Prediction of Density of Binary Mixtures of Ionic Liquids with Alcohols (Methanol/Ethanol/1-Propanol) using Artificial Neural Network

  • Karen Faith P. Ornedo Ramos School of Chemical Engineering and Chemistry, Mapúa Institute of Technology, Manila
  • Carla Angela M. Muriel School of Chemical Engineering and Chemistry, Mapúa Institute of Technology, Manila
  • Adonis P. Adonardo School of Chemical Engineering and Chemistry, Mapúa Institute of Technology, Manil
  • Allan N Soriano School of Chemical Engineering and Chemistry, Mapúa Institute of Technology, Manila
  • Vergel C Bungay Chemical Engineering Department, De La Salle University, Manila
Keywords: artificial neural network, ionic liquid, density, ethanol, methanol, propanol

Abstract

Ionic liquids demonstrated successful potential applications in the industry most specifically as the new generation of solvents for catalysis and synthesis in chemical processes, thus knowledge of their physico-chemical properties is of great advantage. The present work presents a mathematical correlation that predicts density of binary mixtures of ionic liquids with various alcohols (ethanol/methanol/1-propanol). The artificial neural network algorithm was used to predict these properties based on the variations in temperature, mole fraction, number of carbon atoms in the cation, number of atoms in the anion, number of hydrogen atoms in the anion and number of carbon atoms in the alcohol. The data used for the calculations were taken from ILThermo Database. Total experimental data points of 1946 for the considered binaries were used to train the algorithm and to test the network obtained. The best neural network architecture determined was found to be 6-6-10-1 with a mean absolute error of 48.74 kg/m3. The resulting correlation satisfactorily represents the considered binary systems and can be used accurately for solvent related calculations requiring properties of these systems.

References

1. Abdulagatov, I. M., A. Tekin, J. Safarov, and E. Hassel (2008a). Densities and excess, apparent, and partial molar volumes of binary mixtures of BMIMBF4 + ethanol as a function of temperature, pressure, and concentration. Int. J. Thermophys., Vol. 29, 505-533.
2. Abdulagatov, I. M., A. Tekin, J. Safarov, A. Shahverdiyev, and E. Hassel (2008b). High-pressure densities and derived volumetric properties (excess, apparent, and partial molar volumes) of binary mixtures of {methanol (1) + [BMIM][BF4] (2)}. J. Chem. Thermodyn., Vol. 40, 1386-1401.
3. Abdulagatov, I. M., J. Safarov, T. Guliyev, A. Shahverdiyev, and E. Hassel (2009). High temperature and high pressure volumetric properties of (methanolY[BMIMY][OcSOZ4 ]) mixtures. Phys. Chem. Liq., Vol. 47, 9- 34.
4. Andreatta, A. E., A. Arce, E. Rodil, and A. Soto (2009a). Physical properties of binary and ternary mixtures of ethyl acetate, ethanol, and 1-octyl-3-methyl- imidazolium bis(trifluoromethylsulfonyl)imide at 298.15 K. J. Chem. Eng. Data, Vol. 54, 1022.
5. Andreatta, A. E., A. Arce, E. Rodil, and A. Soto (2009b). Physical and excess properties of (methyl acetate + methanol + 1-octyl-3-methyl- imidazolium bis(trifluoromethylsulfonyl)imide) and its binary mixtures at T = 298.15 K and atmospheric pressure. J. Chem. Thermodyn., Vol. 41, 1317-1323.
6. Andreatta, A. E., A. Arce, E. Rodil, and A. Soto (2010). Physico-chemical properties of binary and ternary mixtures of ethyl acetate + ethanol + 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide at 298.15 K and atmospheric pressure. J. Solution Chem., Vol. 39, 371-383.
7. Arce, A., H. Rodriguez, and A. Soto (2006a). Effect of anion fluorination in 1-ethyl-3-methylimidazolium as solvent for the liquid extraction of ethanol from ethyl tert-butyl ether. Fluid Phase Equilib., Vol. 242, 164-168.
8. Arce, A., E. Rodil, and A. Soto (2006b). Volumetric and viscosity study for the mixtures of 2-ethoxy-2- methylpropane, ethanol, and 1-ethyl- 3-methylimidazolium ethyl sulfate ionic liquid. J. Chem. Eng. Data, Vol. 51, 1453-1457.
9. Bhujrajh, P. and N. Deenadayalu (2007). Liquid densities and excess molar volumes for binary systems (ionic liquids + methanol or water) at 298.15, 303.15 and 313.15 K, and at atmospheric pressure. J. Solution Chem., Vol. 36, 631-642.
10. Calvar, N., B. Gonzales, E. Gomez, and A. Dominguez (2006). Vapor-liquid equilibria for the ternary system ethanol + water + 1-butyl-3- methylimidazolium chloride and the corresponding binary systems at 101.3 kPa. J. Chem. Eng. Data, Vol. 51, 2178- 2181.
11. Deenadayalu, N. and P. Bhujrajh (2008). Density, speed of sound, and derived thermodynamic properties of ionic liquids [EMIM]+[BETI]- or ([EMIM]+[CH3(OCH2CH2)2OSO3]- + methanol or + acetone) at T = (298.15 or 303.15 or 313.15) K. J. Chem. Eng. Data, Vol. 53, 1098-1102.
12. Diedenhofen, M. and A. Klamt (2010). COSMO-RS as a tool for property prediction of IL mixtures- A review. Fluid Phase Equilib., Vol. 294, 31-38.
13. Domanska, U., A. Pobudkowska, and A. Wisniewska (2006). Solubility and excess molar properties of 1,3- dimethylimidazolium methylsulfate, or 1-butyl-3-methylimidazolium methylsulfate, or 1-butyl-3- methylimidazolium octylsulfate ionic liquids with n-alkanes and alcohols: analysis in terms of the PFP and FBT models. J. Solution Chem., Vol. 35, 311- 334.
14. Domanska, U. and M. Laskowska (2008). Phase equilibria and volumetric properties of (1-ethyl-3- methylimidazolium ethylsulfate + alcohol or water) binary systems. J. Solution Chem., Vol. 37, 1271-1287.
15. Domanska, U. and M. Laskowska (2009). Temperature and composition dependence of the density and viscosity of binary mixtures of {1-butyl- 3-methylimidazolium thiocyanate + 1- alcohols}. J. Chem. Eng. Data, Vol. 54, 2113-2119.
16. Garcia-Miaja, G., J. Troncoso, and L. Romani (2008). Excess properties for binary systems ionic liquid + ethanol: Experimental results and theoretical description using the ERAS model. Fluid Phase Equilib., Vol. 274, 59-67.
17. Gardas, R. L. and J. A. P. Coutinho (2008). A group contribution method for the viscosity estimation of ionic liquids. Fluid Phase Equilib., Vol. 266, 195-201.
18. Gardas, R. L. and J. A. P. Coutinho (2009). Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids. AIChE J., Vol. 55, 1274-1290.
19. Giro, F. M., F. A. Gonzales, and A. G. M. Ferreira., I. M. A. Fonseca (2003). Viscosity and density data of the system water + n-pentyl acetate + methanol: calculations with a modified Redlich-Kwong-Soave equation of state. Fluid Phase Equilib., Vol. 204, 217.
20. Goldon, A., K. Dabrowska, and T. Hofman (2007). Densities and excess volumes of the 1,3- dimethylimidazolium methylsulfate + methanol system at temperatures from (313.15 to 333.15) K and pressures from (0.1 to 25) MPa. J. Chem. Eng. Data, Vol. 52, 1830-1837.
21. Gomez, E., N. Calvar, I. Dominguez, and A. Dominguez (2006a). Physical properties of the ternary mixture ethanol + water + 1-hexyl-3- methylimidazolium chloride at 298.15K. Phys. Chem. Liq., Vol. 44, 409- 417.
22. Gomez, E., B. Gonzalez, N. Calvar, E. Tojo, and A. Dominguez (2006b). Physical properties of pure 1-ethyl-3- methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several temperatures. J. Chem. Eng. Data, Vol. 51, 2096-2102.
23. Gomez, E., B. Gonzalez, N. Calvar, and A. Dominguez (2008). Excess molar properties of ternary system (ethanol + water + 1,3-dimethylimidazolium methyl sulfate) and its binary mixtures at several temperatures. J. Chem. Thermodyn., Vol. 40, 1208-1216.
24. Gonzalez, E. J., L. Alonso, and A. Dominguez (2006). Physical properties of binary mixtures of the ionic liquid 1- methyl-3-octylimidazolium chloride with methanol, ethanol, and 1- propanol at T = (298.15, 313.15, and 328.15) K and at P ) 0.1 MPa. J. Chem. Eng. Data, Vol. 51, 1446-1452.
25. Gonzalez, E. J., B. Gonzales, N. Calvar, and A. Dominguez (2007). Physical properties of binary mixtures of the ionic liquid 1-ethyl-3- methylimidazolium ethyl sulfate with several alcohols at T = (298.15, 313.15, and 328.15) K and atmospheric pressure. J. Chem. Eng. Data, Vol. 52, 1641-1648.
26. Gonzalez, B., N. Calvar, E. Gomez, and A. Dominguez (2008). Physical properties of the ternary system (ethanol + water + 1-butyl-3- methylimidazolium methylsulphate) and its binary mixtures at several temperatures. J. Chem. Thermodyn., Vol. 40, 1274-1281.
27. Gonzalez, B., N. Calvar, E. Gomez, I. Dominguez, and A. Dominguez (2009). Synthesis and physical properties of 1- ethylpyridinium ethylsulfate and its binary mixtures with ethanol and 1- propanol at several temperatures. J. Chem. Eng. Data, Vol. 54, 1353-1358.
28. Han, C., S. Xia, P. Ma, and F. Zeng (2009). Densities of ionic liquid [BMIM][BF4] + ethanol, + benzene, and + acetonitrile at different temperature and pressure. J. Chem. Eng. Data, Vol. 54, 2971-2977.
29. Heintz, A., D. Klasen, and J. K. Lehmann (2002). Excess molar volumes and viscosities of binary mixtures of methanol and the ionic liquid 4- methyl-n-butylpyridinium tetrafluoroborate at 25, 40, and 50 deg C. J. Solution Chem., Vol. 31, 467-476.
30. Hofman, T., A. Goldon, A. Nevines, and T. M. Letcher (2008). Densities, excess volumes, isobaric expansivity, and isothermal compressibility of the (1- ethyl-3-methylimidazolium ethylsulfate + methanol) system at temperatures (283.15 to 333.15) K and pressures from (0.1 to 35) MPa. J. Chem. Thermodyn., Vol. 40, 580-591.
31. Huo, Y., S. Xia, and P. Ma (2007). Densities of ionic liquids, 1-butyl-3- methylimidazolium hexafluorophosphate and 1-butyl-3- methylimidazolium tetrafluoroborate, with benzene, acetonitrile, and 1- propanol at T = (293.15 to 343.15) K. J. Chem. Eng. Data, Vol. 52, 2077-2082.
32. Iglesias-Otero, M. A., J. Troncoso, and E. Carballo (2007). Density and refractive index for binary systems of the ionic liquid [Bmim][BF4] with methanol, 1,3-dichloropropane, and dimethyl carbonate. J. Solution Chem., Vol. 36, 1219-1230.
33. Iglesias-Otero, M. A., J. Troncoso, E. Carballo, and L. Romani (2008a). Density and refractive index in mixtures of ionic liquids and organic solvents: Correlations and predictions. J. Chem. Thermodyn., Vol. 40, 949-956.
34. Iglesias-Otero, M. A., J. Troncoso, E. Carballo, and L. Romani (2008b). Densities and excess enthalpies for ionic liquids + ethanol or + nitromethane. J. Chem. Eng. Data, Vol. 53, 1298-1301.
35. Kurnia, A., Wilfred, C.D, and T. Murugesan, 2009. Thermophysical properties of hydroxyl ammonium ionic liquids. J. Chem. Thermodyn., Vol. 41, 517-521.
36. Liu, W., L. Cheng, Y. Zhang, H. Wang, and M. Yu (2008). The physical properties of aqueous solution of room-temperature ionic liquids based on imidazolium: database and evaluation. J. Mol. Liq., Vol. 140, 68-72.
37. Matkowska, D., A. Golden, and T.Hofman (2010). Densities, excess volumes, isobaric expansivities, and isothermal compressibilities of the 1- ethyl-3-methylimidazolium ethylsulfate + ethanol system at temperatures (283.15 to 343.15) K and pressures from (0.1 to 35) MPa. J. Chem. Eng. Data, Vol. 55, 685-693.
38. Mokhtarani, B., M. M. Mojtahedi, H. R. Mortaheb, M. Mafi, F. Yazdani, and F. Sadeghian (2008). Densities, refractive indices, and viscosities of the ionic liquids 1-methyl-3-octylimidazolium tetrafluoroborate and 1-methyl-3- butylimidazolium perchlorate and their binary mixtures with ethanol at several temperatures. J. Chem. Eng. Data, Vol. 53, 677-682.
39. Mokhtarani, B., A. Sharifi, H. R. Mortaheb, M. Mirzaei, M. Mafi, and F. Sadeghian (2009). Density and viscosity of 1-butyl-3- methylimidazolium nitrate with ethanol, 1-propanol, or 1-butanol at several temperatures. J. Chem. Thermodyn., Vol. 41, 1432-1438.
40. Orchilles, A. V., V. Gonzalez-Alfaro, P. J. Miguel, E. Vercher, and A. Martinez- Andreu (2006). Volumetric properties of binary mixtures of ionic liquid 1- butyl-3-methylimidazolium octylsulfate with water or propanol in the temperature range of 278.15 K to 328.15 K. J. Chem. Thermodyn., Vol. 38, 1124-1129.
41. Ortega. J., R. Vreekamp, E. Penco, and E. Marrero (2008). Mixing thermodynamic properties of 1-butyl- 4-methylpyridinium tetrafluoroborate [b4mpy][BF4] with water and with an alkan-1ol (methanol to pentanol). J. Chem. Thermodyn., Vol. 40, 1087-1094.
42. Pereiro, A. B. and A. Rodriguez (2007). Study on the phase behaviour and thermodynamic properties of ionic liquids containing imidazolium cation with ethanol at several temperatures. J. Chem. Thermodyn., Vol. 39, 978-989.
43. Rilo, E., J. Pico, S. Garcia-Garabal, L. M. Varela, and O. Cabeza (2009). Density and surface tension in binary mixtures of CnMIM-BF4 ionic liquids with water and ethanol. Fluid Phase Equilib., Vol. 285, 83-89.
44. Shekaari, H. and M. T. Zafarani-Moattar (2008). Volumetric properties of the ionic liquid, 1-butyl-3- methylimidazolium tetrafluoroborate, in organic solvents at T = 298.15 K. Int. J. Thermophys., Vol. 29, 534-545.
45. Soriano, A. N., A. Agapito, L. J. L. Lagumbay, A. R. Caparanga, and M- H.Li (2010).A simple approach to predict molar heat capacity of ionic liquids using group-additivity method. J. Taiwan Inst. Chem. Engrs., Vol. 41, 307-314.
46. Soriano A. N., M. K. L. Gimena, R. R. C. Rivera, M. A. M. Garcia, and R. R. Tan, (2014). Prediction of density and refractive index of binary aqueous ionic liquid solutions using artificial neural network. PIChE J., Vol. 15, 72-91.
47. Stoppa, A., J. Hunger, and R. Buchner (2009). Conductivities of binary mixtures of ionic liquids with polar solvents. J. Chem. Eng. Data, Vol. 54, 472-479.
48. Valderrama, J.O., A. Toro, and R. E. Rojas (2011). Prediction of the heat capacity of ionic liquids using the mass connectivity index and a group contribution method.. J. Chem. Thermodyn., Vol. 43, 1068-1073.
49. Vercher, E., A. V. Orchilles, P. J. Miguel, and A. Martinez-Andreu (2007). Volumetric and ultrasonic studies of 1- ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid with methanol, ethanol, 1-propanol, and water at several temperatures. J. Chem. Eng. Data, Vol. 52, 1468-1482.
50. Viswanadhan V. N., A. K. Ghose, G. R. Revankar, and R. K. Robins (1989). Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J. Chem. Inf. Comput. Sci., Vol. 29, 163-172.
51. Wandschneider, A., J. K. Lehmann, and A. Heintz (2008). Surface tension and density of pure ionic liquids and some binary mixtures with 1-propanol and 1-butanol. J. Chem. Eng. Data, Vol. 53, 596-599.
52. Yang, Q., H. Zhang, B. Su, Y. Yang, Q. Ren, and H. Xing (2010). Volumetric properties of binary mixtures of 1- butyl-3-methylimidazolium chloride + water or hydrophilic solvents at different temperatures. J. Chem. Eng. Data, Vol. 55, 1745-1749.
53. Zafarani-Moattar, M. T. and H. Shekaari (2005a). Apparent molar volume and isentropic compressibility of ionic liquid 1-butyl-3-methylimidazolium bromide in water, ethanol, and ethanol at T = (298.15 to 318.15) K. J. Chem. Thermodyn., Vol. 37, 1029-1035.
54. Zafarani-Moattar, M. T. and H. Shekaari (2005b). Volumetric and speed of sound of ionic liquid, 1-butyl-3- methylimidazolium hexafluorophosphate with acetonitrile and methanol at T = (298.15 to 318.15) K. J. Chem. Eng. Data, Vol. 50, 1694- 1699.
55. Zafarani-Moattar, M. T. and H. Shekaari (2006a). Volumetric and compressibility behaviour of ionic liquid, 1-n-butyl-3-methylimidazolium hexafluorophosphate and tetrabutylammonium hexafluorophosphate in organic solvents at T = 298.15 K. J. Chem. Thermodyn., Vol. 38, 624-633.
56. Zafarani-Moattar, M. T. and H. Shekaari (2006b). Application of Prigogine Flory Patterson theory to excess molar volume and speed of sound of 1-n- butyl-3-methylimidazolium hexafluorophosphate or 1-n-butyl-3- methylimidazolium tetrafluoroborate in methanol and acetonitrile. J. Chem. Thermodyn., Vol. 38, 1377-1384.
Published
2015-12-31
How to Cite
Ramos, K. F. P. O., Muriel, C. A. M., Adonardo, A. P., Soriano, A. N., & Bungay, V. C. (2015). Prediction of Density of Binary Mixtures of Ionic Liquids with Alcohols (Methanol/Ethanol/1-Propanol) using Artificial Neural Network. ASEAN Journal of Chemical Engineering, 15(2), 33-50. Retrieved from https://journal.ugm.ac.id/v3/AJChE/article/view/8877
Section
Articles