The Effects of Particle Mesh and Temperature on Pyrolysis Spirulina platensis Residue (SPR): Pyrolysis Yield and Bio-Oil Properties

  • Siti Jamilatun Department of Chemical Engineering, Universitas Ahmad Dahlan, Jl Ahmad Yani Bantul, 55166 Yogyakarta, Indonesia
  • Arief Budiman Department of Chemical Engineering, Universitas Gadjah Mada, Jl Grafika No 2 Kampus UGM, 55281 Yogyakarta, Indonesia
  • Ilham Mufandi Department of Chemical Engineering, Indian Institute of Technology Delhi
  • Agus Aktawan Department of Chemical Engineering, Universitas Ahmad Dahlan, Jl Ahmad Yani Bantul, 55166 Yogyakarta, Indonesia
  • Nabila Fauzi Department of Chemical Engineering, Universitas Ahmad Dahlan, Jl Ahmad Yani Bantul, 55166 Yogyakarta, Indonesia
  • Defiana Putri Denanti Department of Chemical Engineering, Universitas Ahmad Dahlan, Jl Ahmad Yani Bantul, 55166 Yogyakarta, Indonesia
Keywords: bio-oil yield, biochar, gas, water phase, pyrolysis, Spirulina platensis residue

Abstract

Microalgae is the third generation of biomass as renewable energy, a future energy source for making bio-oil. The purpose of this research is to examine the biomass from microalgae Spirulina platensis residue (SPR) using the pyrolysis process, to investigate the effect of particle mesh and temperature on the pyrolysis process, to determine the bio-oil properties, including density, pH, color, flame power, and conversion. Fixed bed reactor used for SPR pyrolysis with dimensions of 4.4 cm outside diameter, 4.0 cm inside diameter, and 60.0 cm reactor height. The temperature controls have been fitted from 300-600 °C combined with a 14-16 °C/minute heating rate. Spirulina platensis residue of 50 grams with various particle mesh (80 and 140 mesh) was fed to the reactor. From the experiment results, the particle mesh and temperature process are influenced by bio-oil yield, water phase, gas yield, biochar yield, conversion, and bio-oil properties, including density, pH, flame power, and color. One hundred forty mesh particles at a temperature of 500 °C showed the highest bio-oil yield with a yield of 22.92%, then the water, charcoal, and gas phases were 27.98, 18.84, and 30.26%, with a conversion of 81.16%. At the same time, 80 mesh particles at 500 °C yielded bio-oil, water, charcoal, and gas phases of 19.66, respectively; 23.10, 27.90, and 29.34%, with a conversion of 72.10%. In addition, density, pH, color, and flame power are described in this study.  

References

Aguilar, G., Muley, P. D., Henkel, C., & Boldor, D. (2015), “Effects of biomass particle mesh on yield and composition of pyrolysis bio-oil derived from Chinese tallow tree (Triadica sebifera L.) and energy cane (Saccharum complex) in an inductively heated reactor,” AIMS Energy, 3(4), 838–850, DOI: 10.3934/energy.2015.4.838.

Aliyu, A., Lee, J. G. M., & Harvey, A. P. (2021), “Microalgae for biofuels via thermochemical conversion processes: A review of cultivation, harvesting and drying processes, and the associated opportunities for integrated production,” Bioresour. Technol. Reports, 14(March), DOI: 10.1016/j.biteb.2021.100676.

Angin, D. (2013) “Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake,” Bioresour. Technol., 128 593–597, DOI: 10.1016/j.biortech.2012.10.150.

Aniza, R., Chen, W. H., Lin, Y. Y., Tran, K. Q., Chang, J. S., Lam, S. S., Park, Y. K., Kwon, E. E., & Tabatabaei, M. (2021) “Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae,” Appl. Energy, 300(July) 117372, DOI: 10.1016/j.apenergy.2021.117372.

Asadullah, M., Ab Rasid, N. S., Kadir, S. A. S. A., & Azdarpour, A. (2013), “Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell,” Biomass and Bioenergy, 59 316–324, DOI: 10.1016/j.biombioe.2013.08.037.

Asadullah, M., Rahman, M. A., Ali, M. M., Rahman, M. S., Martin, M. A., Sultan, M. B., & Alam, M. R. (2007), “Production of bio-oil from fixed bed pyrolysis of bagasse,” Fuel, 86(16) 2514–2520, DOI: 10.1016/j.fuel.2007.02.007.

Azeta, O., Ayeni, A. O., Agboola, O. & Eliminate, F. B. (2021), "A review on the sustainable energy generation from the pyrolysis of coconut biomass," Sci. African, 13, e00909, DOI: 10.1016/j.sciaf.2021.e00909.

Azizi, K., Keshavarz Moraveji, M., Arregi, A., Amutio, M., Lopez, G., & Elazar, M. (2020), "On the pyrolysis of different microalgae species in a conical spouted bed reactor: Bio-fuel yields and characterization," Bioresour. Technol., 311(May) DOI: 10.1016/j.biortech.2020.123561.

Belotti, G., De Caprariis, B., De Filippis, P., Scarsella, M., & Verdone, N. (2014), "Effect of Chlorella Vulgaris growing conditions on bio-oil production via fast pyrolysis," Biomass and Bioenergy, 61(0) 187–195, DOI: 10.1016/j.biombioe.2013.12.011.

Bertero, M., De La Puente, G., & Sedran, U. (2012) “Fuels from bio-oils: Bio-oil production from different residual sources, characterization and thermal conditioning,” Fuel, 95 263–271, DOI: 10.1016/j.fuel.2011.08.041.

Borges, F. C., Xie, Q., Min, M., Muniz, L. A. R., Farenzena, M., Trierweiler, J. O., Chen, P., & Ruan, R. (2014), “Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst,” Bioresour. Technol., 166, 518–526, DOI: 10.1016/j.biortech.2014.05.100.

Bridgwater, A. V. (2012), “Review of fast pyrolysis of biomass and product upgrading,” Biomass and Bioenergy, 38, 68–94, DOI: 10.1016/j.biombioe.2011.01.048.

Chaiwong, K., Kiatsiriroat, T., Vorayos, N. & Thararax, C. (2013), “Study of bio-oil and bio-char production from algae by slow pyrolysis,” Biomass and Bioenergy, 56, 600–606, DOI: 10.1016/j.biombioe.2013.05.035.

Chen, W. H., Lin, B. J., Huang, M. Y., & Chang, J. S. (2015), “Thermochemical conversion of microalgal biomass into biofuels: A review,” Bioresour. Technol., 184, 314–327, DOI: 10.1016/j.biortech.2014.11.050.

Chen, Z., Wang, L., Qiu, S., & Ge, S. (2018), “Determination of Microalgal Lipid Content and Fatty Acid for Biofuel Production,” Biomed Res. Int., 2018, DOI: 10.1155/2018/1503126.

Chowdhury, H. & Loganathan, B. (2019), “Third-generation biofuels from microalgae: a review,” Curr. Opin. Green Sustain. Chem. 20, 39–44, DOI: 10.1016/j.cogsc.2019.09.003.

Chukwuneke, J. L., Ewulonu, M. C., Chukwujike, I. C., & Okolie, P. C. (2019), "Physico-chemical analysis of pyrolyzed bio-oil from Swietenia macrophylla (mahogany) wood," Heliyon, 5(6), e01790, DOI: 10.1016/j.heliyon.2019.e01790.

Du, Z., Ma, X., Li, Y., Chen, P., Liu, Y., Lin, X., Lei, H., & Ruan, R. (2013), "Production of aromatic hydrocarbons by catalytic pyrolysis of microalgae with zeolites: Catalyst screening in a pyro probe," Bioresour. Technol., 139, 397–401, DOI: 10.1016/j.biortech.2013.04.053.

Dutta, S., Neto, F., & Coelho, M. C. (2016), “Microalgae biofuels: A comparative study on techno-economic analysis & life-cycle assessment,” Algal Res., 20, 44–52, DOI: 10.1016/j.algal.2016.09.018.

Fenton, O., and ÓhUallacháin, D. (2012), “Agricultural nutrient surpluses as potential input sources to grow third generation biomass (microalgae): A review,” Algal Res., 1(1), 49–56, DOI: 10.1016/j.algal.2012.03.003.

Ferreira, A., Melkonyan, L., Carapinha, S., Ribeiro, B., Figueiredo, D., Avetisova, G., & Gouveia, L. (2021), “Biostimulant and biopesticide potential of microalgae growing in piggery wastewater,” Environ. Adv., 4(April), 100062, DOI: 10.1016/j.envadv.2021.100062.

Garg, R., Anand, N., & Kumar, D. (2016), “Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization,” Renew. Energy, 96, 167–171, DOI: 10.1016/j.renene.2016.04.059.

Hallenbeck, P. C., Grogger, M., Mraz, M., & Veverka, D. (2016), “Solar biofuels production with microalgae,” Appl. Energy, 179, 136–145, DOI: 10.1016/j.apenergy.2016.06.024.

Hong, Y., Chen, W., Luo, X., Pang, C., Lester, E., & Wu, T. (2017), “Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production,” Bioresour. Technol., 237, 47–56, DOI: 10.1016/j.biortech.2017.02.006.

Huo, S., Liu, J., Addy, M., Chen, P., Necas, D., Cheng, P., Li, K., Chai, H., Liu, Y., & Ruan, R. (2020), “The influence of microalgae on vegetable production and nutrient removal in greenhouse hydroponics,” J. Clean. Prod., 243, 118563, DOI: 10.1016/j.jclepro.2019.118563.

Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., & Budiman, A. (2019) “Effect Of Grain Size, Temperature And Catalyst Amount On Pyrolysis Products Of Spirulina platensis Residue (Spr),” Int. J. Technol., 10(3), 541–550, doi: 10.14716/ijtech.v10i3.2918.

Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., & Budiman, A. (2019), “Valuable chemicals derived from pyrolysis liquid products of Spirulina platensis residue,” Indones. J. Chem., 19(3), 703–711, doi: 10.22146/ijc.38532.

Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., Aziz, M., Hayashi, J. I., and Budiman, A. (2020), “Catalytic pyrolysis of Spirulina platensis residue (SPR): Thermochemical behavior and kinetics,” Int. J. Technol., 11(3), 522–531, DOI: 10.14716/ijtech.v11i3.2967.

Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., Hadiyanto, H., & Budiman, A. (2019), “Comparative analysis between pyrolysis products of Spirulina platensis biomass and its residues,” Int. J. Renew. Energy Dev., 8(2), 133–140, DOI: 10.14710/ijred.8.2.133-140.

Jamilatun, S., Elisthatiana, Y., Aini, S. N., Mufandi, I., & Budiman, A. (2020) “Effect of Temperature on Yield Product and Characteristics of Bio-oil From Pyrolysis of Spirulina platensis Residue,” Elkawnie, 6(1), 96–108, DOI: 10.22373/ekw.v6i1.6323.

Jay, M. I., Kawagoe, M., & Effendi, H. (2018), "Lipid and fatty acid composition microalgae Chlorella Vulgaris using photobioreactor and open pond," IOP Conf. Ser. Earth Environ. Sci., 141(1) DOI: 10.1088/1755-1315/141/1/012015.

Kadir, W. N. A., Lam, M. K., Uemura, Y., Lim, J. W., & Lee, K. T. (2018), “Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: A review,” Energy Convers. Manag., 171(June), 1416–1429, doi: 10.1016/j.enconman.2018.06.074.

Kong, Q., Yu, F., Chen, P., & Ruan, R. (2007), “High oil content microalgae selection for biodiesel production,” 2007 ASABE Annu. Int. Meet. Tech. Pap., 14(07), DOI: 10.13031/2013.23441.

Li, H., Liu, Z., Zhang, Y., Li, B., Lu, H., Duan, N., Liu, M., Zhu, Z., & Si, B. (2014), “Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction,” Bioresour. Technol., 154, 322–329, DOI: 10.1016/j.biortech.2013.12.074.

Ly, H. V., Kim, S. S., Choi, J. H., Woo, H. C. & Kim, J. (2016), “Fast pyrolysis of Saccharina japonica alga in a fixed-bed reactor for bio-oil production,” Energy Convers. Manag., 122, 526–534, DOI: 10.1016/j.enconman.2016.06.019.

Ma, S., Zhang, L., Zhu, L., & Zhu, X. (2018), “Preparation of multipurpose bio-oil from rice husk by pyrolysis and fractional condensation,” J. Anal. Appl. Pyrolysis, 131(November 2017), 113–119, doi: 10.1016/j.jaap.2018.02.017.

Mahmoud, E. A., Farahat, L. A., Abdel Aziz, Z. K., Fathallah, N. A., & Salah El-Din, R. A. (2015) "Evaluation of the potential for some isolated microalgae to produce biodiesel," Egypt. J. Pet., 24(1), 97–101, DOI: 10.1016/j.ejpe.2015.02.010.

Mathimani, T., Baldinelli, A., Rajendran, K., Prabakar, D., Matheswaran, M., van Leeuwen, R. P., & Pugazhendhi, A. (2019) “Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: Process evaluation and knowledge gaps,” J. Clean. Prod., 208, 1053–1064, DOI: 10.1016/j.jclepro.2018.10.096.

Mishra, R. K. & Mohanty, K. (2020), “Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential,” Bioresour. Technol., 311(May), 123480, DOI: 10.1016/j.biortech.2020.123480.

Oasmaa, A. & Peacocke C. (2010), Properties and fuel use of biomass-derived fast pyrolysis liquids. A guide, 731.

Parthasarathy, P., Al-Ansari, T., Mackey, H. R., & McKay, G. (2021) “Effect of heating rate on the pyrolysis of camel manure,” Biomass Convers. Biorefinery, DOI: 10.1007/s13399-021-01531-9.

Qureshi, K. M., Kay Lup, A. N., Khan, S., Abnisa, F., & Wan Daud, W. M. A. (2021), “Optimization of palm shell pyrolysis parameters in helical screw fluidized bed reactor: Effect of particle mesh, pyrolysis time and vapor residence time,” Clean. Eng. Technol., 4, 100174, doi: 10.1016/j.clet.2021.100174.

Salazar, J., Valev, D., Näkkilä, J., Tyystjärvi, E., Sirin, S., & Allahverdiyeva, Y. (2021), “Nutrient removal from hydroponic effluent by Nordic microalgae: From screening to a greenhouse photobioreactor operation,” Algal Res., 55(October 2020), 102247, DOI: 10.1016/j.algal.2021.102247.

Santiyo, W. & Djeni, H. (2015), “Characteristics of Bio-oil From Gelagah Grass (Linn.)Saccharum spontaneum by Fast Pyrolysis Process”, Forest product research journal., 33(4).

Schlagermann, P., Göttlicher, G., Dillschneider, R., Rosello-Sastre, R., & Posten, C. (2012) “Composition of algal oil and its potential as biofuel,” J. Combust., 2012, doi: 10.1155/2012/285185.

Shan Ahamed, T., Anto, S., Mathimani, T., Brindhadevi, K., & Pugazhendhi, A. (2021) “Upgrading of bio-oil from thermochemical conversion of various biomass – Mechanism, challenges and opportunities,” Fuel, 287(September), 119329, DOI: 10.1016/j.fuel.2020.119329.

Somerville, M. & Deev, A. (2020), “The effect of heating rate, particle mesh and gas flow on the yield of charcoal during the pyrolysis of radiata pine wood,” Renew. Energy, 151, 419–425, DOI: 10.1016/j.renene.2019.11.036.

Suganya, T., Varman, M., Masjuki, H. H., & Renganathan, S. (2016), “Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach,” Renew. Sustain. Energy Rev., 55, 909–941, DOI: 10.1016/j.rser.2015.11.026.

Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H., & Yang, L. (2014), “Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties,” Chem. Eng. J., 240, 574–578, DOI: 10.1016/j.cej.2013.10.081.

Tokarchuk, O., Gabriele, R., & Neglia, G. (2021), “Teleworking during the COVID-19 crisis in Italy: Evidence and tentative interpretations,” Sustain., 13(4), 1–12, DOI: 10.3390/su13042147.

Torri, I. D. V., Paasikallio, V., Faccini, C. S., Huff, R., Caramão, E. B., Sacon, V., Oasmaa, A., & Zini, C. A., (2016) “Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization,” Bioresour. Technol., 200, 680–690, DOI: 10.1016/j.biortech.2015.10.086.

Treedet, W., Suntivarakorn, R., Mufandi, I., & Singbua, P. (2020), “Bio-oil production from Napier grass using a pyrolysis process: Comparison of energy conversion and production cost between bio-oil and other biofuels,” Int. Energy J., 20(2), 155–168.

Trugnanasambantham, Elango, T. & Elangovan, K. (2020) "Chlorella Vulgaris sp. microalgae as a feedstock for biofuel," Mater. Today Proc., 33(xxxx) 3182–3185, DOI: 10.1016/j.matpr.2020.04.106.

Vieira Costa, J. A., Cruz, C. G., & Centeno da Rosa, A. P. (2021), “Insights into the technology utilized to cultivate microalgae in dairy effluents,” Biocatal. Agric. Biotechnol., 35(July), 102106, DOI: 10.1016/j.bcab.2021.102106.

Wądrzyk, M., Janus, R., Vos, M. P., & Brilman, D. W. F., (2018) “Effect of process conditions on bio-oil obtained through continuous hydrothermal liquefaction of Scenedesmus sp. microalgae,” J. Anal. Appl. Pyrolysis, 134(July), 415–426, DOI: 10.1016/j.jaap.2018.07.008.

Wang, K., Brown, R. C., Homsy, S., Martinez, L., & Sidhu, S. S. (2013), “Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production,” Bioresour. Technol., 127, 494–499, DOI: 10.1016/j.biortech.2012.08.016.

Yang, C., Li, R., Zhang, B., Qiu, Q., Wang, B., Yang, H., Ding, Y., & Wang, C. (2019), “Pyrolysis of microalgae: A critical review,” Fuel Process. Technol., 186(September 2018) 53–72, DOI: 10.1016/j.fuproc.2018.12.012.

Yanik, J., Stahl, R., Troeger, N., & Sinag, A. (2013), “Pyrolysis of algal biomass,” J. Anal. Appl. Pyrolysis, 103, 134–141, doi: 10.1016/j.jaap.2012.08.016.

Zighmi, S., Ladjel, S., Goudjil, M. B., & Bencheikh, S. E. (2017) “Renewable energy from the seaweed chlorella pyrenoidosa cultivated in developed systems,” Int. J. Renew. Energy Res., 7(1), 1–9.

Published
2022-06-30
How to Cite
Jamilatun, S., Budiman, A., Mufandi, I., Aktawan, A., Fauzi, N., & Denanti, D. P. (2022). The Effects of Particle Mesh and Temperature on Pyrolysis Spirulina platensis Residue (SPR): Pyrolysis Yield and Bio-Oil Properties. ASEAN Journal of Chemical Engineering, 22(1), 141-155. Retrieved from https://journal.ugm.ac.id/v3/AJChE/article/view/9234
Section
Articles