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Beta-blockers exert cardioprotective effects against heart failure. 
However, variability in therapeutic responses is associated with ADRB1 
variants. ADRB1 variants contribute to rate control and autonomic 
dysfunction.  Persistent hyperadrenergic stimulation contributes to the 
impairment of the pacemaker (SA node). HCN4 significantly influenced the 
regulation of heart rate in the pacemaker. Exploring the effect of beta-blockers 
on pacemaker cells is expanding the view of their cardioprotective effects in 
heart failure. The objectives of this review were to identify ADRB1 variants 
affecting heart rate response in heart failure patients receiving beta-blocker 
treatment and to explore the effect of beta-blockers on  HCN4/SA node. A 
systematic review was performed using three databases (Scopus, PubMed, 
and Science Direct). The inclusion criteria were English language and original 
manuscripts with relevant topics. The exclusion criteria were duplication and 
inaccessibility to the full text. Quality assessment tools were classified based 
on the use of research subjects and study designs, including NOS (cohort), 
SYRCLE (animal studies), and SciRAP (in vitro studies). Eight of 668 
manuscripts were selected. This review found that ADRB1 variants 
(A145G(Ser49Gly) and C1165G(Arg389Gly)) can affect heart rate response in 
beta-blocker-treated heart failure. The percentage of patients with Ser49Ser-
Gly389X (67%) who achieved the heart rate target was higher than that of the 
other haplotypes (48-52%). Among the responders, Arg389Arg required 
larger carvedilol equivalent daily doses of beta-blockers to reach the identical 
heart rate target than those with Gly389X (>50% (>25mg) versus ≤50% of the 
guideline-directed medical therapy (GDMT) target dose (≤25mg), 
respectively). In addition, this review found that beta-blockers demonstrated 
beneficial effects in regulating heart rate by inhibiting HCN-gated channels 
and improving channel regulation in the SA node. In general, this review 
provides important insights into beta-blockers in treating heart failure, 
specifically concerning the genetic variability of ADRB1 and the effect of beta-
blockers on SA node/HCN4. 
Keywords: Beta-blocker, ADRB1, HCN4, Heart Failure, Heart Rate 
 

 
INTRODUCTION 

Elevated heart rates in patients with heart 
failure are associated with a greater risk of poorer 
cardiovascular (CV) outcomes, including morbidity 
and mortality. The underlying pathophysiology of 
this condition is multifaceted. (Badu-Boateng et al., 
2018; Bauersachs & Veltmann, 2020; Docherty et 
al., 2020; Hesse, 2022; Vukadinovic  et al., 2017; 

Vollmert et al., 2020). Patients with heart failure 
tend to have higher resting heart rates due to 
neurohumoral compensation, which leads to 
increased sympathetic activity, decreased 
ventricular efficiency, and exacerbation of heart 
failure (Badu-Boateng et al., 2018; Hesse, 2022). 

Heart rate is a strong prognostic indicator of 
CV outcomes in heart failure (Heidenreich et al., 
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2022; Kurgansky et al., 2020; Zhang et al., 2016). 
European Society of Cardiology, American College 
of Cardiology,  American Heart Association Joint 
Committee, and Indonesian Heart Association 
recommend beta-blockers for controlling heart rate 
in heart failure. (Heidenreich et al., 2022; 
Hersunarti et al., 2020; McDonagh et al., 2021).  
Beta-blockers lower heart rate by decreasing 
neurohumoral activation, conserving myocardial 
energy, and lengthening the diastolic filling period 
(Hesse, 2022).  Beta-blockers bind to the Beta1-
adrenergic receptor (ADRB1) sites, which are 
expressed in cardiomyocytes. ADRB1 was 
dominant in the heart. ADRB1 accounts for 
approximately 70%, 80%, and 95% of cardiac 
tissue adrenergic receptors in the atria, ventricles, 
and sinoatrial (SA) nodes (Chevalier et al., 2023; 
Kelley et al., 2018). ADRB1 is crucial for 
chronotropic inotropic effects and work. ADRB1 
regulates the chronotropic-inotropic function and 
affects cardiac hemodynamic and cardiac ability to 
tolerate physical activity (Kelley et al., 2018; 
Lymperopoulos, 2013; Muslimova et al., 2022; 
Velmurugan et al., 2019). 

Beta-blocker is the primary treatment for 
heart failure, that provides cardiac protection from 
overstimulation of catecholamine and persistent 
ADRB signalling.  ADRB1 overexpression in the 
heart causes myocardial hypertrophy, necrosis, and 
apoptosis. Beta-blockers reduce these negative 
effects, ultimately improving heart function and 
reducing the risk of heart failure. Beta-blockers also 
demonstrate antiarrhythmic effects (Eriksen-
Volnes et al., 2020; Pathak & Mrabeti, 2021;                
Shah et al., 2017; Velmurugan et al., 2019). A lower 
heart rate (HR) in heart failure reduced ejection 
fraction (HFrEF) is associated with a better 
prognosis due to beta-blocker therapy(Hesse, 
2022; Velmurugan et al., 2019).  Achieving heart 
rate targets is crucial to prevent adverse 
cardiovascular outcomes. Approximately 19% of 
patients with HFrEF had higher heart rates and 
demonstrated a higher risk of hospitalization and 
mortality in the first six months after diagnosis 
(Kurgansky et al., 2020). However, responses to 
beta-blockers can vary among individuals 
(Kurgansky et al., 2020; Reddy, 2015; Thomas, 
2020).    

In heart failure, genetic variability may play 
a role in different responses to beta-blockers. The 
variability of the beta-blocker response in heart 
rate and left ventricular ejection fraction has been 
associated  with  single  nucleotide  polymorphisms  

(SNPs) (Guerra et al., 2022) of ADRB1 genetic 
variants, which contribute to autonomic 
dysfunction, arrhythmia, heart rate regulation, and 
survival (Dumeny et al., 2022; Guerra et al., 2022; 
Reddy, 2015; Thomas, 2020). In a failing heart, 
sustained stimulation of beta-adrenergic receptors 
can lead to deterioration of cardiac function. 
Persistent hyperadrenergic stimulation contributes 
to impairment of the SA node automaticity and 
depolarization potential (de Lucia et al., 2014; Du, 
2016; Masarone et al., 2021). 

The SA node expresses hyperpolarization-
activated cyclic nucleotide–gated (HCN) channels, 
which play a significant role in controlling 
autonomous rhythm, neuronal excitability, and 
heart rate (Depuydt et al., 2022; Hennis et al., 2022; 
Kashou A.H., Basit H, 2023). The HCN4 isoform has 
the highest expression level in the SA node 
compared to the other HCN isoforms. The 
regulation of the heart rate is significantly 
influenced by HCN4 (Hennis et al., 2022; Xu et al., 
2018). Recently, a carvedilol derivative (compound 
8a (SMU-XY3)) was shown to have an affinity for 
HCN4 and block HCN (Xu et al., 2018). The blockage 
of the HCN4 channel contributes to a reduction in 
heart rate  (Bueno-Levy et al., 2019) Therefore, 
exploring the impact of beta-blockers on 
pacemaker cells is expanding the view of their 
cardioprotective effects on heart failure. 

This systematic review aimed to identify 
ADRB1 genetic variants affecting heart rate 
response in beta-blocker-treated heart failure. 
Additionally, this review aimed to gain a 
comprehensive understanding of how beta-
blockers influence the heart rate associated with 
HCN channels and the function of  the SA node 
within the heart. 

 

METHODS 
Two researchers independently evaluated 

the manuscript (including screening, assessing the 
quality of manuscripts, and extracting data).   A 
third researcher was involved when there were 
discrepancies between the two researchers to 
reach a consensus for the final decision. 

The screening process was used to 
determine relevant and eligible studies using 
inclusion-exclusion criteria.  Quality assessment is 
a process used to assess article quality and the risk 
of bias (ROB).  Finally, the data were structurally 
extracted (Negarandeh & Beykmirza, 2020; Polanin 
et al., 2019; Tawfik et al., 2019; Xiao & Watson, 
2019). 
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Screening for inclusion 
A systematic review of beta-blockers and 

ADRB1 variant/HCN/SAN was performed 
according to the PRISMA flowchart of the Proffered 
Reporting Items for Systematic Reviews and Meta-
Analyses (Page et al., 2021).  Using two PICo 
frameworks (population/problem (P), phenomena 
of interest (I), and context (Co)) helped identify the 
research questions in this review. The first PICo (for 
the first review objective) was a beta-blocker-
treated heart failure (P), heart rate  (I), and ADRB1 
polymorphism/variant (Co). The second PICo was 
beta-blocker treatment (P), heart rate  (I), and HCN 
channels/SA nodes (Co). 

To obtain relevant publications on these two 
objectives, we searched three databases (Scopus, 
PubMed, and Science Direct) using two keywords. 
The first keywords were (("ADRB1") OR (“Β1 
ADRENERGIC RECEPTOR POLYMORPHISM”)) AND 
(("BETA BLOCKER") OR (“RATE CONTROL 
THERAPY”)) AND ((“HEART RATE”) OR (“HEART”) 
OR (“RATE”)). The second keywords were (("HCN") 
OR ("HCN4")) AND (("BETA BLOCKER") OR 
(“CARVEDILOL”) OR (“BISOPROLOL”) OR 
(“METOPROLOL”)) AND ((“HEART RATE”) OR 
(“RATE”) OR (“SINOATRIAL NODE”)). Publications 
were included in the systematic review according 
to the following inclusion criteria:  original 
manuscripts (published since 2012) written in 
English, manuscripts about   ADRB1 variants 
influencing heart rate response in beta-blocker-
treated heart failure (for the first review objective), 
and   the effect of beta-blockers on heart rate 
regulation associated with HCN activation/HCN 
expression/SA node function (for the second 
objective). The exclusion criteria were 
duplication/identical manuscripts retrieved from 
multiple databases and inaccessibility to the full 
text.  
 
Quality assessment 

Quality assessment tools were classified 
based on the research subjects and study designs 
used in the studies. The Newcastle-Ottawa Quality 
Assessment Scale (NOS) was used for human 
subject research with a cohort design. The NOS 
provided three domains (selection (SB), 
comparability (CB), and outcome (ED) domains) 
with nine criteria overall.  The NOS-scale was 
converted to the Agency for Healthcare Research 
and Quality (AHRQ) standard, which used a rating 
system of poor, fair, and good quality. According to 
this  rating  system,  a  study  was considered of poor  
 

quality if it received a rating of ≤2 stars. Specifically,  
a ≤2-star rating could be due to having 0-1                            
star in SB, 0 stars in CB, or 0-1 stars in the OD. A 
study was considered of fair quality if it                   
received a rating of 3-5 stars. This could be due to 
having 2 stars in SB, 1-2 stars in CB, and 2-3                   
stars in OD. Finally, a study was considered of good 
quality if it received a rating of ≥6 stars. Specifically, 
a study with a rating of ≥6 stars would have 3-4 
stars in SD, 1-2 stars in the CD, and 2-3 stars in OD 
(Ayubi et al., 2021; Wells et al., 2021). 

Animal and in vitro studies differ from 
human studies in many aspects (Hooijmans et al., 
2014; Tran et al., 2021). Therefore, the ROB 
assessment tool for systematic reviews was 
adapted. The Systematic Review Centre for 
Laboratory Animal Experimentation (SYRCLE) 
criteria were used to evaluate the ROB in                 
animal studies. The Science in Risk Assessment and 
Policy (SciRAP) tool was applied to assess the 
quality of in vitro studies (Almeida et al., 2021; 
Hooijmans et al., 2014; Roth et al., 2021; SciRAP, 
2018). 

The ROB in the animal study was evaluated 
using the SYRCLE tool, which consists of seven 
types of bias, 10 domains, and three judgment 
criteria. The judgment criteria were “yes” 
(indicates low ROB), “no”(high ROB), and 
“unclear”(insufficient details on the manuscript to 
assess ROB properly)(Hooijmans et al., 2014). 

SciRAP was used to assess the quality of in 
the vitro reports (SciRAP, 2018), which consisted of 
five assessment criteria with 23 checklist topics. 
The checklist included test compound (1), chemical 
purity (2), chemical solubility (3), solvent for test 
solution (4), solvent for control (5), test system (6), 
source of test system (7), metabolic competence 
(8), cell line (9), composition of media (10), 
incubation parameter (11), screening 
contamination (12), dose/concentration (13), cell 
density (14), duration of treatment (15), 
replication (16), analytical method (17), data 
collection (18), effect of the compound on 
cytotoxicity (19), result presentation (20), 
statistical methods (21), funding sources (22), and 
competing interests (23). The five assessment 
criteria were test compound (SciRAP topic number 
1-5), test system (6-12), administration of the test 
(13-16), data collection and analysis (17-21), and 
funding of competing interests (22-23). SciRAP 
score was indicated as the percentage of 
fully/partially fulfilled criteria included in the 
assessment (SciRAP, 2018).  
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Figure 1.  Prisma flowchart. 
Note: A = Records/reports based on Beta1-adrenergic receptor (ADRB1) keywords, H= Records based on 
Hyperpolarization-activated cyclic nucleotide-gated (HCN) keywords, HR = Heart Rate, P= Pubmed, SC= 
Scopus, SD = Science Direct, SA Node= sinoatrial node 
 
Table I. Quality of cohort studies. 
  

Study The quality criteria Total 
NOS 
Star 

Selection Comparability Outcome 
1 2 3 4 5 6 7 8 

(Abraham et al., 2022) * * * * * * * * ******** 
(Aleong, 2013) * * * * * * * * ******** 
(Fiuzat, 2013) *  * * * * * * ****** 
(Lee, 2016) *  * * * * * * ****** 
(Kao, 2013) * * * * * * * * ******** 
(Parvez et al., 2012) * * * * * * * * ******** 

 
Note: The Newcastle-Ottawa Quality Assessment Scale (NOS) criteria: 1=Ensuring that the exposed cohort 
is representative; 2=Selecting a suitable non-exposed cohort; 3=Accurately identifying exposure; 
4=Demonstrating that the outcome of interest was not present at the beginning of the study; 
5=Ensuring comparability of cohorts through design or analysis adjusted for confounders; 6=Assessment 
of outcome; 7= Having a sufficiently long follow-up period for outcomes to occur; 8=Adequacy of follow-up 
of cohorts. 
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Data extraction and analysis 
The data extraction target from each 

included manuscript was categorized as PICo, 
which included subject/research characteristics, 
beta-blocker agents, heart rate, and ADRB1 
variant/HCN channel/SA node.  To expand the role 
of beta-blockers, findings related to their 
cardioprotective effects were also extracted from 
the included manuscripts. Descriptive analysis was 
applied in this review.  

 

RESULTS AND DISCUSSION 
Eight of the 668 articles were selected for 

this systematic review (Figure 1).   Six studies were 
related to ADRB1, and the rest were related to HCN.  
To expand the view of the beta-blocker effect on the 
heart rate/HCN channels/SA node, there were no 
limitations to the research subjects. However, the 
subjects identified in the six manuscripts (Table I-
III) related to ADRB1 were humans (Ntotal =4143). 
All HF types of heart failure were included in this 
systematic review. Only non-human subjects were 
identified in the included studies related to the 
HCN/SA node (Table IV). 
 
The quality of included studies 

The outcomes of the quality evaluation 
(Table I and Figure 2) of the eight included studies. 
Six included studies  (Table I) were cohorts of 4143 
human subjects (Abraham et al., 2022; Aleong, 
2013; Fiuzat, 2013; Kao, 2013; Lee, 2016; Parvez et 
al., 2012). NOS criteria (Ayubi et al., 2021; Wells et 
al., 2021) were used to evaluate the quality of the 
included cohort studies. The rest (Figure 2) were 
non-human subject research, which included 
animal research (Du, 2016) and an in vitro cell line 
model (Cao et al., 2018). 

The quality of the included cohort studies 
was evaluated using the NOS criteria. Based on the 
NOS, all included cohort studies had scores of ≥6 
(Table I). Three of the six included cohort studies 
had no placebo-controlled groups (Table II) but 
compared wild-type and ADRB1 variants (Fiuzat, 
2013; Lee, 2016; Parvez et al., 2012). 

ROB in the included animal study  (Du, 2016) 
was evaluated using the SYRCLE tool. Six domains 
(sequence generation, allocation concealment, 
random housing, experimental blinding, random 
outcome assessment, and blinding outcome) had 
an unclear risk of bias (Figure 2A). Unclear 
judgment indicated insufficient details in the 
manuscript to properly evaluate ROB(Hooijmans et 
al., 2014). The rats were randomized to the 
treatment group. However, methods for sequence 

generation, allocation concealment, and random 
housing were unclear.  There was also no evidence 
as to whether the investigators or assessors had 
any knowledge of what rat group was the sham-
operated control group, heart failure group, or 
bisoprolol-treated heart failure group (Du, 2016). 
The remaining domains (baseline characteristics, 
incomplete outcome data, and selective outcome 
reporting) had a low risk of bias (Figure 2A). Other 
sources and problems of bias also have a low risk of 
bias. However, the research ethics committee’s 
reference number has not yet been reported (Du, 
2016). 

Five assessment criteria from  SciRAP with 
23 checklist topics (SciRAP, 2018) were used to 
assess the quality of the included in vitro study  
(Cao et al., 2018), with a SciRAP score of 93,18 
(Figure 2B). Item 19 of the 23 topics (impact of the 
test substance on cytotoxicity), was removed 
because it was not the focus of  this study (Cao et al., 
2018). With respect to the first criterion (test and 
control compounds) and the second criterion (test 
system), the in vitro study was assessed under the 
criteria associated with partially fulfilling the 
purity of the test compound and unidentified 
information on the screening of contamination. The 
remaining assessment elements were fulfilled 
(Figure 2B). 

 
ADRB1 and Beta-Blockers 

The choice of beta-blocker agent varied 
among the included studies.  In this systematic 
review, bisoprolol, carvedilol, atenolol, metoprolol, 
and bucindolol were used as rate-lowering 
therapies (Table II).  Sympatholytic drugs, such as 
beta-blockers, bind to ADRB1 sites and inhibit the 
binding of epinephrine and norepinephrine (NE) to 
the receptor sites (Farzam & Jan, 2022;                            
Libby et al., 2021). ADRB1  is  a member of  the G 
protein-coupled receptor (GPCR) family, known             
as rhodopsin-type (class A). It requires 
catecholamines such as epinephrine and NE 
to become activated. (Chen et al., 2022; 
Velmurugan et al., 2019). Activation is initiated by 
the release of epinephrine from the adrenal 
medulla and NE  from cardiac sympathetic nerves 
(Grandi & Ripplinger, 2019; Oe et al., 2020).  
Activation of GPCRSs initiates the stimulation of 
adenylyl cyclase (AC), causing an increase in            
cyclic adenosine monophosphate (cAMP) 
accumulation, which in turn leads to the activation 
of protein kinase A (PKA) dependent on cAMP.           
PKA leads to phosphorylation of phospholamban  
to  accelerate  sarcoplasmic  reticulum  Ca2+ uptake.  
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This contributes to an increase in heart rate. 
Membrane ion channels (including the Na+/Ca2+ 
exchanger and HCN channels) and spontaneous 
local Ca2+ release are also required for the PKA-
dependent mechanism of the cardiac rhythmic 
action potential.  When the activity of AC in the 
sinoatrial node increases, it results in a faster heart 
rate (Behar et al., 2016; Liu et al., 2022). The 
sympathetic effect of ADRB1 increased heart rate 
(positive chronotropic effect).  Beta-blockers block 
this pathway, resulting in decreased heart rate 
(negative chronotropic effect) (Felker & Mann, 
2019; Tucker et al., 2023). 

Beta-blockers reduced the heart rate  and 
prevented ventricular arrhythmias, such as 
ventricular tachycardia (VT) and ventricular 
fibrillation (VF), in heart failure (Table II). VT/VF 
are prevalent in patients with chronic heart failure 
and HFrEF(Aleong, 2013). VT/VF increase the 
mortality risk and other adverse cardiovascular 
outcomes (Al-Khatib et al., 2018; Aleong, 2013). 
Beta-blockers such as bucindolol prevent the 
incidence of VT or VF in HFrEF (Aleong, 2013).            
VT is defined as ventricular arrhythmia                            
with ≥ three consecutive beats at a rate of                              
≥ 100  beats  per minutes  (bpm) (Foth et al., 2018).  

 
 

Figure 2. Reporting quality assessment of included studies: (A) SYRCLE, (B) SciRAP  
 

Note: Quallity assessment  in the included animal study  (Du, 2016) and in vitro study (Cao et al., 2018) consecutively 
were evaluated using the SYRCLE  and SciRAP  criteria. SYRCLE judgment was 3= “Yes” indicates a low risk of bias (ROB); 
2= “No” shows a high ROB; and 1=“unclear” means an unclear ROB.  SciRAP weighted score criteria)  wa indicated with 
the color profile (green bar=fulfilled; yellow=partially fulfilled; red=not fulfilled; grey=not determined). 
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A high resting heart rate significantly 
increases the likelihood of negative outcomes in 
individuals diagnosed with HFrEF. Patients with 
HFrEF and sinus rhythm who had heart 
rates ≥ 70 bpm in the past 6 months exhibited 
significantly higher rates of hospitalization for 
heart failure, hospitalization for any cause, and 
mortality rates of 51%, 25%, and 36%, respectively 
(Kurgansky et al., 2020). Meanwhile, in patients 
with HFrEF and atrial fibrillation, achieving a 
resting heart rate of ≤80 bpm significantly reduces 
the risk of cardiovascular hospitalization and 
mortality(Kao, 2013). Therefore, achieving a target 
heart rate is crucial for obtaining beneficial 
treatment effects, including all-cause 
hospitalization/mortality (Kao, 2013). 

Nevertheless, approximately 50% of 
patients with congestive heart failure and atrial 
fibrillation were unable to achieve the heart rate 
target set by the Atrial Fibrillation Follow-up 
Investigation of Rhythm Management (AFFIRM) 
criteria, and approximately 9% of patients with 
chronic heart failure had a high heart rate 
associated with VT/VF  (Table II). Beta-blocker 
response variability may be due to genetic factor, 
medical history, and NE levels (Abraham et al., 
2022; Parvez et al., 2012). Higher NE levels indicate 
increased sympathetic drive (Borovac et al., 2020).  

ADRB1 genetic polymorphisms can cause 
variability in the rate-control response. This 
systematic review identified two ADRB1 SNPs in 
cardiomyocytes. These germline genetic variants 
were A145G and C1165G (Table II), which resulted 
in amino acid substitutions of serine for glycine at 
position 49 (Ser49Gly) and arginine for glycine at 
position 389 (Arg389Gly), respectively (NCBI, 
2022, 2023).  The Ser49Gly frequency was 16,45% 
(Southeastern Europe), 12-16% (Asians and 
Caucasians), and 13-28% (African-Americans). 
Arg389Gly frequency was 42,60 % (South-eastern 
Europe), 24-34% (Asians and Caucasians), and 39-
46% (African-Americans) (Katsarou et al., 2018; 
Parvez et al., 2012). Allele frequencies in all 
populations were 16,74% (Ser49Gly) and 30,39 % 
(Arg389Gly) (Whirl-Carrillo et al., 2021).  

The reduction in heart rate was greater with 
Gly389X (Gly389Arg + Gly389Gly). Interestingly, 
significantly higher carvedilol equivalent doses of 
beta-blockers  (Table II-III) were required to 
achieve benefits in the Arg389Arg genotype (>50% 
the guideline-directed medical therapy (GDMT)  
target dose) than in the Gly389X (Gly389Arg                      
+  Gly389Gly)  group   (≤50%   of   the  GDMT   dose).   

The GDMT dose for carvedilol is either 25 mg twice 
daily (<85 kg body weight) or 50 mg twice daily 
(≥85 kg body weight) ((Maddox et al., 2021). 
Glycine substitution for arginine at position 389-
position reduced ADRB1 sensitivity.   It attenuates 
receptor function, produces less constitutive 
activity, decreases the affinity for NE, and results in 
less responsiveness to sympathetic stimulation. In 
contrast, ADRB1 Arg389Arg promotes coupling to 
Gs, accelerates ADRB1 activity, and produces 
greater sympathetic activity (Filigheddu, 2013; 
Kao, 2013; Lee, 2016). Hence, administration of a 
higher dose of beta-blockers to heart failure 
patients with the Arg389Arg genotype to achieve a 
response to treatment compared to those with 
Gly389X (as shown in Table III) was recommended. 

Rate-control treatment for heart failure with 
atrial fibrillation required a higher dose of 
bucindolol than in those with sinus rhythm (Table 
II-III, Abraham et al., 2022). The discrepancy in the 
required dose of bucindolol between patients with 
AF and sinus rhythm could be explained by the 
difference in baseline norepinephrine (NE) levels 
(Abraham et al., 2022; Liggett et al., 2006). NE 
levels in patients with AF, as shown in Table II, were 
higher than those in patients with sinus rhythm. 
However, in another study (Kao, 2013), the dose of 
beta-blockers administered to patients with sinus 
rhythm was greater than that administered to 
patients with AF (Table II-III). This finding is in 
contrast with that reported by Liggett et al. (2006). 
Therefore, a change in resting heart rate was not 
significant in patients with HFrEF atrial fibrillation 
in a study conducted by Kao (2013). NE levels in the 
body are linked to both the severity of heart failure 
and degree of left ventricular dysfunction (Borovac 
et al., 2020; Thomas & Marks, 1978; Wu et al., 
1995). Patients with congestive heart failure had 
higher plasma NE levels than those without, 
indicating that their sympathetic nerve activity 
(SNA) was overactive. In patients with congestive 
heart failure, the amount of NE spillover in the 
heart increases significantly, reaching up to 540%, 
when compared to individuals without heart  
failure (Borovac et al., 2020; Hasking et al., 1986). 
NE levels in severe, moderate, and mild congestive 
heart failure increased by 3.7, 2.6, and 2.0, 
respectively, compared with the control             
(Thomas & Marks, 1978; Wu et al., 1995).  
Increased NE spillover associated with                  
elevated cardiac SNA augments the risk of 
morbidity and mortality in heart failure (Borovac  
et   al.,   2020;    Ramchandra     &     Barrett,   2015).  
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Persistent atrial fibrillation with more severe left 
ventricle dysfunction and more advanced heart 
failure is associated with higher NE (Abraham et al., 
2022). 

Patients with heart failure and atrial 
fibrillation or sinus rhythm showed similar 
outcomes (Table II).  NE levels may be reduced with 
beta-blocker therapy (Abraham et al., 2022; Liggett 
et al., 2006). Beta-blockers attenuated SNA, where 
beta-blockers reduced plasma NE levels in        
subjects with LVEF <45% and NYHA class II-IV  
after one month of therapy (Figueiredo neto et al., 
2004). 

ADRB1 variants at 389 position could be 
associated with heart rate response to beta-blocker 
therapy (Table II). However, the results were mixed 
in heart failure patients, including the pattern of 
alteration (increase or decrease in heart rate) and 
the level of significance within a statistical test (p-
value). This systematic review also identified 
ADRB1 variants at 49 position that are associated 
with the heart rate response in beta-blocker-
treated heart failure (Table II). Patients with 
homozygous Gly389X and Ser49Ser genetic 
variations appear to have a higher success rate in 
achieving the heart rate target compared to those 
with Arg389Arg and Gly49X genetic variations. In 
atrial fibrillation with hypertension/coronary 
artery disease/congestive heart failure, a similar 
pattern was observed in the Ser49Ser-Gly389X 
haplotype. Among the responder, the percentage of 
achieving the heart rate target was higher for 
Ser49Ser-Gly389X (67%) than for the other 
haplotypes(48-52%). The percentage of patients 
with the Ser49Ser-Gly389X haplotype that 
achieved the target heart rate was significantly 
different from that of the other haplotypes (Parvez 
et al., 2012). Based on an in vitro test using HEK 293 
cells, the Ser49Ser-Gly389X haplotype showed the 
lowest cAMP level at baseline and throughout the 
agonist (isoproterenol)-stimulated response 
(Sandilands & O’Shaughnessy, 2005).  

Achieving a heart rate target is crucial. 
Without achieving a resting heart rate of ≤80 bpm 
in heart failure patients with atrial fibrillation, 
there were insignificant treatment effects on 
cardiovascular hospitalization and mortality. A 
similar finding was also observed in sinus rhythm, 
in which the target rate control was not achieved 
(Kao, 2013). Younger age, larger body mass index, 
larger body weight, and lower B-type natriuretic 
peptide  levels  were  significantly  associated   with  
 

higher carvedilol-equivalent doses (Cohen-Solal et 
al., 2017). The ADRB1 variant is also related to 
beta-blocker dose requirement. Arg389Arg 
contributes to significant cardiovascular outcomes. 
Low dose of beta-blockers  for Arg389Arg were 
related to a two-fold increase in hospital 
readmission, a double risk of mortality, and a worse 
quality of life. (Fiuzat, 2013; Parikh, 2018).  
 
SA Node, HCN and beta-blocker 

A beta-blocker role in the SA node and HCN 
was identified in two studies (Table IV). Beta-
blockers were beneficial for inhibiting HCN-gated 
channels (Cao et al., 2018) and improving ion 
channel regulation in the SA Node (Du, 2016). 

An in vitro study in CHO cells demonstrated 
that carvedilol reduced the elevated  heart rate by 
blocking HCN1, HCN2, and HCN4 channels (Table 
IV). The effect of carvedilol on HCN4 was   not 
associated   with ADRB1 blocking property and 
cAMP sensitivity. Carvedilol blocks HCN4 
expression in cAMP-insensitive mutant channels. 
The inhibitory effect on HCN4 channels was 
concentration-dependent. In contrast to 
ivabradine, carvedilol blocks the HCN-SA Node 
through a different mechanism (Bucchi et al., 2006; 
Cao et al., 2018; Hackl et al., 2022). Carvedilol is a 
direct blocker of HCN channels.  It is an HCN 
channel-negative-gating modulator. Carvedilol 
reduced the activation rate and accelerated channel 
deactivation. A threefold decreased activation           
rate at -120 mV and shifted activation leftwards                         
(-26.8 ± 1.8 mV on HCN4 as compared to                    
control) was demonstrated by carvedilol (Cao et al., 
2018). Meanwhile,  ivabradine lowers diastolic 
depolarization and heart rate by attaching to the 
HCN4 channel's internal cavity (Hackl et al., 2022; 
Hennis et al., 2021) . Ivabradine is an inhibitor of 
open-HCN4 channels. As a result, ivabradine has an 
effect when the channels are opened. In the closed 
state, ivabradine cannot reach its site of action 
(Bucchi et al., 2006; Cao et al., 2018; Hackl et al., 
2022)). cAMP directly activates HCN channels, 
whereas  PKA promotes HCN4 channel activity 
(Hackl et al., 2022; Kawada et al., 2019) . 

Bisoprolol demonstrated cardioprotective 
effects by improving SA-Node function in failing 
hearts (Table IV). Chronic beta-blocker therapy  
was beneficial in restoring the cardiac toxic              
effect upon persistent catecholamine          
stimulation. Catecholamine is cardiotoxic as it 
causes myocardial damage (Masarone et al., 2021).  
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In a failing heart, an increase in catecholamine 
levels leads to sustained beta-adrenergic receptor 
stimulation, with consequent dysfunction (Du, 
2016; Masarone et al., 2021). The chronic and 
persistent hyperadrenergic state alters the 
molecular characterization of the signalling 
pathway component of the beta-adrenergic 
receptor, resulting in ionic current remodelling. 
Impaired SA node automaticity and depolarization 
potential are contributed by ionic current 
remodelling in heart failure (Du, 2016). 

This systematic review revealed that 
bisoprolol restored the diminished function of the 
SA nodes in failing hearts (Table IV). Long-term 

bisoprolol treatment reversed the downregulation 
of HCN4 and sodium channels. Bisoprolol protects 
the beta-adrenergic receptor from overstimulation 
(Du, 2016). Carvedilol has also demonstrated 
cardioprotective effects. Chronic carvedilol           
therapy improves calcium handling in heart          
failure and restores sodium channel function. 
Calcium channel dysregulation may be responsible 
for the decreased sodium current. Carvedilol 
normalizes calcium regulatory proteins in 
cardiomyocytes, improves the structure and 
function of the cardiac calcium-release                  
channel, and decreases calcium influx through                                 
L-type   calcium   channels   (Maltsev   et  al.,  2002). 

Table III. Beta-blockers dose between genotypes  
 

Study (N Total) 
Final Dose  (beta- blocker),  n (%) 

Arg389Arg Gly389X Result 
(Aleong, 2013) 
• N=1040 
 

BEST protocol: 
≥75kg weight: 200mg/day 
<75kg weight:100mg/day 

(Bucindolol) 
n=493 (47%) 

BEST protocol: 
≥75kg weight: 200mg/day 
<75kg weight:100mg/day 

(Bucindolol) 
n=547 (53%) 

At a similar dose, the 
incidence of high HR 
associated with VT/VF 
was higher for 
Arg389Arg 
than Gly389X. 

(Abraham et al., 
2022) 
• N=511 
 

SR/AF : 
157.93± 51.00   mg/day 

(Bucindolol) 
n=388 (75%) 

SR/AF : 
33.59± 11.40 

mg /day 
(CEDB) 

n=123 (24%) 

N/A N/A 

(Fiuzat, 2013), 
• N=957 
 
 

LD, HD (CEDB) 
 

There was an interaction 
between the dose and 

outcome, therefore HD was 
recommended. 
n=439 (46%) 

LD, HD (CEDB) 
 

The interaction between     
beta-blocker dose and outcome 
were not observed in Gly389x. 

n=518 (54%) 

To achieve a benefit 
similar to Gly389x, 
Arg389Arg requires a 
higher dose of beta-
blockers. 
 

(Lee, 2016),  
• N=82 
 

26.30±13.10 
(CEDB) 

n=52 (63%) 

19.80±10.25 
(CEDB) 

n=30 (37%) 

Arg389Arg required a 
larger dose to achieve 
similar HR reduction. 
 

(Parvez et al., 
2012),  
• N=513 

27.06±8.73 
(CEDB) 

n=270 (53%) 

19.61±2.01 
(CEDB) 

n=243 (47%) 

Among responders, a 
higher dose was 
required for Arg389Arg 

 
Note : AF= atrial fibrillation; BEST= Beta-Blocker Evaluation Survival Trial(Aleong, 2013; BEST, 1995); Final dose = CEDB 
(:carvedilol equivalent daily doses  of beta-blocker) or bucindolol (:bucindolol final dose);  LD-CEDB: =  low-dose 
(≤25mg daily); HD-CEDB=high-dose (>25 mg) daily;   HR= heart rate;  HD= high-dose; LD = low-dose; SR=sinus rhythm;  
N/A=  not available;  
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Overall, this systematic review provides important 
insights into the role of beta-blockers in heart 
failure treatment, particularly in the context of 
ADRB1 genetic variability and its impact on the SA 
node and HCN4 channels. These findings can 
inform future research and improve our 
understanding of the mechanisms underlying heart 
failure and its treatments. 

 

LIMITATIONS OF THE STUDY 
This systematic review study has inherent 

limitations in measuring the summary effect size. 
Therefore, a meta-analysis with more 
comprehensive and homogenous data is required 
for further exploration. The use of medical subject 
headings (MeSH) may facilitate the retrieval of 
relevant manuscripts for meta-analyses. 

 

CONCLUSION 
ADRB1 genetic variants affecting heart rate 

response in heart failure patients receiving beta-
blocker therapy were ADRB1 A145G (Ser49Gly) 

and C1165G (Arg389Gly). Patients with the 
Ser49Ser-Gly389X haplotype had a higher 
probability (approximately 67%) of achieving the 
heart rate target than those with other haplotypes 
(48-52%). Among responders, patients with the 
Arg389Arg genotype required an expanded sum of 
carvedilol equivalent daily doses of beta-blockers 
to reach the indistinguishable heart rate target, 
compared to those with Gly389x (>50% (>25mg) 
versus ≤50% of GDMT dose (≤25mg), respectively). 
The necessity of a high-dose beta-blocker for 
Arg389Arg was demonstrated in all included 
studies.  

Beta-blockers also demonstrated a 
beneficial effect in regulating heart rate by 
inhibiting HCN-gated channels and improving ion 
channel regulation in the SA Node (by reversing the 
downregulation of the HCN4 and sodium channel). 
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Table IV. In vitro and animal study of beta-blocker effect on SA node and HCN4 
 

Study, 
Country 

Beta blocker, Groups (n), Experimental Approach Results 

(Cao et al., 
2018), 
-China. 

- Carvedilol 
- Three groups: 
I : HCN1 (6 cells).  
II : HCN2 (6 cells).  
III : HCN4 (6 cells). 
The effects were recorded in the absence (control) and 
presence (treatment) of carvedilol. 

- Procedures: 
a. Transfection: HCN channels cDNAs into CHO cells. 
b. Whole-cell patch-clamp electrophysiological 
technique for recording the effect of carvedilol on HCN 
currents. 

 

In vitro study in CHO cells 
demonstrated that carvedilol 
blocked HCN1, HCN2, and HCN4 
channels by decreasing the 
channel activation rate and 
shifting the voltage-dependence 
of activation leftward (p<0.05 vs. 
control). 
Therefore, carvedilol reduced 
the elevated heart rate. 
 
 

(Du, 016), 
-China. 
 

- Bisoprolol 
- Three groups of 48 rats:  
I : Heart failure (16 rats (33%))   
II : Heart failure with bisoprolol treatment (17 (36%)) 
III : Sham-operated control group (15(31%))  

- Procedures: 
a. Intrinsic heart rate and SA node recovery time were 
recorded using the BL-420s System.  
b. Laser capture microdissection for isolating SAN cells 
c. Real-time PCR to quantify mRNA expression of HCN 
and sodium channels in SA Node   

Chronic treatment with 
bisoprolol in heart failure rats 
improved the intrinsic heart rate 
and SA node recovery time 
(p<0.01 vs control). 
Treatment with bisoprolol 
restored SA Node function by 
reversing the downregulation of 
HCN4 and sodium channels 
(Nav1.6 and Nav1.1). 

 

Note: cDNA= complementary DNA;  HF = heart failure; HCN= hyperpolarization-activated cyclic nucleotide-gated 
(subunit HCN1 HCN2, HCN4);SA node= sinoatrial node;  mRNa=messenger RNA, vs=versus. 
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