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Recent studies have demonstrated that a curcumin derivative, namely, 
chemoprevention-curcumin analog 1.1 (CCA-1.1), impedes the proliferation 
of breast cancer (BC) cells, including luminal, human epidermal growth factor 
2 (HER2)-overexpressed, and triple-negative BC cells. We analyzed the 
possible target of action of CCA-1.1, particularly in BC cells with HER2 
amplification, using bioinformatics analysis. The differentially expressed 
genes (DEGs) of HER2-positive BC were retrieved from The Cancer Genome 
Atlas–Breast Invasive Carcinoma data (via UALCAN). Using the SMILE 
similarity feature, we used three web-based tools (Swiss Target Prediction, 
BindingDB, and TargetNet) to predict the potential target of CCA-1.1. The 
functional annotation and network enrichment were processed in 
WebGestalt. The alteration of selected genes was observed in CBioPortal. The 
protein–protein interaction network was constructed in STRING and then 
ranked based on the degree score using the Cytohubba feature in Cytoscape. 
The survival analysis of hub genes was determined in Gene Expression 
Profiling Interactive Analysis 2 (GEPIA2) with selection for HER2-positive BC 
cases only. The correlation between hub genes and tumor-infiltrating 
immune markers was determined using TIMER web tools. The pathway 
network analysis highlighted the cell cycle regulation in mitosis affected by 
signaling amid putative CCA-1.1 targets. We identified eight potential genes, 
including aurora A kinase (AURKA), aurora B kinase (AURKB), polo-like 
kinase 1, TPX2 microtubule nucleation factor, kinesin-like protein KIF11, 
maternal embryonic leucine zipper kinase, cyclin-dependent kinase 1 (CDK1), 
and serine/threonine-protein kinase Chk1 (CHEK1), that may inhibit mitosis 
regulation in response to CCA-1.1 treatment. Several potential markers 
(AURKB, AURKA, CDK1, and CHEK1) were correlated with immune cell 
infiltration markers. CCA-1.1 may regulate mitosis to induce cell cycle arrest 
and lead to cell death. The predicted targets of CCA-1.11 gave insights into the 
potency of CCA-1.1 to be applied with immunotherapy. Further validation of 
the data presented in the study is essential to develop CCA-1.1 for BC 
treatment. 
Keywords: CCA-1.1; Bioinformatics; Mitosis; HER2-amplified breast cancer. 
 

 

INTRODUCTION 
Numerous studies have shown the 

anticancer properties of curcumin and its 
derivatives for breast cancer (BC) therapy with 
multitarget (Liu and Ho, 2018). In addition to the 

lack of stability and bioavailability, distinct 
approaches are needed to overcome the challenge 
of developing curcumin-based compounds as 
anticancer. We focused on chemoprevention 
curcumin analog 1.1 (CCA-1.1) (Figure 1A), a 
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synthesized compound based on the reduction 
reaction of the carbonyl group of 
pentagamavunone-1 (PGV-1). CCA-1.1 has 
displayed antitumor activities through in vitro 
screening (Novitasari et al., 2021b; Utomo et al., 
2022). Studies have also evaluated the anticancer 
properties of CCA-1.1 in BC, notably in a highly 
aggressive metastatic subtype. The CCA-1.1 
treatment halted the mitosis phase and induced 
reactive oxygen species generation and cellular 
senescence (Novitasari et al., 2021c) in 4T1 cells 
classified as triple-negative BC (TNBC) cells. 
Moreover, the treatment with CCA-1.1 enhanced 
the cytotoxicity of doxorubicin to inhibit cell 
proliferation in 4T1 and human epidermal growth 
factor 2 (HER2) gene-transfected MCF7 
(MCF7/HER2) cells (Novitasari et al., 2021b). 
These capabilities of CCA-1.1 deserve further 
development to evaluate its molecular activities. A 
recent bioinformatic study suggested that CCA-1.1 
possibly targets several mitotic markers in the 
TNBC subtype, namely, aurora A kinase (AURKA), 
aurora B kinase (AURKB), polo-like kinase 1 (PLK1), 
and other mitotic regulators in TNBC (Novitasari et 
al., 2021a). We focused on determining the putative 
therapeutic targets from CCA-1.1 in HER2-positive 
breast tumors.  

As a part of the BC subtype with high 
malignancy features, HER2 amplification results in 
a poor prognosis in 20% of the presented cases. 
Despite the current HER2-targeted drugs and 
antibodies, cancer cells continue to adapt and 
induce resistance, limiting therapy effectiveness 
and causing difficulty in the development of 
therapies to combat resistance (Pernas and 
Tolaney, 2019). Given the advances in sequencing 
and high-throughput microarray assays, several 
differentially expressed genes (DEGs) have been 
linked to tumor progression, and they are available 
in many resources (Kolodziejczyk et al., 2015; 
Shapiro et al., 2013).  

This study presented a series of 
bioinformatic analyses to evaluate the potential 
therapeutic target of CCA-1.1 in HER2-positive BC. 
Using the chemogenomic approach with the 
SMILES code based on chemical structure, we 
predicted the target interaction of CCA-1.1. 
Simultaneously, the DEGs of HER2-amplified BC 
were collected from UALCAN, a web resource for 
analysis of cancer omics data generated from The 
Cancer Genome Atlas (TCGA) (Chandrashekar et al., 
2017). By visualization of overlapping genes in the 
Venn   diagram,   we   further   analyzed   the possible  

target pathway of CCA-1.1, and the predictive value 
of each target gene was plotted on a Kaplan–Meier 
survival graph. The genetic alterations in selected 
genes were analyzed using cBioPortal. We also 
searched for the association of selected genes with 
immune marker sets via TIMER to gain insights into 
tumor–immune interactions in HER2-positive 
breast tumors. The present results can be expected 
to reliable data for the development of CCA-1.1 as a 
potential treatment option for HER2-positive BC. 
 

MATERIAL AND METHODS 
Analysis of predicted CCA-1.1 therapeutic 
targets 

We utilized three different tools to 
determine the target gene for CCA-1.1 (Swiss 
Target Prediction (Daina et al., 2019), BindingDB 
(Gilson et al., 2016), and TargetNet (Yao et al., 
2016)). The structure of CCA-1.1 was drawn in 
MarvinJS, and the SMILES code was retrieved and 
inputted to the databases. We selected the default 
settings while generating data in the databases. 
Then, we used Venny 2.1 
(https://bioinfogp.cnb.csic.es/tools/venny/) to 
determine the potential targets of CCA-1.1 in HER2-
positive BC.  
 
Acquisition of regulated genes in HER2-positive 
BC 

We used the UALCAN webtool 
(Chandrashekar et al., 2017) 
(http://ualcan.path.uab.edu/) to determine the list 
of DEGs from HER2-positive BC patients, according 
to the TCGA BC database. A total of 500 genes (250 
upregulated and 250 downregulated genes) were 
selected for further analysis. 
 
Genetic Alteration Analysis 

Genetic alterations of the target genes were 
processed through cBioPortal (Gao et al., 2013). We 
also checked for connectivity analysis using a 
METABRIC BC study with a threshold value of p < 
0.05 
 
Construction of the protein–protein interaction 
(PPI) network  

The PPI network of the CCA-1.1 potential 
target was elucidated via STRING-DB 11.0 [11], 
with default settings selected during analysis; then, 
the graph was visualized through Cytoscape 
(Shannon et al., 2003). The degree score was used 
to rank the hub-genes using CytoHubba (Chin et al., 
2014).  
 

https://bioinfogp.cnb.csic.es/tools/venny/
http://ualcan.path.uab.edu/
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Functional annotation and pathway 
enrichment analysis 

We used WebGestalt (Liao et al., 2019) 
(http://www.webgestalt.org/) and selected 
overrepresentation enrichment analysis for the 
enrichment analysis using the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway and 
functional annotation terms using Gene Ontology 
(GO) databases (false discovery rate less than 0.05 
was selected as the threshold). 
Classification of overlapping genes 

Each gene was investigated based on its 
classification provided by MsigDB datasets 
(Subramanian et al., 2005) (http://www.gsea-
msigdb.org/gsea/msigdb/index.jsp) using 
hallmark gene sets (Liberzon et al., 2015). 

 
Survival analysis of hub genes in HER2-positive 
BC patients 

We processed the overall survival (OS) and 
disease-free survival (DFS) as a component of 
survival analysis through Gene Expression 
Profiling Interactive Analysis 2 (GEPIA2) 
(http://gepia2.cancer-pku.cn/) (Tang et al., 2019). 
We selected the Breast Invasive Carcinoma (BRCA) 
database and filtered information based on HER2-
positive non-luminal data (n = 66). The data were 
plotted in a Kaplan–Meier graph with a median cut-
off of 50% and a hazard ratio of 95% confidence 
interval. The p-value was also calculated and 
visualized on the graph. 

 
Correlation analysis between predicted target 
genes and immune infiltration levels 

We processed the relationship analysis 
between the expression of potential biomarkers of 
CCA-1.1 toward several immune cell infiltration 
markers (CD8, CD4, and B cells, neutrophils, 
macrophages, and cancer-related fibroblasts) using 
the TCGA database (BRCA-HER2; n = 82) via TIMER 
2.0 (http://timer.comp-genomics.org/) (Li et al., 
2017). The data were presented as transcription 
level (Log2 TPM) against infiltration level. The 
association analysis results were automatically 
generated through the system using Spearman's 
correlation (positive correlation if p < 0.05, ρ > 0; 
negative correlation if p < 0.05, ρ < 0). 

 

RESULT AND DISCUSSION 
Data acquisition regarding significant genes in 
HER2-positive BC and CCA-1.1 putative target 
genes 

In this study, we explored the putative 
marker genes correlated with CCA-1.1 by gathering 

TCGA data and selected HER2-positive breast 
tumor samples to determine genes that are critical 
in breast tumors. We explored the potential target 
genes of CCA-1.1 through online web tools using 
chemogenomic approaches as the computational 
drug-target analysis is notably beneficial in 
predicting the target and molecular mechanisms of 
candidate drugs (Kaushik et al., 2020). We sorted 
the 500 genes that were identified in HER2-positive 
BC patients and mentioned them as DEGs of HER2-
positive BC (Supplementary Data 1 and 2). We 
noticed that several genes are involved in the BC 
progression regulated by HER2. Then, we 
determine the possible target genes of CCA-1.1 
from BindingDB, SwissTargetPrediction, and 
TargetNet. A total of 733 genes were obtained from 
the databases, and the overlapping genes were 
generated using a Venn diagram. A total of 12 
overexpressed and 20 downregulated genes were 
selected as CCA-1.1-mediated genes (CMGs), which 
were processed for subsequent bioinformatics 
analysis (Figure 1B). 
 

 
 
Figure 1. (A) The chemical structure of CCA-1.1. 
Several CCA-1.1 target genes crossed with HER2-
positive BC biomarkers from TCGA–BRCA database, 
displayed in Venn diagram (B), resulting in 36 
prospective therapeutic targets of CCA-1.1 listed in 
the table (C). 
 

We noticed that CCA-1.1 targets ERBB2, 
which encodes the HER2 protein (Figure 1C). 
However, curcumin and PGV-1 did not                            
alter the expression or localization of HER2                       
(Lai et al., 2011; Meiyanto et al., 2021); thus,             
the antiproliferative effect of curcumin and its 
analogs  was  mediated  through  another  pathway.  

http://www.webgestalt.org/
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://gepia2.cancer-pku.cn/
http://timer.comp-genomics.org/
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Curcumin disrupts cell cycle progression 
during mitosis, and this event is characterized by 
the formation of monopolar spindles and aberrant 
chromatin structure (Holy, 2002); all these 
structures possibly cause the reduction in AURKA 
level and mislocalization of AURKB due to the 
downregulation of survivin. In addition, curcumin 
inhibits the progression from metaphase to 
anaphase by binding to APC/C member CDC27, 
which leads to mitotic arrest during metaphase. 
Notably, another distinct mechanism has been 
demonstrated by PGV-1. The compound revealed a 
remarkable anticancer effect against several cancer 
cell lines, and its anticancer activity is partly 
mediated through mitotic arrest in prometaphase 
(Lestari et al., 2019).  

As cancer biomarkers are often used in 
clinical settings (i.e., for targeted cancer therapy), 
we focused on the upregulated genes interacting 
with CCA-1.1 for further bioinformatics analysis. 

 
Analysis of genetic alterations of the predicted 
target genes 

Twelve associated genes were processed via 
cBioPortal to analyze their genomic variations 
across selected cancer studies—most gene 
alterations were associated with amplification, 
deletion, and truncating mutation (Supplementary 
Figure 1). A study from Molecular Taxonomy of 
Breast Cancer International Consortium 
(METABRIC) was picked for analysis. The genetic 
alterations, such as ERBB2 (which encodes HER2) 
(18%), maternal embryonic leucine zipper kinase 

(MELK) (1%), TPX2 microtubule nucleation factor 
(TPX2) (2%), cyclin E2 (CCNE2) (22%), and AURKA 
(6%) (Supplementary Figure 2), ranged from 0.3% 
to 22%. Mutual exclusivity analysis highlighted that 
15 gene pairs presented significant co-occurrence 
(p<0.05) in the BC study project (Table I), suggesting 
their important role in CCA-1.1 treatment. 
 
Analysis of PPI network of CCA-1.1 mediated 
hub-genes 

We further evaluated the connection of CCA-
1.1 target genes to explore their interactions 
(directly or with other interactor genes) and 
constructed the STRING pathway. A schematic 
network of 50 edges and a node degree average of 
8.33 were displayed, with the enrichment of p < 
1.0e−16 (Figure 2A). We subsequently ranked the 
nodes based on their degree and arranged them 
from the highest to lowest scores (Figure 2B). 
Thymidylate synthase (TYMS), CCNE2, serine/ 
threonine-protein kinase Chk1 (CHEK1), and 
AURKB had the highest degree score of 10 (Figure 
2C).  

  
GO and the KEGG pathway enrichment of CCA-
1.1-mediated target  

We investigated the functional annotations 
of potential genes using Webgestalt and                
selected the KEGG enrichment tools and GO for 
analysis. We categorized the GO available and 
displayed that CMGs are related to biological 
processes, metabolic processes, and cellular 
component    organization    (Figure    3A,   red   bar).  

Table I. Mutual exclusivity analysis of CCA-1.1 prospective target genes through cBioPortal 

 

No. A B Log2 Odds Ratio p-Value Tendency 
1 CCNE2 AURKA 2.087 <0.001 Co-occurrence 
2 ERBB2 CCNE2 1.218 <0.001 Co-occurrence 
3 ERBB2 AURKA 1.532 <0.001 Co-occurrence 
4 ERBB2 AURKB 2.656 <0.001 Co-occurrence 
5 PLAUR CCNE2 2.602 <0.001 Co-occurrence 
6 PLK1 CCNE2 1.846 <0.001 Co-occurrence 
7 ERBB2 CDK1 1.505 0.001 Co-occurrence 
8 TPX2 CCNE2 1.916 0.002 Co-occurrence 
9 AURKB CCNE2 2.222 0.003 Co-occurrence 

10 TPX2 CDK1 2.595 0.003 Co-occurrence 
11 ERBB2 TYMS 2.248 0.003 Co-occurrence 
12 AURKB CDK1 2.892 0.004 Co-occurrence 
13 CHEK1 TPX2 >3 0.005 Co-occurrence 
14 ERBB2 KIF11 2.310 0.006 Co-occurrence 
15 CDK1 KIF11 >3 0.010 Co-occurrence 
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In addition, CMGs are connected with 
protein, nucleotide, and ion binding (Figure 3A, 
green bar) and located in the cytosol and nucleus 
(Figure 3A, blue bar). Furthermore, according to 
the KEGG pathway analysis, CMGs are enriched in 
cell cycle regulation, notably in the G2/M transition 
and mitotic process (Figure 3B). We then classified 
each CMG using cancer hallmark datasets provided 
by MSigDB. The majority of CMGs are responsible 
for cell cycle regulation: G2/M checkpoint (AURKA, 
AURKB, CDK1, CHEK1, KIF11, TPX2, and PLK1), cell 
cycle-related E2F (CDK1, AURKA, AURKB, CHEK1, 
PLK1, and MELK1), and mitotic spindle 
arrangement (AURKA, KIF11, PLK1, CDK1, and 
TPX2) (Figure 3C).  

Mitotic cascade comprises a complicated 
process with many unique proteins controlling the  
 

progression during cell division. AURKA, for 
example, is responsible for the mitotic entry by 
activating CDC25B; it then phosphorylates CDK1, 
which forms a complex with cyclin B (named as the 
maturation promoting factor) to enable cells to 
enter mitosis (Kishimoto, 2015). In addition to 
AURKA, MELK interacts with CDC25B to induce 
progression from G2 to mitosis (Davezac et al., 
2002). Interestingly, MELK overexpression in BC 
occurs explicitly in basal-like and hormone 
receptor-negative BC (Wang et al., 2014). AURKA 
reaches peak expression during mitosis because it 
controls numerous mitotic proteins. AURKA also 
interacts with TPX2 as its cofactor to protect the 
former from dephosphorylation starting from 
prometaphase. TPX2 binding regulates KIF11 to 
form a bipolar spindle (Waitzman and Rice, 2014).  
  

 
 
Figure 2. (A) PPI of CMGs established in STRING. (B) CMGs were ranked based on the degree scores (highest 
to lowest) and visualized in Cytohubba powered by Cytoscape. (C) Hub genes rank based on the degree 
scores from Cytohubba.  

 



Dhania Novitasari 

Volume 34 Issue 1 (2023)   59 

AURKA is directly upstream of PLK1 and 
phosphorylated at Thr-210 of the PLK1 loop  
during pre-entry mitosis; the activated PLK1 
cooperates with CDK1, causing cells to enter 
mitosis (Lindqvist et al., 2009). The AURKA-PLK1 
cascade, which operates in convergence with the 
cyclin B–CDK1 complex, represents the essential 
signaling pathway in mitotic control (Joukov and 
Nicolo, 2018). Upon mitosis, PLK1 activates 
pericentrin, which enables centrosome maturation 
and spindle assembly (Lee and Rhee, 2011). 

Along with AURKA, AURKB serves as a PLK1-
activating kinase and is involved in kinetochore 
formation (Carmena et al., 2012; Krenn and 
Musacchio, 2015). AURKB can be promoted through 
CHEK1 and activate the histone H3 variant CENP-A 
and inhibit mitotic centromere-associated kinesin, 
which are both responsible for correcting errors in 
kinetochore-microtubule attachment and spind 

leassembly checkpoint (Krenn and Musacchio, 
2015). Moreover, the inactivation of PLK1 through 
CHEK1 is mediated by cyclosome (Lee et al., 2010).  
  

 
 

Figure 3. (A) Association of CMGs in biological process (red bar), molecular function (blue bar), and cellular 
component (green bar) using GO database. (B) KEGG pathway enrichment analysis from KEGG CMGs 
processed through Webgestalt. (C) CMGs 
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Given the results, we focused on genes involved in 
the cell cycle to evaluate them based on their 
survival analysis. 
 
Survival analysis of associated CCA-1.1 target 
genes in HER2-positive BC patients 

Using the dataset in GEPIA2, we used two 
parameters, namely, OS and DFS, for the survival 
analysis of HER2-positive BC patients. We mapped 
the results into a Kaplan–Meier plot for the CMGs 
involved in cell cycle regulation (KIF11, TPX2, 

AURKA, CDK1, PLK1, AURKB, CHEK1, and MELK). In 
66 HER2-positive BC patients, the high level of 
these genes reduced the OS by 220 months. 
However, the log-rank tests did not show a 
significant prognostic score (Figure 4A). The 
patients with increased CDK1, AURKB, and CHEK1 
levels showed a poorer chance of survival than 
those with lower expressions of genes. 
Concurrently, high CDK1, AURKB, and CHEK1 
expressions indicated poor DFS in HER2-positive 
BC cases (Figure 4B). 

 

 
 
Figure 4. (A) OS analysis and (B) DFS analysis of KIF11, TPX2, AURKA, CDK1, PLK1, AURKB, CHEK1, and MELK genes in 
HER2-positive BC patients. 
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Correlations of the expressions of associated 
CCA-1.1 target genes with immune marker sets 

Immune infiltrating cells in tumor tissues 
are a significant part of the tumor 
microenvironment. Therefore, the association of 
CCA-1.1 target genes and immune infiltrating cells 
was elucidated through TIMER (Figure 5). The 
correlation of target genes with diverse immune 
markers was adjusted by purity. Positive 
correlations were observed in CD4+ cells with 
AURKB (ρ = 0.299; p = 0.0106) and CDK1 (ρ = 

0.231; p = 0.0511), in macrophage cells with CHEK1 
(ρ = 0.268; p = 0.0227), and in neutrophil cells with 
CDK1 (ρ = 0.231; p = 0.0403). B-cell infiltration was 
negatively associated with AURKA (ρ = −0.257; p = 
0.0292) and CHEK1 (ρ = −0.234; p = 0.048), 
whereas AURKB was revealed to have a positive 
correlation (ρ = 0.252; p = 0.0328). These data 
indicated that the potential of these target genes 
may be attributed to their effect, especially on the 
infiltration levels of CD4 and CD8 T cells, B cells, 
neutrophils, and macrophages in HER2-positive BC. 

 

 
 
Figure 5. Associated CCA-1.1 target gene expressions correlated with immune infiltrating cells in BRCA-
HER2 (n = 82). Several biomarkers used in this study included CD8+ T cells, CD4+ T cells, B cells, 
neutrophils, macrophages, and cancer-associated fibroblasts. The data presented were adjusted by their 
purity. 
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The most aggressive subtypes of BC (HER2-
enriched type and basal-like) are correlated to 
plenty of tumor-infiltrating immune cells (TIICs) 
(Denkert et al., 2018). In a prior report, TIICs were 
associated with chemotherapy responses in HER2-
positive and TNBC (Denkert et al., 2018). The low 
cytotoxic T cell expression in HER2-positive BC 
against TNBC possibly occurred because ERBB2 
oncogene lost its immunoproteasome subunits, 
resulting in the loss of significant 
histocompatibility class I  epitopes, which 
supposedly can be recognized by CD8+ T cells 
(Mimura et al., 2011). Among the eight genes 
presented in Figure 8, the experimental studies 
reported the downregulation of AURKA-induced 
immune response via the activation of CD8+ T cell 
activity. AURKA also increased programmed death-
ligand 1 expression via the MYC-dependent 
pathway, and this finding was attributed to 
immune avoidance (Sun et al., 2021). Consequently, 
BC was proven to be immunogenic, and targeting 
the tumor immune microenvironment will 
hopefully benefit cancer patients. These data 
indicated that the potential of these target genes 
may be attributed to their effects, especially                           
on the infiltration levels of CD4 and CD8 T cells, B 
cells, neutrophils, and macrophages in HER2-
positive BC. 

This study also encountered shortcomings, 
such as the needed experimental studies to support 
all the findings in bioinformatics studies to 
determine the biomarkers for CCA-1.1 in BC. 
Moreover, the algorithm built for analysis is based 
on the database we selected for this study. 
Therefore, further bioinformatics analysis through 
different approaches is encouraged to gather data 
using more controlled parameters. Nonetheless, 
the data presented in this study will help narrow 
down the mechanism of action of CCA-1.1 in HER2-
positive BC.  

 

CONCLUSIONS 
To sum up, we collectively noted                

potential therapeutic targets of CCA-1.1 (CMGs) 
that presumably contribute to mitosis:                    
AURKA, AURKB, CDK1, CHEK1, KIF11, TPX2              
PLK1, and MELK. This study also unfolded the 
association of CMGs in tumor immune infiltration 
with HER2-BC. However, further validation of the 
results of this study is required to refine the 
scientific evidence of the pharmacological effects of 
CCA-1.1 in BC. 
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