Influence of Chitosan Concentration on the Properties of Electrospun Methanol-crosslinked Chitosan/PVA Nanofibers

  • Nurul Aina Munirah Binti Ahmadi School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Noor Fauziyah Binti Ishak School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Mohd Reusmaazran Bin Yusof Material Technology Group, Industrial Technology Division, Malaysian Nuclear Agency
Keywords: Chitosan, Composite Fibers, Crosslinking, Electrospinning, Polyvinyl Alcohol

Abstract

Polymers nanofibers are of great interest due to the growing need for advanced materials to be used in biomedical applications. This research seeks to assess how the chitosan (CS) concentration affects the electrospun methanol-crosslinked CS/polyvinyl alcohol (PVA) nanofibers’ characteristics. Polymer solution compositions containing 10%, 20%, and 30% CS were prepared and electrospun into nanofibers and then crosslinked with methanol to increase their stability. The nanofibers formed were characterized by their morphology, wettability, and crystallographic structure. According to the FESEM, the 20% CS had the largest diameter range (180-240 nm), while the smallest diameter range (120-160 nm) was noticed in the 10% CS. Nonetheless, the rats with 20% CS had the fewest beads during electrospinning. The analysis of WCA shows that the nanofibers had good wettability, as they all exhibited 31° as the lowest contact angle for the 20% CS. From the XRD, the nanofibers fabricated with 10% CS exhibited the highest peak intensity, which implies a more crystalline structure than the rest. However, the 20% CS nanofibers had a more amorphous structure, which could be useful in biomedical applications like wound dressing. The study demonstrates that the concentration of chitosan and methanol crosslinking significantly influences the electrospun nanofibers’s morphological, hydrophilic, and structural aspects.

References

Abbas, W. A., Sharafeldin, I. M., Omar, M. M., & Allam, N. K., 2020. “Novel mineralized electrospun chitosan/PVA/TiO2 nanofibrous composites for potential biomedical applications: Computational and experimental insights.” Nanoscale Adv. 2(4), 1512–1522. https://doi.org/10. 1039/d0na00042f.

Abdillah, U., Yazid, H., Ahmad, S., Makhtar, N., Zaubidah, S., Chen, R. S., & Syifa, N. H., 2022. “The effect of various electrospinning parameter and sol-gel concentration on morphology of silica and titania nanofibers.” IOP Conf. Ser. Mater. Sci. Eng. 1231(1), 012012. https://doi.org/10.1088/1757-899X/1231/1/012012.

Anisiei, A., Oancea, F., & Marin, L., 2023. “Electrospinning of chitosan-based nanofibers: From design to prospective applications.” Rev. Chem. Eng. 39(1), 31–70. https://doi.org/10.1515/revce-2021-0003.

Barleany, D. R., Jayanudin, J., Nasihin, N., Widiawati, M., Yulvianti, M., Sari, D. K., & Gunawan, A., 2023. “Hydrogel preparation from shrimp shell-based chitosan: The degree of crosslinking and swelling study.” ASEAN J. Chem. Eng. 23(1), 28–39. https://doi.org/10.22146/ajche.73716

Bharati, D. C., Rawat, P., & Saroj, A. L., 2021. “Structural, thermal, and ion dynamics studies of PVA-CS-NaI-based biopolymer electrolyte films.” J. Solid State Electrochem. 25(6), 1727–1741. https://doi.org/10.1007/s10008-021-04946-6.

Bobbili, S. V., & Milner, S. T., 2020. “Simulation study of entanglement in semiflexible polymer melts and solutions.” Macromolecules 53(10), 3861–3872. https://doi.org/10.1021/acs.macromol.9b02681

Das, S., & Mazumder, A., 2023. “Recent advances in hydrogel-based drug delivery for wound healing therapy: A Systematic Review.” Allelopath. J. 59(2), 197-206. https://doi.org/10.26651/allelo.j/2023-59-2-1442

Farahani, M., & Shafiee, A., 2021. “Wound healing: from passive to smart dressings.” Adv. Healthcare. Mater. 10(16), 2100477.https://doi.org/10.1002/adhm.202100477

Feng, P., Luo, Y., Ke, C., Qiu, H., Wang, W., Zhu, Y., Hou, R., Xu, L., & Wu, S., 2021. “Chitosan-based functional materials for skin wound repair: Mechanisms and applications.” Frontiers in bioengineering and biotechnology 9, 650598. https://doi.org/10.3389/fbioe.2021.650598

Han, S., Nie, K., Li, J., Sun, Q., Wang, X., Li, X., & Li, Q., 2021. “3D electrospun nanofiber-based scaffolds: from preparations and properties to tissue regeneration applications.” Stem cells International 2021, 8790143. https://doi.org/10.1155/2021/8790143

Hernandez, J. L., & Woodrow, K. A., 2022. “Medical applications of porous biomaterials: Features of porosity and tissue-specific implications for biocompatibility.” Adv. Healthcare Mater. 11(9), e2102087. https://doi.org/10.1002/adhm.202102087

Ho, T. C., Chang, C. C., Chan, H. P., Chung, T. W., Shu, C. W., Chuang, K. P., Duh, T. H., Yang, M. H., & Tyan, Y. C., 2022. “Hydrogels: Properties and applications in biomedicine.” Molecules 27(9), 2902. https://doi.org/10.3390/molecules27092902

Hong, Y., Lin, Z., Yang, Y., Jiang, T., Shang, J., & Luo, Z., 2022. “Biocompatible conductive hydrogels: applications in the field of biomedicine.” Int. J. Mol. Sci.,23(9), 4578. https://doi.org/10.3390/ijms23094578

Hu, D., Ren, Q., Li, Z., & Zhang, L., 2020. “Chitosan-based biomimetically mineralized composite materials in human hard tissue repair.” Molecules 25(20), 4785. https://doi.org/10.3390/molecules25204785

Huhtamäki, T., Tian, X., Korhonen, J. T., & Ras, R. H. A., 2018. “Surface-wetting characterization using contact-angle measurements.” Nature Protocols 13(7), 1521–1538. https://doi.org/10.1038/s41596-018-0003-z

Kaczmarek, B., Nadolna, K., & Owczarek, A., 2020. “The physical and chemical properties of hydrogels based on natural polymers. Hydrogels Based Nat. Polym. 2020, 151–172. https://doi.org/10.1016/B978-0-12-816421-1.00006-9

Kurusu, R. S., & Demarquette, N. R., 2018. “Surface modification to control the water wettability of electrospun mats.” Int. Mater. Rev. 64(5), 249–287. https://doi.org/10.1080/09506608.2018.1484577

López de Armentia Hernández, S., 2022. “Development of nanomaterial-based scaffolds for bone tissue regenaration.” Gels 9(2), 100.https://doi.org/10.3390/gels9020100

Nancy, G. A., Kalpana, R., & Nandhini, S., 2022. “A study on pressure ulcer: influencing factors and diagnostic techniques.” The International Journal of Lower Extremity Wounds 21(3), 254–263. https://doi.org/10.1177/15347346221081603

Nguyen, S., Nguyen, H., & Truong, K., 2020. “Comparative cytotoxic effects of methanol, ethanol and DMSO on human cancer cell lines.” Biomedical Research and Therapy 7(7), 3855-3859. https://doi.org/10.15419/bmrat.v7i7.614

Niculescu, A. G., & Grumezescu, A. M., 2022. “An up-to-date review of biomaterials application in wound management.” Polymers 14(3), 421. https://doi.org/10.3390/polym14030421

Pellis, A., Guebitz, G. M., & Nyanhongo, G. S., 2022. “Chitosan: Sources, processing and modification techniques.” Gels 8(7), 393. https://doi.org/10.3390/gels8070393

Raja, P. B., Munusamy, K. R., Perumal, V., & Ibrahim, M. N. M., 2022. “Characterization of nanomaterial used in nanobioremediation.” Nano-Bioremediation: Fundamentals and Applications 2022, 57–83. https://doi.org/10.1016/B978-0-12-823962-9.00037-4

Rianjanu, A., Kusumaatmaja, A., Suyono, E. A., & Triyana, K., 2018. “Solvent vapor treatment improves mechanical strength of electrospun polyvinyl alcohol nanofibers.” Heliyon 4(4), e00592. https://doi.org/10.1016/j.heliyon.2018.e00592

Sanjarnia, P., Picchio, M. L., Polegre Solis, A. N., Schuhladen, K., Fliss, P. M., Politakos, N., Metterhausen, L., Calderón, M., & Osorio-Blanco, E. R., 2024. “Bringing innovative wound care polymer materials to the market: Challenges, developments, and new trends.” Adv. Drug Delivery Rev. 207, 115217. https://doi.org/10.1016/j.addr.2024.115217

Shah, A., Ali Buabeid, M., Arafa, E. A., Hussain, I., Li, L., & Murtaza, G., 2019. “The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxifloxacin.” Int. J. Pharm. 564, 22–38. https://doi.org/10.1016/j.ijpharm.2019.04.046

Sirin, S., Cetiner, S., & Sarac, A. S., 2013. “Polymer nanofibers via electrospinning: Factors affecting nanofiber quality.” Kahramanmaras Sutcu Imam University Journal of Engineering Sciences 16(2), 1-12.

Toriello, M., Afsari, M., Shon, H. K., & Tijing, L. D., 2020. “Progress on the fabrication and application of electrospun nanofiber composites.” Membranes 10(9), 204. https://doi.org/10.3390/membranes10090204

Waqar, M. A., Mubarak, N., Khan, A. M., Shaheen, F., Mustafa, M. A., & Riaz, T., 2024. “Recent advances in polymers, preparation techniques, applications and future perspectives of hydrogels.” Int. J. Polym. Mater. Polym. Biomater. 74(4), 265–284.https://doi.org/10.1080/00914037.2024.2335163

Xu, Y., Liu, K., Yang, Y., Kim, M.-S., Lee, C.-H., Zhang, R., Xu, T., Choi, S.-E., & Si, C., 2023. “Hemicellulose-based hydrogels for advanced applications.” Frontiers in Bioengineering and Biotechnology 10, 1110004. https://doi.org/10.3389/fbioe.2022.1110004

Yang, Y., Du, Y., Zhang, J., Zhang, H., & Guo, B., 2022. “Structural and functional design of electrospun nanofibers for hemostasis and wound healing.” Adv. Fiber Mater. 4, 1027–1057. https://doi.org/10.1007/s42765-022-00178-z

Zhang, H., Chen, C., Zhang, H., Chen, G., Wang, Y., & Zhao, Y., 2021. “Janus medical sponge dressings with anisotropic wettability for wound healing.” Applied Materials Today, 23, 101068. https://doi.org/10.1016/j.apmt.2021.101068

Zhang, H., Xu, Y., Lei, Y., Wen, X., & Liang, J., 2022. “Tourmaline nanoparticles modifying hemostatic property of chitosan/polyvinyl alcohol hydrogels.” Mater. Lett. 324, 132718. https://doi.org/10.1016/j.matlet.2022.132718

Published
2025-08-30
How to Cite
Ahmadi, N. A. M. B., Ishak, N. F. B., & Yusof, M. R. B. (2025). Influence of Chitosan Concentration on the Properties of Electrospun Methanol-crosslinked Chitosan/PVA Nanofibers. ASEAN Journal of Chemical Engineering, 25(2), 286-297. https://doi.org/10.22146/ajche.16579
Section
Articles