A Highly Active Galam Wood Bark-derived Solid Acid Magnetic Catalyst with Properties Suitable for Hydrolysis Reaction

  • Abubakar Tuhuloula Department of Chemical Engineering, Lambung Mangkurat University, Banjarbaru 70714, Indonesia
  • Chairul Irawan Department of Chemical Engineering, Lambung Mangkurat University, Banjarbaru 70714, Indonesia
  • Yulia Nurul Ma'rifah Department of Chemical Engineering, Lambung Mangkurat University, Banjarbaru 70714, Indonesia
  • Vanessa Dwi Az-Zahra Department of Chemical Engineering, Lambung Mangkurat University, Banjarbaru 70714, Indonesia
  • Ancella Grancia Yuliana Sanjani Department of Chemical Engineering, Lambung Mangkurat University, Banjarbaru 70714, Indonesia
  • Iryanti Fatyasari Nata Department of Chemical Engineering, Lambung Mangkurat University, Banjarbaru 70714, Indonesia https://orcid.org/0000-0003-2610-4513
Keywords: Biomass-derived Catalyst, Galam Bark Waste, Hydrolysis Reaction, Magnetic Catalyst, Solid Acid Catalyst

Abstract

Galam wood is a specific plant that is distributed in Kalimantan, especially in lowland areas, shallow peat forests, and swamps. After removing the bark layer, galam wood becomes a valuable building material. The galam bark (GB) is a biomass waste that could be utilized as a solid acid magnetic catalyst (M-SA). Biomass-based solid acid catalysts have gained interest due to the need for sustainable and low-cost alternatives. Nevertheless, most of them have low reusability, poor acidity, or high production cost. To create carbon material, the GB was sized (± 60 mesh) and underwent hydrothermal treatment in the presence of sulfonic acid at 90 oC for 8, 10, and 12 h. Then, the carbon was impregnated by 10 mmol/L of iron (III) chloride hexahydrate for 5 h and calcined at 500 oC for 1 h. The solid acid magnetic catalyst (M-SA) was produced. Based on Field Emission Scanning Electron Microscope (FE-SEM) observation, the morphological structure of galam bark changes due to the delignification and carbonization processes. The X-Ray Diffraction (XRD) showed a 75% increase in crystallinity after delignification. Fourier Transform-Infrared (FT-IR) showed the presence of the -SO3H group at a wavelength of 1137 cm-1. The optimum sulfonation time was obtained for 8 h with an acid content of 0.710 mmol/g. The Energy Dispersive X-Ray (EDX) Analysis measurement showed the Fe and S content of 60.21% and 4.18% w/w, respectively. The highest total reducing sugar (TRS) hydrolysis was 1.345 mg/mL from the hydrolysis of 1% M-SA catalyst at 100 oC for 1 h. The stability of M-SA showed good performance for the 4th repeated use with a decrease of only 6.5%. Solid acid magnetic catalyst from galam bark has good acid catalyst specifications and has the potential to be developed.

References

Ardhana, A., Syaifuddin, Alimah, D., 2018. Utilization and Marketing Patterns of Galam Wood in Jejangkit Timur and Margasari Villages, Marabahan District, Barito Kuala, South Kalimantan. “Caring for the Hope of Peat Restoration, Fire Prevention, and Enhancing Community Welfare”, Palembang. Balai Penelitian Pengembangan Lingngkungan Hidup dan Kehutanan Palembang.

Ardika, N., Erwan Adi, S., Masykuri, L., Iqbal, M., Wiliandi, S., 2024. "Kinetic study of biodiesel purification from used cooking oil using activated carbon." ASEAN J. Chem. Eng., 24(2), 164-173. https://doi.org/10.22146/ajche.12205

Asnan, M.N., Vebrian, V., 2024. "Study of the effect of the bark on the compression strength of galam wood (Melaleuca Cajaputi)." AIP Conf. Proc. 2927, 030013. https://doi.org/10.1063/5.0192314

Awasthi, M.K., Sarsaiya, S., Patel, A., Juneja, A., Singh, R.P., Yan, B., Awasthi, S.K., Jain, A., Liu, T., Duan, Y., Pandey, A., Zhang, Z., Taherzadeh, M.J., 2020. "Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy." Renew. Sustain. Energy Rev. 127, 109876. https://doi.org/10.1016/j.rser.2020.109876

Christy, E.O., Soemarno, Sumarlan, S.H., Soehardjono, A., 2021. "Binderless bark particleboard made from gelam (Melaleuca viridiflora Sol. ex Gaertn.) bark waste: The effect of the pressing temperature on its mechanical and physical properties." BioResources 16(2), 4171-4199. http://dx.doi.org/10.15376/biores.16.2.4171-4199

Corrˆea, A.P.d.L., Bastos, R.R.C., Filho, G.N.d.R., Zamian, J.e.R., ao, L.R.V.d.C., 2020. "Preparation of sulfonated carbon-based catalysts from murumuru kernel shell and their performance in the esterification reaction." RSC Adv. 10, 20245-20256. https://doi.org/10.1039/D0RA03217D

Correa, A.P.d.L., Bastos, R.R.C., Filho, G.N.d.R., Zamian, J.R., Conceiçao, L.R.V.d., 2020. "Preparation of sulfonated carbon-based catalysts from murumuru kernel shell and their performance in the esterification reaction." RSC Adv. 10, 20245-20256. https://doi.org/10.1039/D0RA03217D

Effendi, E.Z., Hariady, Y.C., Salaahuddin, M.D., Irawan, C., Nata, I.F., 2019. "Utilization of rice husk cellulose as a magnetic nanoparticle biocomposite fiber source for the absorption of manganese (Mn2+) ions in peat water." J. Kim Sains Apl. 22(6), 220-226.

Fonseca, J.M., Spessato, L., Cazetta, A.L., Bedin, K.C., Melo, S.A.R., Souza, F.L., Almeida, V.C,. 2020. "Optimization of sulfonation process for the development of carbon-based catalyst from crambe meal via response surface methodology." Energy Convers. Manag. 217, 112975. https://doi.org/10.1016/j.enconman.2020.112975

Guerrero-Pérez, M.O., Fierro, J.L.G., Bañares, M.A., 2006. "Effect of synthesis method on stabilized nano-scaled Sb–V–O catalysts for the ammoxidation of propane to acrylonitrile." Top. Catal. 41(1), 43-53. https://doi.org/10.1007/s11244-006-0093-7

Hamza, M., Ayoub, M., Shamsuddin, R.B., Mukhtar, A., Saqib, S., Zahid, I., Ameen, M., Ullah, S., Al-Sehemi, A.G., Ibrahim, M., 2021. "A review on the waste biomass derived catalysts for biodiesel production." Env. Tech. Innov. 21, 101200. https://doi.org/10.1016/j.eti.2020.101200

Hapsari, M.T., Indrioko, S., Faridah, E., Widiyatno, Naiem, M., Herdyantara, A.B., Wahno, I., 2023. "Genetic variation of gelam (Melaleuca cajuputi subsp. cumingiana) in southern Kalimantan peat swamp population based on isozyme marker." IOP Conf. Ser.: Earth Environ. Sci. 1282(1), 012059. https://doi.org/10.1088/1755-1315/1282/1/012059

Haryati, S., Yulhan, A.T., Asparia, L., 2017. "Preparation of activated carbon from galam (Melaleuca leucadendron) bark from Tanjung Api-Api, South Sumatra. J. Chem. Eng. 2(3), 77-86.

Ikhsan, M.H., Nizar, U.K., 2020. "Katalis asam padat berbasis karbon tersulfonasi pada proses pembuatan biodiesel." Indo. J. Chem. Env. 9(1), 51-54. https://doi.org/10.24036/p.v9i1.108945

Krishnan, S.G., Pua, F.-L., Tan, E.-S., 2022. "Synthesis of magnetic catalyst derived from oil palm empty fruit bunch for esterification of oleic acid: an optimization study." Bulletin of Chemical Reaction Engineering & Catalysis 17 (1), 65-77. https://doi.org/10.9767/bcrec.17.1.12392.65-77

Kusrini, E., Supramono, D., Degirmenci, V., Pranata, S., Bawono, A.A., Ani, F.N., 2018. "Improving the quality of pyrolysis oil from co-firing high density polyethylene plastic waste and palm empty fruit bunches." Int. J.Technol. 7, 1498-1508. https://doi.org/10.14716/ijtech.v9i7.2531

Liu, R., Sarker, M., Rahman, M.M., Li, C., Chai, M., Nishu, Cotillon, R., Scott, N.R., 2020. "Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production – A review." Prog. Energy Combust. Sci., 80, 100852. https://doi.org/10.1016/j.pecs.2020.100852

Liu, W.-J., Tian, K., Jiang, H., Yu, H.-Q., 2013. "Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste." Sci. Rep. 3, 2419. https://doi.org/10.1038/srep02419

Lokman, I.M., Rashid, U., Yunus, R., Taufiq-Yap, Y.H., 2014. "Carbohydrate-derived solid acid catalysts for biodiesel production from low-cost feedstocks: A review." Catal. Rev. 56(2), 187-219. https://doi.org/10.1080/01614940.2014.891842

Mankar, A.R., Pandey, A., Modak, A., Pant, K.K., 2021. "Pretreatment of lignocellulosic biomass: A review on recent advances." Bioresour. Technol. 334, 125235. https://doi.org/10.1016/j.biortech.2021.125235

Merzari, F., Lucian, M., Volpe, M., Andreottola, G., Fiori, L., 2018. "Hydrothermal Carbonization of biomass: Design of a bench-scale reactor for evaluating the heat of reaction." Chem. Eng. Trans. 65, 43-48. https://doi.org/10.3303/CET1865008

Mo, X., López, D.E., Suwannakarn, K., Liu, Y., Lotero, E., Goodwin Jr, J.G., Lu, C., 2008. "Activation and deactivation characteristics of sulfonated carbon catalysts." J. Catal. 254(2), 332-338. https://doi.org/10.1016/j.jcat.2008.01.011

Nata, I.F., Irawan, C., Mardina, P., Lee, C.-K., 2015. "Carbon-based strong solid acid for cornstarch hydrolysis." J. Solid State Chem., 230, 163-168. https://doi.org/10.1016/j.jssc.2015.07.005

Nata, I.F., Irawan, C., Putra, M.D., Hudha, M.I., Syarkani, M.H., Naufal, A., 2024. "Simultaneous adsorption of Cr (III) Ions and contaminants on sugarcane bagasse/rice husk fiber-based amine magnetic biocomposite." J. Hazard Mater. Adv. 13, 100412. https://doi.org/10.1016/j.hazadv.2024.100412

Nata, I.F., Irawan, C., Putra, M.D., Lee, C.-K., 2021. "The green synthesis of a palm empty fruit bunch-derived sulfonated carbon acid catalyst and its performance for cassava peel starch hydrolysis." RSC Adv. 11(12), 6449-6455. https://doi.org/10.1039/D1RA00019E

Nata, I.F., Putra, M.D., Irawan, C., Lee, C.-K., 2017a. "Catalytic performance of sulfonated carbon-based solid acid catalyst on esterification of waste cooking oil for biodiesel production." J. Environ. Chem. Eng. 5(3), 2171-2175. https://doi.org/10.1016/j.jece.2017.04.029

Nata, I.F., Putra, M.D., Nurandini, D., Irawan, C., 2017b. "Facile strategy for surface functionalization of corn cob to biocarbon and its catalytic performance on banana peel starch hydrolysis." Int. J. Adv. Sci. Eng. Inf. Technol. 7(4), 1302-1308.

Nata, I.F., Putra, M.D., Nurandini, D., Irawan, C., 2017c. "Facile strategy for surface functionalization of corn cob to biocarbon and its catalytic performance on banana peel starch hydrolysis international." Int. J. Adv. Sci. Eng. Inf. Technol. 7, 1302-1308.

Nintasari, R., Purwanto, D., 2016. "Extraction of Dyes from galam (Melaleuca leucadendron Linn) bark and evaluation in satin fabric." J. For. Prod. Ind. Res. 8(2), 65-70.

Rifki, A., Zamhari, M., Purnamasari, I., 2024. "Manufacturing the activated carbon catalyst of impregnated palm core shells for biodiesel production." Konversi 13(1), 42-46.

Santoso, H., Inggrid, H.M., Christiana, E., Arvina, S., Paru, M.P., Santosa, T., Albert, Fitriah. 2016. Pembuatan Katalis Asam Heterogen Dengan Metode Karbonisasi Hidrotermal Satu Tahap. Universitas Katolik Parahyangan. Bandung.

Sonibare, O.O., Haeger, T., Foley, S.F., 2010. "Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy." Energy 35(12), 5347-5353. https://doi.org/10.1016/j.energy.2010.07.025

Tao, M.-L., Guan, H.-Y., Wang, X.-H., Liu, Y.-C., Louh, R.-F., 2015. "Fabrication of sulfonated carbon catalyst from biomass waste and its use for glycerol esterification." Fuel Process. Technol. 138, 355-360. https://doi.org/10.1016/j.fuproc.2015.06.021

Tian, Y., Zhang, F., Wang, J., Cao, L., Han, Q., 2021. "A review on solid acid catalysis for sustainable production of levulinic acid and levulinate esters from biomass derivatives." Bioresour. Technol. 342, 125977. https://doi.org/10.1016/j.biortech.2021.125977

Titirici, M.-M., Thomas, A., Antonietti, M., 2007. "Replication and coating of silica templates by hydrothermal carbonization." Adv. Funct. Mater. 17(6), 1010-1018. https://doi.org/10.1002/adfm.200600501

Umashankaran, M., Gopalakrishnan, S., 2021. "Effect of sodium hydroxide treatment on physico-chemical, thermal, tensile and surface morphological properties of Pongamia Pinnata L. bark fiber." J. Nat. Fibers, 18(12), 2063-2076. https://doi.org/10.1080/15440478.2019.1711287

Wicakso, D.R., Fortuna, D., Hernadin, I.A., Nuryoto, Rumbino, Y., Damayanti, A., 2023. "Characterization of corn starch edible films by the addition of chitosan as a vegetable oil packaging." Konversi 12(2), 62-65.

Zhu, Y., Huang, J., Sun, S., Wu, A., Li, H., 2019. "Effect of dilute acid and alkali pretreatments on the catalytic performance of bamboo-derived carbonaceous magnetic solid acid." Catalyst 9(3), 245. https://doi.org/10.3390/catal9030245

Published
2025-08-30
How to Cite
Tuhuloula, A., Irawan, C., Ma’rifah, Y. N., Az-Zahra, V. D., Sanjani, A. G. Y., & Nata, I. F. (2025). A Highly Active Galam Wood Bark-derived Solid Acid Magnetic Catalyst with Properties Suitable for Hydrolysis Reaction. ASEAN Journal of Chemical Engineering, 25(2), 298-309. https://doi.org/10.22146/ajche.16848
Section
Articles