Optimization of Acid-Catalyzed Hydrolysis of Water Hyacinth without Delignification

  • Dedy Anwar Chemical Engineering Department, Universitas Gadjah Mada, Jalan Grafika No. 2, Bulaksumur, Depok, Sleman, Yogyakarta-55281, Indonesia
  • Adonia Christiani Eka Putri Chemical Engineering Department, Universitas Gadjah Mada, Jalan Grafika No. 2, Bulaksumur, Depok, Sleman, Yogyakarta-55281, Indonesia
  • Kenia Ardita Pramesti Chemical Engineering Department, Universitas Gadjah Mada, Jalan Grafika No. 2, Bulaksumur, Depok, Sleman, Yogyakarta-55281, Indonesia
  • Rochim Bakti Cahyono Chemical Engineering Department, Universitas Gadjah Mada, Jalan Grafika No. 2, Bulaksumur, Depok, Sleman, Yogyakarta-55281, Indonesia
  • Irfan Dwidya Prijambada Faculty of Agriculture, Universitas Gadjah Mada, Jalan Flora, Bulaksumur, Depok, Sleman, Yogyakarta-55281, Indonesia
  • Wiratni Budhijanto Chemical Engineering Department, Universitas Gadjah Mada, Jalan Grafika No. 2, Bulaksumur, Depok, Sleman, Yogyakarta-55281, Indonesia
Keywords: Biofertilizer Production, Glucose Yield, Hydrolysis Optimization, Response Surface Methodology, Water Hyacinth

Abstract

Water hyacinth (Eichhornia crassipes) is a rapidly proliferating invasive aquatic plant causing severe ecological disruptions and economic challenges worldwide. Its uncontrolled spread significantly affects aquatic biodiversity and local livelihoods. Although water hyacinth is rich in cellulose, conventional hydrolysis methods to convert it into valuable bioproducts, such as biofertilizer substrates, often require costly and environmentally harmful pretreatment steps, limiting its broader utilization. This study aimed to optimize acid-catalyzed hydrolysis of water hyacinth into glucose-rich hydrolysate without alkaline pretreatment. Response surface methodology (RSM) was employed to determine optimal conditions using hydrochloric acid (HCl) and sulfuric acid (H2SO4). Optimal hydrolysis conditions were found to be 2.36N concentration, 89.33°C, and 76.94 minutes for HCl, and 1.91N concentration, 100.03°C, and 79.66 minutes for H2SO4. Model validation showed high R² values of 0.82 and 0.95 for HCl and H2SO4, respectively. Subsequent biofertilizer fermentation experiments demonstrated that H2SO4-derived hydrolysate facilitated superior microbial growth compared to HCl, indicating better glucose bioavailability. Hydrolysates from HCl hydrolysis showed higher bacterial toxicity. These findings highlight the potential of optimized acid-catalyzed hydrolysis as an effective, sustainable strategy for converting invasive water hyacinth into glucose-rich substrates for biofertilizer production. This bioprocess-friendly approach not only mitigates environmental impacts but also enhances resource efficiency, contributing significantly to sustainable agricultural practices.

References

Adewuyi, Y. G., & Deshmane, V. G., 2015. "Intensification of Enzymatic hydrolysis of cellulose using high-frequency ultrasound: An investigation of the effects of process parameters on glucose yield." Energy & Fuels 29(8), 4998–5006. https://doi.org/10.1021/acs.energyfuels.5b00661

Adornado, A. P., Soriano, A. N., Orfiana, O. N., Pangon, M. B. J., & Nieva, A. D., 2017. "Simulated biosorption of Cd(II) and Cu(II) in single and binary metal systems by water hyacinth (Eichhornia crassipes) using Aspen Adsorption." ASEAN J. Chem. Eng., 16(2), 21-43. https://doi.org/10.22146/ajche.49892

Arivendan, A., Jebas Thangiah, W. J., Irulappasamy, S., & N Chrish, B., 2022. "Study on characterization of water hyacinth (Eichhornia crassipes) novel natural fiber as reinforcement with epoxy polymer matrix material for lightweight applications." J. Ind. Text., 51(5), 8157S-8174S. https://doi.org/10.1177/15280837211067281

Ashfaq, M. M., 2023. "Kinetic modeling of cornstalk cellulose hydrolysis in supercritical water: A comparative study of the effects of temperature and residence time on derivative production." Processes 11(10), 3030. https://doi.org/10.3390/pr11103030

Bronzato, G. R. F., Ziegler, S. M., Rita de Cássia da Silva, Cesarino, I., & Leão, A. L., 2018. "Water hyacinth second-generation ethanol production: A mitigation alternative for an environmental problem." J. Nat. Fibers 16(8), 1201–1208. https://doi.org/10.1080/15440478.2018.1458000

Brunerová, A., Roubík, H., & Herák, D., 2017. "Suitability of aquatic biomass from Lake Toba (North Sumatra, Indonesia) for energy generation by combustion process." IOP Conf. Ser.: Mater. Sci. Eng. 237, 012001. https://doi.org/10.1088/1757-899X/237/1/012001

Cerveira, W. R., & Carvalho, L. B. D., 2019. "Control of water hyacinth: A short review." Commun. Plant Sci. 9(1), 129-132. https://doi.org/10.26814/cps2019021

Chang, J. K.-W., Duret, X., Berberi, V., Zahedi-Niaki, H., & Lavoie, J.-M., 2018. "Two-step thermochemical cellulose hydrolysis with partial neutralization for glucose production." Front. Chem. 6, 117. https://doi.org/10.3389/fchem.2018.00117

Chapungu, L., Oc, M., & Mudzengi, B. K., 2018. "Socio-ecological impacts of water hyacinth (Eichhornia crassipes) under dry climatic conditions: The case of Shagashe river in Masvingo, Zimbabwe." J. Environ. Sci. Public Health 02(01), 36–52. https://doi.org/10.26502/jesph.96120027

Cheng, J., Wang, X., Huang, R., Liu, M., Ye, C., & Ke-fa, C., 2014. "Producing ethanol from water hyacinth through simultaneous saccharification and fermentation with acclimatized yeasts." Bioresources 9(4), 7666-7680. https://doi.org/10.15376/biores.9.4.7666-7680

Choudhary, A. K., Chelladurai, H., & Kannan, C., 2016. "Performance analysis of bioethanol (water hyacinth) on diesel engine." Int. J. Green Energy 13(13), 1369–1379. https://doi.org/10.1080/15435075.2016.1185724

Cordeiro, P. F., Goulart, F. F., Macedo, D. R., Campos, M., & Castro, S. R., 2020. "Modeling of the Potential distribution of Eichhornia Crassipes on a global scale: Risks and threats to water ecosystems." Ambiente E Agua - An Interdisciplinary Journal of Applied Science 15(2), 1. https://doi.org/10.4136/ambi-agua.2421

Dahiya, S., Chowdhury, R., Tao, W., & Kumar, P., 2021. "Biomass and lipid productivity by two algal strains of chlorella sorokiniana grown in hydrolysate of water hyacinth." Energies 14(5), 1411. https://doi.org/10.3390/en14051411

Das, S., Bhattacharya, A., Ganguly, A., Dey, A., & Chatterjee, P. K., 2016. "Artificial neural network modelling of xylose yield from water hyacinth by dilute sulphuric acid hydrolysis for ethanol production." Int. J. Environ. Technol. Manage. 19(2), 150–166. https://doi.org/10.1504/IJETM.2016.077229

Dhankhar, R., Dhaka, A. K., & Sakshi, S., 2014. "Bioconversion of water hyacinth to ethanol by using cellulase from (Trichoderma atroviride) AD-130." Adv. Mater. Res. 918, 145–148. https://doi.org/10.4028/www.scientific.net/amr.918.145

Eka-Sari, Syamsiah, S., Sulistyo, H., & Hidayat, M., 2014. "Effect of biological pretreatment of water hyacinth on enzymatic hydrolysis for bioethanol production." Asian J. Chem. 26(20), 6727–6732. https://doi.org/10.14233/ajchem.2014.16596

Endgaw, F., 2021. "Socio-Ecological impacts of water hyacinth, Eichhornia crassipes (MART.) in Lake Tana, Gulf of Gorgora, Ethiopia." J. Appl. Sci. Environ. Manage. 24(12), 2017–2025. https://doi.org/10.4314/jasem.v24i12.2

Fileto-Pèrez, H. A., Rutiaga-Quiñones, J. G., Aguilar-González, C. N., Páez, J. B., López, J., & Rutiaga-Quiñones, O. M., 2013. "Evaluation of Eichhornia crassipes as an alternative raw material for reducing sugars production." BioResources 8(4), 5340–5348. https://doi.org/10.15376/biores.8.4.5340-5348

Gaurav, G. K., Mehmood, T., Cheng, L., Klemeš, J. J., & Shrivastava, D. K., 2020. "Water hyacinth as a biomass: A review." J. Cleaner Prod. 277, 122214. https://doi.org/10.1016/j.jclepro.2020.122214

Hidayatulloh, I., Widyanti, E. M., Kusumawati, E., & Elizabeth, L. (2021). Nanocellulose production from empty palm oil fruit bunches (EPOFB) using hydrolysis followed by freeze drying." ASEAN J. Chem. Eng. 21(1), 52-61. https://doi.org/10.22146/ajche.61093

Ioelovich, M., 2023. "Thermodynamics of enzymatic hydrolysis of cellulose." World J. Adv. Res. Rev. 21(2), 577–586. https://doi.org/10.30574/wjarr.2024.21.2.0458

Janssens, N., Schreyers, L., Biermann, L., Ploeg, M. v. d., Bui, T.-K. L., & Emmerik, T. V., 2022. "Rivers running green: Water hyacinth invasion monitored from space." Environ. Res. Lett. 17(4), 044069. https://doi.org/10.1088/1748-9326/ac52ca

Jha, K., 2024. "Sustainable solutions for water hyacinth invasion: Characteristics, impacts, control, and utilization." World J. Adv. Res. Rev. 12(1), 047–058. https://doi.org/10.30574/wjaets.2024.12.1.0169

Jongmeesuk, A., Sanguanchaipaiwong, V., & Ochaikul, D., 2014. "Pretreatment and enzymatic hydrolysis from water hyacinth (Eichhornia crassipes)." Current Applied Science and Technology 14(2), 79–86.

Lahon, D., Sahariah, D., Debnath, J., Nath, N., Meraj, G., Farooq, M., Kanga, S., Singh, S. K., & Chand, K., 2023. "Growth of water hyacinth biomass and its impact on the floristic composition of aquatic plants in a wetland ecosystem of the Brahmaputra floodplain of Assam, India." Peerj 11, e14811. https://doi.org/10.7717/peerj.14811

Leenders, N., Moerbeek, R. M., Puijk, M. J., Bronkhorst, R. J. A., Bueno Morón, J., Van Klink, G. P. M., & Gruter, G.-J. M., 2025. "Polycotton waste textile recycling by sequential hydrolysis and glycolysis." Nat. Commun. 16(1), 738. https://doi.org/10.1038/s41467-025-55935-6

Li, L., Hu, Z., Tan, G., Fan, J., Chen, Y., Xiao, Y., Wu, S., Zhi, Q., Liu, T., Yin, H., & Tang, Q., 2023. "Enhancing plant growth in biofertilizer-amended soil through nitrogen-transforming microbial communities." Front. Plant Sci. 14, 1259853. https://doi.org/10.3389/fpls.2023.1259853

Madhaiyan, M., Poonguzhali, S., Senthilkumar, M., & Santhanakrishnan, P., 2009. Potential of plant-associated beneficial bacteria as biofertilizers for sustainable agriculture: A review. In Cover Crops and Crop Yields (pp. 205–224). Nova Science Publishers, Inc.

Martínez, M. P., Bakker, R., Harmsen, P., Gruppen, H., & Kabel, M., 2015. "Importance of acid or alkali concentration on the removal of xylan and lignin for enzymatic cellulose hydrolysis." Ind. Crops Prod. 64, 88–96. https://doi.org/10.1016/j.indcrop.2014.10.031

Mengistu, B. B., Unbushe, D., & Abebe, E., 2017. "Invasion of water hyacinth (Eichhornia crassipes) is associated with decline in macrophyte biodiversity in an Ethiopian Rift-Valley Lake-Abaya." Open Journal of Ecology 07(13), 667–681. https://doi.org/10.4236/oje.2017.713046

Moodley, P., & Gueguim Kana, E. B., 2018. "Comparative study of three optimized acid-based pretreatments for sugar recovery from sugarcane leaf waste: A sustainable feedstock for biohydrogen production." Engineering Science and Technology, an International Journal 21(1), 107–116. https://doi.org/10.1016/j.jestch.2017.11.010

Ng, Z. Y., Ajeng, A. A., Cheah, W. Y., Ng, E.-P., Abdullah, R., & Ling, T. C., 2024. "Towards circular economy: Potential of microalgae – bacterial-based biofertilizer on plants." J. Environ. Manage. 349, 119445. https://doi.org/10.1016/j.jenvman.2023.119445

Ratnani, R. D., Hadiyanto, H., Widiyanto, W., & Mel, M., 2021. "Pyrolysis of water hyacinth (Eichhornia crassipes (Mart.) Solms) for liquid smoke production." E3S Web of Conferences 226, 00038. https://doi.org/10.1051/e3sconf/202122600038

Ruan, T., Zeng, R., Yin, X., SenXiang, Z., & Yang, Z., 2016. "Water hyacinth (Eichhornia Crassipes) biomass as a biofuel feedstock by enzymatic hydrolysis." Bioresources 11(1), 2372-2380. https://doi.org/10.15376/biores.11.1.2372-2380

Sun, Y., Yang, G., Jia, Z., Wen, C., & Zhang, L., 2014. "Acid hydrolysis of corn stover using hydrochloric acid: kinetic modeling and statistical optimization." Chem. Ind. Chem. Eng. Q. 20(4), 531–539. https://doi.org/10.2298/ciceq130911035s

Świątek, K., Gaag, S., Klier, A., Kruse, A., Sauer, J., & Steinbach, D., 2020. "Acid hydrolysis of lignocellulosic biomass: Sugars and furfurals formation." Catalysts 10(4), 437. https://doi.org/10.3390/catal10040437

Tadesse, S., Berhie, H., Kifle, B., & Tesfaye, G., 2022. "Production and characterization of bio-diesel from water hyacinth (Eichhornia crassipes) of Lake Koka, Ethiopia." Am. J. Appl. Chem. 10(3), 62. https://doi.org/10.11648/j.ajac.20221003.11

Tantayotai, P., Mutrakulchareon, P., Tawai, A., Roddecha, S., & Sriariyanun, M., 2019. "Effect of organic acid pretreatment of water hyacinth on enzymatic hydrolysis and biogas and bioethanol production." IOP Conf. Ser.: Earth Environ. Sci. 346(1), 012004. https://doi.org/10.1088/1755-1315/346/1/012004

VonBank, J. A., Casper, A. F., Pendleton, J., & Hagy, H. M., 2018. "Water hyacinth (Eichhornia Crassipes) Invasion and establishment in a temperate river system." River Research and Applications 34(10), 1237–1243. https://doi.org/10.1002/rra.3362

Wang, H., Xie, H., Du, H., Wang, X., Liu, W., Duan, Y., Zhang, X., Sun, L., Zhang, X., & Si, C., 2020. "Highly efficient preparation of functional and thermostable cellulose nanocrystals via H2SO4 intensified acetic acid hydrolysis." Carbohydr. Polym. 239, 116233. https://doi.org/10.1016/j.carbpol.2020.116233

Wang, Z., Zheng, F., & Xue, S., 2019. "The economic feasibility of the valorization of water hyacinth for bioethanol production." Sustainability 11(3), 905. https://doi.org/10.3390/su11030905

Wulandari, P. A., Fatimura, M., & Fitriyanti, R., 2023. "Pengaruh konsentrasi H2SO4 dan waktu fermentasi terhadap proses pembuatan bioetanol berbahan eceng gondok (Eichhornia crassipes)." Jurnal Teknologi dan Inovasi Industri 4, 9-15.

Xia, A., Cheng, J., Song, W., Yu, C., Zhou, J., & Cen, K., 2013. "Enhancing enzymatic saccharification of water hyacinth through microwave heating with dilute acid pretreatment for biomass energy utilization." Energy 61, 158–166. https://doi.org/10.1016/j.energy.2013.09.019

Yao, R., Hirose, Y., Sarkar, D., Nakahigashi, K., Ye, Q., & Shimizu, K., 2011. "Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants." Microb. Cell Fact. 10(1), 67. https://doi.org/10.1186/1475-2859-10-67

Zhang, Z., Liu, B., & Zhao, Z. (Kent)., 2012. "Efficient acid-catalyzed hydrolysis of cellulose in organic electrolyte solutions." Polym. Degrad. Stab. 97(4), 573–577. https://doi.org/10.1016/j.polymdegradstab.2012.01.010

Zhen-lei, L., Zhang, J., Hou, B., & Wang, A., 2019. "Kinetic study of cellulose hydrolysis with tungsten‐based acid catalysts." AIChE Journal 65(6), e16585. https://doi.org/10.1002/aic.16585.

Published
2025-08-30
How to Cite
Anwar, D., Putri, A. C. E., Pramesti, K. A., Cahyono, R. B., Prijambada, I. D., & Budhijanto, W. (2025). Optimization of Acid-Catalyzed Hydrolysis of Water Hyacinth without Delignification. ASEAN Journal of Chemical Engineering, 25(2), 379-398. https://doi.org/10.22146/ajche.21264
Section
Articles