys.: Conf. Ser. 1477, 052012. https://doi.org/10.1088/1742-6596/1477/5/052012
Somarathna, Y. R., Mantilaka, M. M. M. G. P. G., Karunaratne, D. G. G. P., Rajapakse, R. M. G., Pitawala, H. M. T. G. A., & Wijayantha, K. G. U., 2016. “Synthesis of high purity calcium carbonate micro- and nano-structures on polyethylene glycol templates using dolomite.” Cryst. Res. Technol. 51(3), 207–214. https://doi.org/10.1002/crat.201500190
Syafii, I. & Nugraha, I., 2019. “Sintesis komposit montmorillonit-TiO2 dengan variasi suhu kalsinasi dan aplikasinya untuk pengolahan zat warna remazol red.” Indones. J. Mater. Chem. 2(1), 10-15
Tsymbalyuk, O. V, Naumenko, A. M., & Davydovska, T. L., 2019. “Influence of nano-TiO2 on functioning of gastric smooth muscles: In vitro and in silico studies.” Biol. Stud. 13(1), 3–26. https://doi.org/10.30970/sbi.1301.592
Viet, N. M., Mai Huong, N. T., & Thu Hoai, P. T., 2023. “Enhanced photocatalytic decomposition of phenol in wastewater by using La–TiO2 nanocomposite.” Chemosphere 313, 137605. https://doi.org/10.1016/j.chemosphere.2022.137605
Wardhani, E., & Dirgawati, M., 2011. “Penentuan jenis dan dosis koagulan dalam mengolah air limbah industri penyamakan kulit.” J. Tek. Lingk. 15, 1-15.
Yousef, R. I., El-Eswed, B., & Al-Muhtaseb, A. H., 2011. “Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies.” Chem. Eng. J. 171(3), 1143–1149. https://doi.org/https://doi.org/10.1016/j.cej.2011.05.012
Yu, J. G., Yu, H. G., Cheng, B., Zhao, X. J., Yu, J. C., & Ho, W. K., 2003. “The Effect of Calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition.” J. Phys. Chem. B 107(50), 13871–13879. https://doi.org/10.1021/jp036158y
Zainal Abidin, A., Abu Bakar, N. H. H., Ng, E. P., & Tan, W. L., 2017. “Rapid degradation of methyl orange by ag doped zeolite x in the presence of borohydride.” J. Taibah Univ. Sci. 11(6), 1070–1079. https://doi.org/10.1016/j.jtusci.2017.06.004
Copyright (c) 2025 ASEAN Journal of Chemical Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright holder for articles is ASEAN Journal of Chemical Engineering. Articles published in ASEAN J. Chem. Eng. are distributed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.
Authors agree to transfer all copyright rights in and to the above work to the ASEAN Journal of Chemical Engineering Editorial Board so that the Editorial Board shall have the right to publish the work for non-profit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors’ personal use or for company use if the source and the journal copyright notice is indicated, and if the reproduction is not made for the purpose of sale.