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Ultraviolet (UV)-visible and Fourier-transformed infrared (FTIR) 
spectroscopy are two of the most popular and readily available laboratory 
instruments. Fingerprinting analysis of the UV-visible and FTIR spectra has 
been applied for food classification and authentication studies. In this study, 
the UV-visible and FTIR spectra of brewed tea, and their data fusion data sets, 
were used to build models for the classification of tea based on tea types and 
origins. The study included black and green tea samples from several 
provinces in Sumatra and Java Islands (Indonesia). Chemometric models of 
principal component analysis (PCA), k-nearest neighbor (kNN), and logistic 
regression were developed for classification purposes. All PCA models were 
able to well-separate the tea groups. kNN and logistic regression models 
based on UV-visible spectra successfully classified green and black tea with 
>0.8 classification accuracy. The kNN model of FTIR spectra had good 
accuracy (0.903) for classifying tea based on its origin. ReliefF algorithm was 
employed to select the best features among the data fusion data sets of UV-
visible and FTIR spectra. The data fusion data sets of UV-visible and FTIR 
spectra demonstrated good separation of tea types and origins with a high 
area under the receiver operating characteristic (ROC) curve (>0.8) and 
moderate accuracy (0.548). Therefore, UV-visible and FTIR spectroscopy may 
provide complementary information for tea classification based on tea types 
and origins. 
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INTRODUCTION 

Tea, derived from the leaves and buds of 
Camellia sinensis L., is one of the most popular 
beverages in the world. Indonesia is a major tea-
producing country worldwide, with 109,938 
hectares of tea plantation area and 140,237 tons of 
production volume in 2018. Tea as a commodity is 
produced in ten provinces in Indonesia, spread in 
Sumatra and Java Islands. National consumption 
accounts for almost two-thirds of Indonesian tea 
production. The remaining tea is exported as black 
tea and green tea (Badan Pusat Statistik - BPS-
Statistics Indonesia, 2019).  

The post-harvesting process of tea leaves 
determines the type of tea. Full-fermentation of tea 
leaves using enzymatic oxidation during the post-
harvesting process produces black tea. On the other 

hand, green tea does not undergo the enzymatic 
oxidation process so that the scent of the leaves is 
preserved (McKenzie et al., 2010). Both black and 
green tea contain high levels of polyphenols. The 
most abundant polyphenols in green tea are 
epigallocatechin and its derivatives, while 
theaflavin derivatives dominate the polyphenols in 
black tea (Seow et al., 2020). The polyphenol 
content in tea is commonly associated with its 
health benefits, such as antioxidant (Xu et al., 
2020), anti-inflammatory, anticancer (Musial et al., 
2020), antiviral (Mhatre et al., 2021), and reducing 
neurodegenerative risks (Kakutani et al., 2019). 
Besides polyphenols, tea also contains caffeine, 
amino acids, polysaccharides, carotenoids, and 
alkaloids, among other compounds (Ma et al., 
2018). 
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Fingerprinting analysis has been gaining 
much popularity in food and herbal authentication 
and quality control in recent years. Spectroscopic 
and chromatographic techniques produce unique 
spectra and chromatograms, respectively, that 
contain more wholesome information on the 
characteristics of a product. Chemometrics is 
necessary to extract the information derived from 
the spectra or chromatogram, as the data collected 
is extensive. Seasonal, geographical, 
chemotaxonomic, post-harvest processing, and 
other factors can be identified using chemometrics 
on the spectra or chromatogram (Kharbach et al., 
2020). Fourier-transformed infrared (FTIR) 
spectroscopy was applied to analyze the 
polysaccharide extracted from tea leaves. The 
model derived from partial least squares (PLS) and 
self-organizing map (SOM) neural network on the 
pre-processed FTIR spectra was able to distinguish 
tea of different varieties (Cai et al., 2015). 
Ultraviolet (UV)-visible spectroscopy method was 
also used to characterize the water extract of tea 
leaves (Wang et al., 2013). As for chromatographic 
methods, two-dimensional gas chromatography-
time-of-flight mass spectrometry (GCxGC-TOF-MS) 
was utilized to characterize water extract of 
various types of tea. Fingerprinting analysis of 74 
analytes of at least seven chemical classes 
successfully distinguished many tea types (oolong, 
puerh, and black tea) that were less affected by 
seasonal effects (Stilo et al., 2020). Ethanolic 
extracts of tea leaves were subjected to high-
performance liquid chromatography (HPLC) for 
quality assessment of green tea by comparing ten 
observed peaks with standard chromatographic 
fingerprints (He et al., 2015).  

In the context of whole-tea classification 
based on geographical origin and tea type, UV-
visible and IR spectroscopy have been used to 
classify tea from various countries on different 
continents, none of which are from Indonesia 
(Aboulwafa et al., 2019; Dankowska & Kowalewski, 
2019; Diniz et al., 2016). This study used tea 
samples exclusively from Indonesia for 
classification purposes. The use of UV-visible and 
FTIR spectroscopy, aided with chemometrics, was 
investigated to discriminate between different 
types of tea depending on the post-harvesting 
process, which included black tea and green tea. 
The tea classification based on geographical origins 
of different islands in Indonesia was also explored. 
The UV-visible and FTIR spectroscopy are easily 
suitable for authentication or classification studies 
of various plants or herbals due to simple sample 

preparation processes and generally accessible UV-
visible and FTIR spectroscopy equipment. 

 

MATERIAL AND METHODS 
Samples 

Thirty-three single-origin tea samples from 
plantations in seven tea-producing provinces in 
Indonesia were purchased directly from legitimate 
sources, such as PT Perkebunan Nasional 
(Indonesian National Plantation Company who has 
tea plantations in different provinces), premium 
tea industries who have their own specific 
plantations, and farmers from the tea plantation. 
The samples consisted of 25 black tea and 8 green 
tea (Figure 1). The samples were preserved in their 
original packaging and kept in a cool and dry place 
away from sunlight.  

 

 
 
Figure 1. The origin of the tea samples used in this 
study. A total of 25 black tea and 8 green tea 
samples were collected from 7 tea-producing 
provinces in Indonesia. Red dots indicate the 
province but not the exact location of the tea 
plantation area. The map is derived from 
OpenStreetMap processed with Orange v3.29.3 
software.  
 
Sample preparation 

Approximately 1 g of tea was accurately 
weighted. The tea was brewed with 80 ml of hot 
water (90-95°C) for 5 minutes. The brewed tea was 
immediately filtered with a Hario VCF-01-100W 
paper filter (Hario, Tokyo, Japan). After reaching 
room temperature, the filtrate was added with 
water to a volume of 100 ml using a volumetric 
flask. The sample was diluted ten-fold for UV-
visible spectral acquisition, while no dilution was 
performed for FTIR analysis. The samples were 
kept refrigerated at 4°C before analysis. The 
absorbance measurements were conducted within 
two days of the sample preparation to ensure the 
freshness of the sample. Distilled water (General 
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Labora, Yogyakarta, Indonesia) was used 
throughout the experiment. 
 
UV-visible spectral acquisition 

The UV-visible spectral acquisition was 
conducted using a Hitachi U-2900 double-beam 
spectrophotometer equipped with a deuterium 
lamp for the UV region and a tungsten-iodine lamp 
for the visible region (Hitachi, Tokyo, Japan). Ten 
mm quartz cuvettes were used to hold the sample 
and the blank. Distilled water was used as the blank 
solution. The wavelength scanning was performed 
at 190-500 nm at every 1 nm, with a measurement 
speed set at 400 nm/min. The baseline 
autocorrection was done before every sample 
measurement.  
FTIR analysis 

FTIR absorbance was measured using a 
Thermo Nicolet iS10 FTIR spectrometer with a 
Smart iTR diamond ATR sampling accessory 
(Thermo Fisher Scientific, Madison, USA). The FTIR 
scanning was performed from 4000 cm-1 to 650 cm-

1 at every 0.964 cm-1. The number of scans was 32, 
with a resolution of 8. Automatic atmospheric 
suppression was applied to remove H2O and CO2 
interference. The sample window was cleaned with 
acetone (General Labora, Yogyakarta, Indonesia) 
and Kimwipes (Kimberly Clark Professional, 
Georgia, USA) before and after each sample. The 
background collection was performed before every 
sample measurement.  
 
Data analysis 

The sample absorbance of each datapoint in 
the UV-visible spectra was normalized to the 
weight of the tea samples for further data 
processing. The UV-visible and FTIR spectra were 
subjected to PCA for explorative purposes. Because 
PCA demonstrated that UV-visible and FTIR 
spectra clustered data according to tea type and 
origin, respectively, the ReliefF method was used to 
choose the best features of the associated spectra. 
One-hundred-fifty variables from each UV-visible 
and FTIR spectrum that best-explained tea types 
and origins, respectively, were selected using the 
ReliefF algorithm. The resulting data fusion data 
sets were subjected to PCA. The classification 
models on UV-visible spectra, FTIR spectra, and 
data fusion data sets were built using supervised 
methods of k-nearest neighbor (kNN) (non-
parametric) and logistic regression (parametric). 
The kNN model was created by measuring five 
nearest neighbors using Euclidean distance and 
uniform weight. The logistic regression was 

performed using ridge (L2) regularization with C=1 
(moderate) strength. Leave-one-out cross-
validation was used to validate the models. Orange 
v3.29.3 was used to analyze the data (University of 
Ljubljana, Ljubljana, Slovenia).  

 
 

RESULTS AND DISCUSSION 
UV-visible and FTIR spectra  

Brewed black and green tea yielded UV-
visible spectra with identical shapes ranging from 
190 nm to 500 nm (Figure 2). The peak in UV-
visible spectra is broad and unspecific, mostly 
influenced by π → π* and n → π* electronic 
transitions of chromophores and auxochromes in 
tea constituents. The pattern of UV-visible spectra 
correlates with flavonoids and methylxanthine 
compounds found in black and green tea, such as 
caffeine (maxima at 280 nm (López-Martínez et al., 
2003)), catechin and related compounds (maxima 
at 275 nm (Sarkar et al., 2014)), and other phenolic 
compounds (Boulet et al., 2017). 
 

 
 
Figure 2. The UV-visible spectra of brewed tea. The 
darker color indicates the average of the spectra 
within each group (blue = black tea, red = green 
tea). 
 

On average, the UV-visible spectra of black 
tea had higher absorbance at minima of 
approximately 248 nm and 300-500 nm. The 
higher absorbance of black tea at around 380 nm 
was also observed in the UV-visible spectra of 
methanolic extract, associated with a higher 
concentration of theaflavins and thearubigins 
(Palacios-Morillo et al., 2013; Roberts & Smith, 
1961). Theaflavin and its galloyl esters are the 
oxidation products of catechins by polyphenol 
oxidase or peroxidase. Thus, it is present in black 
tea but not in green tea, in which the endogenous 
enzymes have been inactivated during the post-
harvesting process (Takemoto & Takemoto, 2018). 
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Figure 3. The FTIR spectra of brewed tea. The 
spectra of black and green tea completely overlap. 
Blue = black tea, red = green tea. 
  

Unlike the UV-visible spectra, the FTIR 
spectra of black and green tea were 
indistinguishable, with only three peaks observed 
due to the presence of water solvent (Figure 3). A 
broad peak of O-H-stretching modes around 3100-
3600 cm-1 indicated the presence of many phenolic 
compounds in tea. Weaker N-H-stretching mode 
peaks, as well as C-H saturated and unsaturated 
peaks, might be present in this area but are 
obscured by the peak’s broadness. A modest peak 
at 2000-2200 cm-1 might indicate a C≡C bond 
and/or a C≡N bond. A reasonably sharp peak at 
1634 cm-1 indicated the presence of a carbonyl 
functional group, most likely an amide group. 
However, C=O peaks from other carbonyl groups 
might overlap in this region. The spectral pattern 
reflects the tea constituents, as discussed earlier. 
 

 
 
Figure 4. The PCA scores plot of the UV-visible 
spectra of brewed tea. Colors correspond to tea 
types (blue = black tea, red = green tea), while 
shapes correspond to sample origins (circle = Java, 
cross = Sumatra). 
 
PCA 

The unsupervised learning algorithm of PCA 
was used to explore the native ability of UV-visible 
and FTIR spectra to classify the tea samples.           

The PCA model constructed from the UV-visible 
spectra of brewed tea samples identified distinct 
groups of tea types (Figure 4). The sample variance 
was well covered, with PC1 explaining 75.5% of the 
total variance and PC2 explaining 12.0% of the total 
variance. As a result, the PCA model provided a 
good approximation of the variation in the tea 
samples. The absorbance around 250 nm and from 
350 to 490 nm had the greatest effect on the PC1, 
reflecting the difference in the UV-visible spectra of  
black and green tea. The Java and Sumatra tea 
samples, while not fully separated, were also 
clustered in a relatively similar location. However, 
the provinces of origin did not significantly 
contribute to sample grouping (Figure S1). 
 

 
 
Figure 5. The PCA scores plot of the FTIR spectra of 
brewed tea. Colors correspond to sample origin 
(blue = Java, red = Sumatra), while shapes 
correspond to tea types (circle = black tea, cross = 
green tea). 
 

In PCA generated from FTIR spectra of 
brewed tea samples, two of the spectra were 
considered outliers and removed from further 
analysis (Figure S2). The resulting PCA model 
showed good separation of Java and Sumatra tea 
(Figure 5). PC1, PC2, and PC3 explained 31.4%, 
21.1%, and 8.7%, respectively, of the total variance. 
PC1 was mostly loaded by the peak at 1250-1450 
cm-1 and 2850-3000 cm-1, while PC2 was mostly 
loaded by the peak at 1600 cm-1 and 3500-3650 cm-

1. The peak at 3400 cm-1 strongly influenced PC3. 
Thus, all peaks observed in the FTIR spectra 
contributed to the grouping in the PCA model. 
Different soil and climate characteristics in Java 
and Sumatra, evidenced by seasonal evolution and 
interannual variability of the climate along the 
coasts (Susanto et al., 2001), influenced secondary 
metabolites produced by plants (Yang et al., 2018). 
Despite this, the change in the FTIR spectra of the 
water extract could not be visually observed. As for 
the tea types, green tea was located at the edge of 
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the black tea group, but no clear grouping was 
observed. Two of the Sumatra samples that strayed 
into the Java cluster were Jambi black tea. One Java 
black tea located in the Sumatra cluster was a 
Central Java black tea. The provinces of origin 
might influence the sample groupings to some 
extent, with West Java and East Java tea forming 
distinct clusters (Figure S3).  

 

 
 

Figure 6. The PCA scores plot of the UV-visible and 
FTIR spectra data fusion data sets of brewed tea. 
Colors and shapes correspond to tea types and 
origins (blue circle = Java black tea, red cross = Java 
green tea, green triangle = Sumatra black tea, 
orange plus = Sumatra green tea).   
 

Data fusion data sets of UV-visible and FTIR 
spectra was employed to construct a PCA model to 
establish a comprehensive clustering based on tea 
types and origins. Variable reduction is necessary 
before building a PCA model because an 
unbalanced number of variables in UV-visible and 
FTIR spectra gives different weights, with FTIR 
spectra having more influence due to a higher 
number of variables. ReliefF, an algorithm to select 
the best features, generally has a good overall 
performance and is sensitive to feature interaction 
(Urbanowicz et al., 2018). In this study, 150 best 
features in UV-visible and FTIR spectra were 
selected using the ReliefF algorithm. The best 
features from ReliefF selection were similar to 
high-scored-components in PCA model (350-495 
nm for UV-visible spectra; 1576-1675 cm-1, 1760-
1880 cm-1, and 3460-3550 cm-1 for FTIR spectra). 
The selection of meaningful features, noise 
reduction, and elimination of redundant variables 
made the distinction between tea types and origins 
well observed (Figure 6). PC1 and PC2 explained 
56.1% and 22.2% of the variance, respectively. In 
PC1, most of the UV-visible spectral features had 
higher loading scores than FTIR spectral features. 
On   the   other   hand, the   FTIR   spectral   features  

scored higher than UV-visible spectral features in 
PC2. Thus, both UV-visible and FTIR spectra were 
complimentary for the classification of tea based on 
tea types and origins. 
 
k-nearest neighbor and logistic regression 

Analysis of small datasets using complex 
machine learning suffers from overfitting. In this 
study, simple machine learnings of both non-
parametric (kNN) and parametric techniques 
(logistic regression) were evaluated using leave-
one-out cross-validation to reduce bias. UV-visible 
spectra generally had good performance with >0.9 
area under the ROC curve (AUC), >0.8 classification 
accuracy, and >0.8 precision (Table I). All black tea 
was correctly classified, while 50% and 25% of 
green tea were misclassified in kNN and logistic 
regression models, respectively (Table II). The kNN 
model of the FTIR spectra had good accuracy 
(0.903) but with a low AUC (0.788) as both Java tea 
and Sumatra tea suffered misclassification. In the 
logistic regression model of FTIR spectra, all the 
Sumatra tea were misclassified, resulting in a zero 
AUC. The kNN and logistic regression of the data 
fusion data sets of UV-visible and FTIR spectra 
produced a similar quality of the groupings. The 
AUCs were relatively high (>0.8) with moderate 
accuracy (0.548) and precision (>0.4) on both 
classification models evaluated with leave-one-out 
cross-validation. Of the three spectral data, kNN 
and logistic regression showed relatively similar 
classification performance using UV-visible spectra 
and data fusion data sets. In FTIR spectra, however, 
logistic regression showed worse performance 
compared to the kNN model. Thus, the 
classification based on FTIR spectra probably did 
not follow a linear relationship. 

When the kNN and logistic regression were 
applied on three spectral collections, the two 
classification approaches on UV-visible spectra 
produced the best classification models for tea 
types. The data fusion data sets of UV-visible and 
FTIR spectra could potentially be employed to 
classify tea types and origins as the specificity and 
sensitivity, as indicated in AUC, were relatively 
high. The approach benefited from a rapid and 
uncomplicated preparation procedure that used 
less organic solvent (i.e., compared to the 
chromatographic techniques). Unfortunately, the 
dataset in this study was too small to be split into a 
training set and testing set for a prediction study. 
Further sample collection, especially of the 
underrepresented samples from Sumatra, is 
needed to build a more robust model.  
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Sumatra tea is not commonly available in the 
markets as the production capacity is much lower 
than the Java tea plantation (Badan Pusat Statistik - 
BPS-Statistics Indonesia, 2019). By acquiring             
more samples, more complex and powerful 
machine learning, such as random forest, can be 
applied to make a better prediction on tea 
classification.  

 

CONCLUSIONS 
This study investigated the use of UV-visible 

and FTIR spectra of brewed tea, assisted by 
chemometrics, for the classification based on tea 
types and origins. PCA, kNN, and logistic regression 
models of UV-visible spectra satisfactorily 
classified black and green tea. FTIR spectra for PCA 
and   kNN models showed   good   classification   for 
Java and Sumatra tea. The data fusion data sets of 

Table I. Evaluation results of the kNN and logistic regression models built using UV-visible spectra, FTIR 
spectra, and data fusion data sets. The models were validated using leave-one-out cross-validation. 
 

 
UV-visible 

spectra 
FTIR 

spectra 
Data fusion data sets 

Grouping 
Type (black 

tea, green tea) 
Origin (Java, 

Sumatra) 

Type and origin (Java black tea, Java 
green tea, Sumatra black tea, Sumatra 

green tea) 
kNN    

AUC 0.950 0.788 0.834 
Classification accuracy 0.879 0.903 0.548 
Precision  0.896 0.903 0.498 

Logistic regression    
AUC 0.990 0.000 0.825 
Classification accuracy 0.939 0.677 0.548 
Precision  0.944 0.459 0.472 

 
Table II. Confusion matrices of kNN and logistic regression models built using UV-visible spectra, FTIR 
spectra, and data fusion data sets. BT=black tea, GT=green tea, JT=Java tea, ST=Sumatra tea, JBT=Java black 
tea, JGT=Java green tea, SBT=Sumatra black tea, SGT=Sumatra green tea. 
 

UV-visible spectra 
kNN Logistic regression 

Actual 
Predicted 

Actual 
Predicted 

BT GT BT GT 
BT 25 0 BT 25 0 
GT 4 4 GT 2 6 

FTIR spectra 
kNN Logistic regression 

Actual 
Predicted 

Actual 
Predicted 

JT ST JT ST 
JT 20 1 JT 21 0 
ST 2 8 ST 10 0 

Data fusion data sets 
kNN Logistic regression 

Actual 
Predicted 

Actual 
Predicted 

JBT JGT SBT SGT JBT JGT SBT SGT 
JBT 10 2 4 0 JBT 14 0 2 0 
JGT 3 1 0 1 JGT 3 2 0 0 
SBT 1 0 6 0 SBT 6 0 1 0 
SGT 2 1 0 0 SGT 2 1 0 0 
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UV-visible and FTIR spectra provided 
complementary methods to classify tea types and 
origins. However, more samples are still required 
for model prediction testing. Nevertheless, this 
exploratory study showed that UV-visible and FTIR 
spectroscopy coupled with chemometrics are 
promising tools for the classification of tea 
collected from a relatively small geographical area 
(i.e., intra-national). 
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