Simulated Biosorption of Cd(II) and Cu(II) in Single and Binary Metal Systems by Water Hyacinth (Eichhornia crassipes) using Aspen Adsorption®

  • Allan N Soriano School of Chemical Engineering and Chemistry, Mapúa University, Manila
  • Omar Nassif Orfiana School of Chemical Engineering and Chemistry, Mapúa University, Manila
  • Mark Brandon J. Pangon School of Chemical Engineering and Chemistry, Mapúa University, Manila
  • Aileen D Nieva School of Chemical Engineering and Chemistry, Mapúa University, Manila
  • Adonis P. Adornado School of Chemical Engineering and Chemistry, Mapúa University, Manila
Keywords: Aspen adsorption, biosorption, Eichhornia crassipes, heavy metal, water hyacinth

Abstract

Biosorption is becoming an attractive alternative for the removal of heavy metal from contaminated wastewaters since it offers low capital and operating costs. It has a great potential on heavy metal decontamination and the possibility of metal recovery. The study evaluated the performance of water hyacinth (Eichhornia crassipes) in a fixed bed column on sequestering heavy metals present in wastewaters. Column breakthrough curves at varying parameters were evaluated. The study used Aspen Adsorption® to simulate the biosorption process. Analysis of breakthrough curves for the single metal system shows that increasing both influent flow rate and initial metal concentration reduces the metal uptake of the column, while increasing bed height enhances the metal uptake of the column. Presence of both Cd(II) and Cu(II) in the system promotes competitive sorption processes. Analysis of the breakthrough curves for the binary metal system showed that copper ions adsorbed to the adsorbent are replaced by cadmium ions when the maximum capacity of the column is reached. This leads to the outlet concentration of Cu(II) exceeding its initial concentration. This phenomenon shows that Cd(II) has more affinity with E. crassipes than Cu(II).

References

1. Akinwande, V. O., A. A. Mako and O. J. Babayemii (2013). Biomass yield, chemical composition and the feed potential of water hyacinth (Eichhornia crassipes, Mart.Solms-Laubach) in Nigeria. Int. J. of AgriScience, 3, 659- 666.
2. Chiban, M., H. Benhima, F. Sinan, P. Seta, and M. Persin (2008). Removal of lead and cadmium ions from aqueous solution by adsorption onto micro- particles of dry plants. Colloids Surf. B: Biointerfaces, 61, 10-16.
3. Dang, V. B. H., H. D. Doan, T. Dang-Vu and A. Lohi (2009). Equilibrium and kinetics of biosorption of cadmium (II) and copper (II) ions by wheat straw. Bioresour. Technol., 100, 211-219.
4. Davis, T. A., B. Volesky and A. Mucci (2003). A review of biochemistry of heavy metal biosorption by brown algae. Water Res., 37, 4311-4330.
5. Diniz, V., M. E. Weber, B. Volesky and G. Naja (2008). Column biosorption of lanthanum and europium by Sargassum. Water Res., 42, 363-371.
6. Escudero, C., J. Poch and I. Villaescusa (2013). Modelling of breakthrough curves of single and binary mixtures of Cu(II), Cd(II), Ni(II), and Pb(II) sorption onto grape stalks waste. Chem. Eng. J., 217, 129-138.
7. Gallarte, B. (2014). Cd(II), Cu(II), and Pb(II) Simulated Adsorption by Sargassum cristaefolium: Affinity, Competitiveness, and Selectivity. MS Thesis. School of Chemical Engineering and Chemistry, Mapúa Institute of Technology, Philippines.
8. Geankoplis, C. J. (2005). Principles of Transport Processes and Separation Processes, Pearson Education South Asia PTE. LTD., Philippines.
9. Babu, B. V. and S. Gupta (2005). Modeling and simulation of fixed bed adsorption column: effect of velocity variation. i-Manager’s JFET, 1, 60.
10. Hu, Z., X. Yang, A. Gao and X. Wei (2007). Remediation of mycorrhiza on Cd contaminated soil. J. China Univ. of Mining and Tech., 36, 237.
11. Kleinubing, S. J., E. Guibal, E. A. da Silva and M. G. C. da Silva (2012). Copper and nickel competitive biosorption simulation from single and binary systems by Sargassum filipendula. Chem. Eng. J., 184, 16-22.
12. Liu, Z., X. Li, Z. Na, D. Lu and S. Liu (2013). Adsorption, concentration and recovery of aqueous heavy metal ions with the root powder of Eichhornia crassipes. Eco. Eng., 60, 160-166.
13. Mahamadi, C. and P. Zambara (2013) High Cu removal from water usingwater hyacinth fixed on alginate. Environ. Chem. Lett., 11, 377-383.
14. Mahamadi, C. and T. Nharingo (2010). Competetive adsorption of Pb2+ Cd2+and Zn2+ ions onto Eichhornia crassipes in binary and ternary systems. Bioresour. Technol., 101, 859-864.
15. Maine, M. A., N. Suñé and S. C. Lagger (2004). Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes. Water Res., 38, 1494-1501.
16. Mishra, V. K., B. D. Tripathi and H. K. Kim (2009). Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. J. Hazard. Mater., 172, 749-754.
17. Módenes, A. N., F. R. Espinoza- Quinones, D. E. G. Trigueros, F. L. Lavarda, A. Colombo and N. D. Mora (2011). Kinetic and equilibrium adsorption of Cu (II) and Cd (II) ions on Eichhornia crassipes in single and binary systems. Chem. Eng. J., 168, 44- 51.
18. Mohammed, N., N. Grishkewich, H. A. Waeijen, R. M. Berry and K. Tam (2016). Continuous flow adsorption of methylene blue by cellulose crystal- alginate hydrogel beds in fixed bed columns. Carbohyd. Polym., 136, 1194- 1202.
19. Mohanty, K., M. Jha, B. C. Meikap and M. N. Biswas (2006). Biosorption of Cr (IV) from aqueous solutions by Eichhornia crassipes. Chem. Eng. J., 117, 71-77.
20. Murithi, G., C. O. Onindo, E. W. Wambu and G. K. Muthakia (2014). Removal of cadmium (II) ions from water by adsorption using water hyacinth biomass. BioResources, 9, 3613-3631.
21. Papageorgiou, S. K., F. K. Katsaros, E. P. Kouvelos and N. K. Kanellopoulos (2009). Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data. J. Hazard. Mater., 162, 1347-1354.
22. Perry, R. H. and D. W. Green (2008). Perry’s Chemical EngineeringHandbook, 8th Edition, McGrawHill Professional Publ., New York.
23. Persson, I. (2010). Hydrated metal ions in aqueous solution: How regular are their structures? Pure Appl. Chem., 82, 1901-1917.
24. Rani, J. M., M. Murugan, P. Subramaniam and E. Subramanian (2014). A study on water hyacinth Eichhornia crassipes as oil sorbent. J. Appl. Nat. Sci., 1, 134-138.
25. Rubio, J., R. W. Smith and I. A. H. Schneider (1999). Effect of mining chemicals on biosorption of Cu2+ by the non-living biomass of the macrophyte Potamogeton lucens. Miner. Eng., 12, 255-260.
26. Saraswat, S. and J. P. N. Rai (2010). Heavy metal adsorption from aqueous solution using Eichhornia crassipes dead biomass. Int. J. Miner. Process., 94, 203-206.
27. Simate, G. S. and S. Ndlovu (2015). The removal of heavy metals in a packed bed column using immobilized cassava peel waste biomass. J. Ind. Eng. Chem., 21, 635-643.
28. Singha, S., U. Sarkar, S. Mondal and S. Saha (2012). Transient behavior of packed column of Eichhornia crassipes stem for the removal of hexavalent chromium. Desalination, 279, 48-58.
29. Zheng, J. C., H. M. Feng, M. H. W. Lam, P. K. S. Lam, Y. W. Ding and H. Q. Yu (2009). Removal of Cu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material. J. Hazard. Mater., 171, 780- 785.
Published
2016-12-31
How to Cite
Soriano, A. N., Orfiana, O. N., Pangon, M. B. J., Nieva, A. D., & Adornado, A. P. (2016). Simulated Biosorption of Cd(II) and Cu(II) in Single and Binary Metal Systems by Water Hyacinth (Eichhornia crassipes) using Aspen Adsorption®. ASEAN Journal of Chemical Engineering, 2016(2), 21-43. Retrieved from https://journal.ugm.ac.id/v3/AJChE/article/view/8911
Section
Articles