Prediction of Slagging and Fouling Potential of Alternative Biomass Fuel as a Bagasse Substitute in Sugar Mill Boilers
Abstract
Boilers in sugar mills are generally designed to use bagasse as a biomass fuel. In their operations, some sugar mills are unable to provide sufficient bagasse for boiler fuel due to milling conditions that fall below their normal capacity, so they must supplement their fuel sources with biomass fuels other than bagasse, such as rice husk, wood, and sawdust. This situation can impact the performance of sugar mill boilers, which are designed specifically for use with bagasse fuel, as each biomass type has distinct characteristics. The results indicate that the use of rice husk biomass as an alternative fuel will not pose serious problems associated with slagging and fouling, as it has a low potential risk for these issues. However, the use of mahogany, acacia, or mixed wood biomass may increase the risk of slagging and fouling in boiler equipment. This is confirmed by the analysis of the ash residue contained in the boiler superheater pipe of the sugar mill taken as a research object, which shows the presence of high slagging indicators, including the parameters of base to acid ratio (B/A), iron content in ash, Fe+Ca, silica content, and silica to alumina ratio (S/A), as well as high fouling indicators in ash characterized by high total alkali parameters, fouling index, and sodium content in ash.
References
Akiyama, K., Pak, H., Ueki, Y., Yoshiie, R., & Naruse, I., 2011. "Effect of MgO addition to upgraded brown coal on ash-deposition behavior during combustion." Fuel 90(11), 3230–3236. https://doi.org/10.1016/j.fuel.2011.06.041
Basu, P., 2013. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. In Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory, Academic Press, Elsevier. https://doi.org/10.1016/C2011-0-07564-6
Baxter, L., 2005. "Biomass-coal co-combustion: Opportunity for affordable renewable energy." Fuel 84(10), 1295–1302. https://doi.org/10.1016/j.fuel.2004.09.023
Bilirgen, H., 2014. "Slagging in PC boilers and developing mitigation strategies." Fuel 115, 618–624. https://doi.org/10.1016/j.fuel.2013.07.034
Bryers, R. W., 1996. "Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels." Prog. Energy Combust. Sci. 22(1), 29–120. https://doi.org/10.1016/0360-1285(95)00012-7
Garcia-Maraver, A., Mata-Sanchez, J., Carpio, M., & Perez-Jimenez, J. A., 2017. "Critical review of predictive coefficients for biomass ash deposition tendency." J. Energy Inst. 90(2), 214–228. https://doi.org/10.1016/j.joei.2016.02.002
Ghazidin, H., Suyatno, S., Prayoga, M. Z. E., Putra, H. P., Priyanto, U., Prismantoko, A., Darmawan, A., & Hariana, H., 2023. "A comprehensive evaluation of slagging and fouling indicators for solid fuel combustion." Therm. Sci. Eng. Prog. 40, 101769. https://doi.org/10.1016/j.tsep.2023.101769
Gilbe, C., Öhman, M., Lindström, E., Boström, D., Backman, R., Samuelsson, R., & Burvall, J., 2008. "Slagging characteristics during residential combustion of biomass pellets." Energ. Fuels 22(5), 3536–3543. https://doi.org/10.1021/ef800087x
Hare, N., Rasul, M. G., & Moazzem, S., 2010. "A Review on boiler deposition / foulage prevention and removal techniques for power plant." RAEE, F217–222.
Hariana, H., Prismantoko, A., Prabowo, P., Hilmawan, E., Darmawan, A., & Aziz, M., 2023. "Effectiveness of different additives on slagging and fouling tendencies of blended coal." J. Energy Inst. 107, 101192. https://doi.org/10.1016/j.joei.2023.101192
Hariana, H., Putra, H. P., Prabowo, P., Hilmawan, E., Darmawan, A., Mochida, K., & Aziz, M., 2023. "Theoretical and experimental investigation of ash-related problems during coal co-firing with different types of biomass in a pulverized coal-fired boiler." Energy 269, 126784. https://doi.org/10.1016/j.energy.2023.126784
Harnowo, S., & Yunaidi, Y., 2021. "Kinerja boiler dengan sistem pembakaran bersama antara ampas tebu dengan sekam padi dan cangkang kelapa sawit." Semesta Teknika 24(2), 102–110. https://doi.org/10.18196/st.v24i2.12937
Heinzel, T., Siegle, V., Spliethoff, H., & Hein, K. R. G., 1998. "Investigation of slagging in pulverized fuel co-combustion of biomass and coal at a pilot-scale test facility." Fuel Process. Technol. 54(1–3), 109–125. https://doi.org/10.1016/S0378-3820(97)00063-5
Iáñez-Rodríguez, I., Martín-Lara, M. Á., Pérez, A., Blázquez, G., & Calero, M., 2020. "Water washing for upgrading fuel properties of greenhouse crop residue from pepper." Renew. Energy 145, 2121–2129. https://doi.org/10.1016/j.renene.2019.07.143
Jagodzińska, K., Gądek, W., Pronobis, M., & Kalisz, S., 2019. "Investigation of ash deposition in PF boiler during combustion of torrefied biomass." IOP Conf. Ser.: Earth Environ. Sci. 214, 012080. https://doi.org/10.1088/1755-1315/214/1/012080
Jeong, T. Y., Sh, L., Kim, J. H., Lee, B. H., & Jeon, C. H., 2019. "Experimental investigation of ash deposit behavior during co-combustion of bituminous coal with wood pellets and empty fruit bunches." Energies 12(11), 2087. https://doi.org/10.3390/en12112087
Kitto, J. B., & Stultz, S. C., 2005. Steam: Its Generation and Use (41st ed.). The Babcock & Wilcox Company.
Kleinhans, U., Wieland, C., Frandsen, F. J., & Spliethoff, H., 2018. "Ash formation and deposition in coal and biomass fired combustion systems: Progress and challenges in the field of ash particle sticking and rebound behavior." Prog. Energ. Combust. Sci. 68, 65–168. https://doi.org/10.1016/j.pecs.2018.02.001
Kong, G. T., 2010. Peran Biomassa Bagi Energi Terbarukan. PT Elex Media Komputindo.
Kozlov, A., Svishchev, D., Donskoy, I., Shamansky, V., & Ryzhkov, A., 2015. "A technique proximate and ultimate analysis of solid fuels and coal tar." J. Therm. Anal. Calorim. 122(3), 1213–1220. https://doi.org/10.1007/s10973-015-5134-7
Kuswa, F. M., Putra, H. P., Prabowo, Darmawan, A., Aziz, M., & Hariana, H., 2023. "Investigation of the combustion and ash deposition characteristics of oil palm waste biomasses." Biomass Convers. Bior. 14, 24375–24395. https://doi.org/10.1007/s13399-023-04418-z
Lachman, J., Baláš, M., Lisý, M., Lisá, H., Milčák, P., & Elbl, P., 2021. "An overview of slagging and fouling indicators and their applicability to biomass fuels." Fuel Process. Technol. 217, 106804. https://doi.org/10.1016/j.fuproc.2021.106804
Li, F., Li, Y., Fan, H., Wang, T., Guo, M., & Fang, Y., 2019. "Investigation on fusion characteristics of deposition from biomass vibrating grate furnace combustion and its modification." Energy 174, 724–734. https://doi.org/10.1016/j.energy.2019.02.154
Li, F., Zhao, C., Fan, H., Xu, M., Guo, Q., Li, Y., Wu, L., Wang, T., & Fang, Y., 2022. "Ash fusion behaviors of sugarcane bagasse and its modification with sewage sludge addition." Energy 251, 123912. https://doi.org/10.1016/j.energy.2022.123912
Liu, Y., Cheng, L., Ji, J., & Zhang, W., 2019. "Ash deposition behavior in co-combusting high-alkali coal and bituminous coal in a circulating fluidized bed." Appl. Therm. Eng. 149, 520–527. https://doi.org/10.1016/j.applthermaleng.2018.12.080
Llorente, M. J. F., & García, J. E. C., 2005. "Comparing methods for predicting the sintering of biomass ash in combustion." Fuel 84(14–15), 1893–1900. https://doi.org/10.1016/j.fuel.2005.04.010
Loo, S. van, & Koppejan, J., 2008. The Handbook of Biomass Combustion and Cofiring the Handbook of Biomass Combustion and Co-firing, Routledge, London. https://doi.org/https://doi.org/10.4324/9781849773041
Ma, W., Wenga, T., Frandsen, F. J., Yan, B., & Chen, G., 2020. “The fate of chlorine during MSW incineration: Vaporization, transformation, deposition, corrosion and remedies." Prog. Energy Combust. Sci. 76, 100789. https://doi.org/10.1016/j.pecs.2019.100789
McIntyre, P., 2013. Case Studies of Biomass Co firing. FFF OIB Workshop, John Thompson Boiler and Environmental Solution, September, 2013.
Monti, A., Di Virgilio, N., & Venturi, G., 2008. "Mineral composition and ash content of six major energy crops." Biomass and Bioenergy 32(3), 216–223. https://doi.org/10.1016/j.biombioe.2007.09.012
Naude, D. P., 2001. Combustion of Bagasse & Woodwaste in Boilers for Integration into a Cogeneration Steam Cycle. Proceedings of the 2001 Conference of the Australian Society of Sugar Cane Technologists Held at Mackay, Queensland, Australia, pp.384-389 ref.4.
Ninduangdee, P., & Kuprianov, V. I., 2018. "Co-combustion of rice husk pellets and moisturized rice husk in a fluidized-bed combustor using fuel staging at a conventional air supply." Songklanakarin Journal of Science and Technology 40 (5), 1081–1089. https://doi.org/10.14456/sjst-psu.2018.134
Niu, Y., Tan, H., & Hui, S., 2016. “Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures." Prog. Energy Combust. Sci. 52, 1–61. https://doi.org/10.1016/j.pecs.2015.09.003
Öhman, M., Boman, C., Hedman, H., Nordin, A., & Boström, D., 2004. “Slagging tendencies of wood pellet ash during combustion in residential pellet burners." Biomass and Bioenergy 27(6), 585–596. https://doi.org/10.1016/j.biombioe.2003.08.016
Oladejo, J. M., Adegbite, S., Pang, C., Liu, H., Lester, E., & Wu, T., 2020. “In-situ monitoring of the transformation of ash upon heating and the prediction of ash fusion behaviour of coal/biomass blends." Energy 199, 117330. https://doi.org/10.1016/j.energy.2020.117330
Panchal, R., Shinde, S., & Panchal, S., 2016. "Effect of Bagasse Moisture on Boiler Performance." International Research Journal of Multidisciplinary Studies 2(1), 1–8.
Pérez-Jeldres, R., Flores, M., Cornejo, P., Gordon, A., & García, X., 2018. “Co-firing of coal/biomass blends in a pilot plant facility: A comparative study between Opuntia ficus-indica and Pinus radiata." Energy 145, 1–16. https://doi.org/10.1016/j.energy.2017.10.053
Pintana, P., Tippayawong, N., Nuntaphun, A., & Thongchiew, P., 2014. “Characterization of slag from combustion of pulverized lignite with high calcium content in utility boiler." Energy Explor. Exploit. 32(3), 471–482. https://doi.org/10.1260/0144-5987.32.3.471
Plaza, P. P., 2013. The Development of a Slagging and Scale, Predictive Methodology for Large With, Pulverised Boilers Fired Blends, Coal/Biomass. PhD Thesis, Cardiff University. https://doi.org/10.13140/RG.2.2.28443.62241
Putra, H. P., Kuswa, F. M., Ghazidin, H., Darmawan, A., Prabowo, & Hariana., 2023. “Slagging-fouling evaluation of empty fruit bunch and palm oil frond mixture with bituminous ash coal as co-firing fuel." Bioresour. Technol. Reports 22, 101489. https://doi.org/10.1016/j.biteb.2023.101489
Rein, P., 2016. Cane Sugar Engineering 2nd edition. Verlag Dr. Albert Bartens KG.
Rushdi, A., Sharma, A., & Gupta, R., 2004. “An experimental study of the effect of coal blending on ash deposition." Fuel 83(4–5), 495–506. https://doi.org/10.1016/j.fuel.2003.08.013
Saidur, R., Abdelaziz, E. A., Demirbas, A., Hossain, M. S., & Mekhilef, S., 2011. “A review on biomass as a fuel for boilers." Renewable and Sustainable Energy Rev. 15(5), 2262–2289. https://doi.org/10.1016/j.rser.2011.02.015
Sommersacher, P., Brunner, T., Obernberger, I., Kienzl, N., & Kanzian, W., 2013. “Application of novel and advanced fuel characterization tools for the combustion related characterization of different wood/kaolin and straw/kaolin mixtures." Energy and Fuels 27(9), 5192–5206. https://doi.org/10.1021/ef400400n
Suyatno, S., Hariana, H., Prismantoko, A., Prida Putra, H., Mayang Sabrina Sunyoto, N., Darmawan, A., Ghazidin, H., & Aziz, M., 2023. “Assessment of potential tropical woody biomass for coal co-firing on slagging and fouling aspects." Therm. Sci. Eng. Prog. 44, 102046. https://doi.org/10.1016/j.tsep.2023.102046
Suyatno, S., Hariana, H., Zulfikar Eka Prayoga, M., Sugiyono, A., Maulana, I., Sana Ruhiyat, A., & Hidayat, Y., 2023. “Investigation on potential of slagging fouling and corrosion in co-firing bituminous coal and sorghum waste pellet." International Journal of Application on Sciences, Technology and Engineering 1(1), 197–203. https://doi.org/10.24912/ijaste.v1.i1.197-203
Teixeira, P., Lopes, H., Gulyurtlu, I., Lapa, N., & Abelha, P., 2014. “Slagging and fouling during coal and biomass cofiring: Chemical equilibrium model applied to FBC." Energy and Fuels 28(1), 697–713. https://doi.org/10.1021/ef4018114
Tiainen, M., Daavitsainen, J., & Laitinen, R. S., 2002. “The role of amorphous material in ash on the agglomeration problems in FB boilers. A powder XRD and SEM-EDS study." Energy and Fuels 16(4), 871–877. https://doi.org/10.1021/ef010269j
Tortosa-Masiá, A., Ahnert, F., Spliethoff, H., Loux, C., & Hein, K., 2005. “Slagging and fouling in biomass co-combustion." Thermal Science 9(3), 85–98. https://doi.org/10.2298/tsci0503085t
Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G., 2013. “An overview of the composition and application of biomass ash.: Part 2. Potential utilisation, technological and ecological advantages and challenges." Fuel 105, 19–39. https://doi.org/10.1016/j.fuel.2012.10.001
Vassilev, S. V., Baxter, D., & Vassileva, C. G., 2013. “An overview of the behaviour of biomass during combustion: Part I. Phase-mineral transformations of organic and inorganic matter." Fuel 112, 391–449. https://doi.org/10.1016/j.fuel.2013.05.043
Vassilev, S. V., Vassileva, C. G., & Baxter, D., 2014. “Trace element concentrations and associations in some biomass ashes." Fuel 129, 292–313. https://doi.org/10.1016/j.fuel.2014.04.001
Villeneuve, J., Palacios, J. H., Savoie, P., & Godbout, S., 2012. “A critical review of emission standards and regulations regarding biomass combustion in small scale units (<3MW)." Bioresour. Technol. 111, 1–11. https://doi.org/10.1016/j.biortech.2012.02.061
Wahab, A., Sattar, H., Ashraf, A., Hussain, S. N., Saleem, M., & Munir, S., 2020. “Thermochemical, kinetic and ash characteristics behaviour of Thar Lignite, agricultural residues and synthetic polymer waste (EVA)." Fuel 266, 117151. https://doi.org/10.1016/j.fuel.2020.117151
Wang, X., Rahman, Z. U., Lv, Z., Zhu, Y., Ruan, R., Deng, S., Zhang, L., & Tan, H., 2021. “Experimental study and design of biomass co-firing in a full-scale coal-fired furnace with storage pulverizing system." Agronomy 11(4), 1–11. https://doi.org/10.3390/AGRONOMY11040810
Wang, Y., Xiang, Y., Wang, D., Dong, C., Yang, Y., Xiao, X., Lu, Q., & Zhao, Y., 2016. “Effect of sodium oxides in ash composition on ash fusibility." Energy and Fuels 30(2), 1437–1444. https://doi.org/10.1021/acs.energyfuels.5b02722
Wei, B., Tan, H., Wang, Y., Wang, X., Yang, T., & Ruan, R., 2017. “Investigation of characteristics and formation mechanisms of deposits on different positions in full-scale boiler burning high alkali coal." Appl. Therm. Eng. 119, 449–458. https://doi.org/10.1016/j.applthermaleng.2017.02.091
Wei, B., Wu, W., Liu, K., Wang, J., Chen, L., Ma, J., Wang, F., Li, X., Yang, W., & Tan, H., 2022. “Investigation of slagging characteristics on middle and low temperature heat transfers by burning high sodium and iron coal." Combust. Sci. Technol. 194(9), 1768–1787. https://doi.org/10.1080/00102202.2020.1830768
Werther, J., Saenger, M., Hartge, E. U., Ogada, T., & Siagi, Z., 2000. “Combustion of agricultural residues." Prog. Energy Combust. Sci. 26(1), 1–27. https://doi.org/10.1016/S0360-1285(99)00005-2
Yao, X., Xu, K., Yan, F., & Liang, Y., 2017. “The Influence of ashing temperature on ash fouling and slagging characteristics during combustion of biomass fuels." BioResources 12(1), 1593–1610.
Yao, X., Zheng, Y., Zhou, H., Xu, K., Xu, Q., & Li, L., 2020. “Effects of biomass blending, ashing temperature and potassium addition on ash sintering behaviour during co-firing of pine sawdust with a Chinese anthracite." Renewable Energy 147, 2309–2320. https://doi.org/10.1016/j.renene.2019.10.047
Yunaidi, Y., Surahmanto, F., & Harnowo, S., 2020. “The risk analysis of rice husk of co-firing fuel for boilers in sugar mills." J. Phys.: Conf. Ser. 1446, 012041. https://doi.org/10.1088/1742-6596/1446/1/012041
Zevenhoven, M., Yrjas, P., Skrifvars, B. J., & Hupa, M., 2012. “Characterization of ash-forming matter in various solid fuels by selective leaching and its implications for fluidized-bed combustion." Energy and Fuels 26(10), 6366–6386. https://doi.org/10.1021/ef300621j
Zhang, H., Hao, Z., Li, J., Yang, X., Wang, Z., Liu, Z., Huang, J., Zhang, Y., & Fang, Y., 2021. “Effect of coal ash additive on potassium fixation and melting behaviors of the mixture under simulated biomass gasification condition." Renewable Energy 168, 806–814. https://doi.org/10.1016/j.renene.2020.12.107
Zhu, C., Tu, H., Bai, Y., Ma, D., & Zhao, Y., 2019. “Evaluation of slagging and fouling characteristics during Zhundong coal co-firing with a Si/Al dominated low rank coal." Fuel 254, 115730. https://doi.org/10.1016/j.fuel.2019.115730.
Copyright (c) 2025 ASEAN Journal of Chemical Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright holder for articles is ASEAN Journal of Chemical Engineering. Articles published in ASEAN J. Chem. Eng. are distributed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.
Authors agree to transfer all copyright rights in and to the above work to the ASEAN Journal of Chemical Engineering Editorial Board so that the Editorial Board shall have the right to publish the work for non-profit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors’ personal use or for company use if the source and the journal copyright notice is indicated, and if the reproduction is not made for the purpose of sale.