Antiplasmodial activity and genome mining study of marine-derived Streptomyces sp. GMY01
Abstract
High resistance to chloroquine in most malaria-endemic area in the world leads to the need for new antimalaria drugs. Marine bacterium Streptomyces is the source for potential new antimalarial molecules. This research aimed to investigate antiplasmodial activity of marine-derived of Streptomyces sp. GMY01 and to identify potential active compounds using genome mining study. In vitro antiplasmodial activity assays using flow cytometry method showed that the ethyl acetate extract of this bacterium had high antiplasmodial activity (IC50 value of 1.183 µg/mL) on Plasmodium falciparum FCR3. Genome mining analysis of whole-genome sequences using antiSMASH 6.0 beta version revealed that Streptomyces sp. GMY01 had 28 biosynthetic gene clusters (BGCs), including the genes encoding polyketide synthase, non-ribosomal peptide synthetase, terpene, lanthipeptide, bacteriocin, butyrolactone, ectoin, siderophore, and others. The known BGCs were predicted to be involved in the production of known compounds from gene clusters ranged from 5 to 100% similarity. Ongoing purification and elucidation of the structures will allow identification of the active compounds produced by marine-derived Streptomyces sp. GMY01.
References
Vega-Rodríguez J, Pastrana-Mena R, Crespo-Lladó KN, Ortiz J, Ferrer-Rodríguez I, Serrano AE. Implications of glutathione levels in the Plasmodium berghei response to chloroquine and artemisinin. PLoS One 2015;10: 1-15.
https://doi.org/10.1371/journal.pone.0128212
Harinantenaina RL, Rasolomampianina R, Park HY, Li J, Slebodnik C, Brodie PJ, et al. Antiproliferative and antiplasmodial compounds from selected Streptomyces species. Bioorganic Med Chem Lett 2015; 25: 5646-9.
https://doi.org/10.1016/j.bmcl.2015.07.103
Antony HA, Parija SC. Antimalarial drug resistance: An overview, 2016. Trop Parasitol 2016; 6(1):30-41.
https://doi.org/10.4103/2229-5070.175081
Vale N, Aguiar L, Gomes P. Antimicrobial peptides: a new class of antimalarial drugs? Front. Pharmacol 2014; 5: 275.
https://doi.org/10.3389/fphar.2014.00275
Cui L, Miao J, Cui L. Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species. Antimicrob. Agents Chemother 2007; 51: 488-94.
https://doi.org/10.1128/AAC.01238-06
Sumanadasa SDM, Goodman CD, Lucke AJ, Skinner-Adams T, Saham I, Haque A, et al. Antimalarial activity of the anticancer histone deacetylase inhibitor SB939. Antimicrob. Agents Chemother 2012; 56: 3849-56.
https://doi.org/10.1128/AAC.00030-12
Isaka M, Jaturapat A, Kramyu J, Tanticharoen M, Thebtaranonth Y. Potent in vitro antimalarial activity of metacycloprodigiosin isolated from Streptomyces spectabilis BCC 4785. Antimicrob Agents Chemother 2002 Apr; 46(4): 1112-3.
https://doi.org/10.1128/AAC.46.4.1112-1113.2002
Intaraudom C, Bunbamrung N, Dramae A, Danwisetkanjana K, Rachtawee P, Pittayakhajonwut P. Antimalarial and antimycobacterial agents from Streptomyces sp. BCC27095. Tetrahedron Lett 2015; 56: 6875-7.
https://doi.org/10.1016/j.tetlet.2015.10.098
Choi SS, Kim HJ, Lee HS, Kim P, Kim ES. Genome mining of rare actinomycetes and cryptic pathway awakening. Process Biochemistry 2015; 50:1184-93.
https://doi.org/10.1016/j.procbio.2015.04.008
Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, et al. Metabolic engineering of antibiotic factories: New tools for antibiotic production in actinomycetes. Trends Biotechnol 2015; 33: 15-26.
https://doi.org/10.1016/j.tibtech.2014.10.009
Undabarrena A, Ugalde JA, Seeger M, Cámara B. Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. PeerJ 2017; 5: e2912.
https://doi.org/10.7717/peerj.2912
Schneider O, Simic N, Aachmann FL, Rückert C, Kristiansen KA, Kalinowski J, Jiang Y, Wang L, Jiang C-L, Lale R, Zotchev SB. Genome mining of streptomyces sp. Yim 130001 isolated from lichen affords new thiopeptide antibiotic. Front Microbiol 2018; 9: 1-12.
https://doi.org/10.3389/fmicb.2018.03139
Xu XN, Chen LY, Chen C, Tang YJ, Bai FW, Su C, Zhao XQ. Genome mining of the marine actinomycete Streptomyces sp. DUT11 and discovery of tunicamycins as anti-complement agents. Front Microbiol 2018; 9: 1-16.
https://doi.org/10.3389/fmicb.2018.01318
Farida Y, Widada J, Meiyanto E. Combination methods for screening marine actinomycetes producing potential compounds as anticancer. Indones J Biotechnol 2007;12: 988-97.
Herdini C, Hartanto S, Mubarika S, Hariwiyanto B, Wijayanti N, Hosoyama A, et al. Diversity of nonribosomal peptide synthetase genes in the anticancer producing actinomycetes isolated from marine sediment in indonesia. Indones J Biotechnol 2015; 20: 34.
https://doi.org/10.22146/ijbiotech.15266
Werdyani S, Wijayanti N, Fitria A, Rahmawati S. Cytotoxic effects of ethyl acetate fractions from secondary metabolites of Streptomyces Sp. GMY01 on human breast cancer MCF7 cell lines. Asian J Pharm Clin Res 2017;10: 9-11.
https://doi.org/10.22159/ajpcr.2017v10s3.21351
Trager W, Jensen JB. Human malaria parasites in continuous culture. Science 1976 Aug 20;193(4254):673-5.
https://doi.org/10.1126/science.781840
Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol 1979 Jun;65(3):418-20.
https://doi.org/10.2307/3280287
Rebelo M, Sousa C, Shapiro HM, Mota MM, Grobusch MP, Hänscheid T. A novel flow cytometric hemozoin detection assay for real-time sensitivity testing of Plasmodium falciparum. PLoS One 2013 Apr 24;8(4):e61606.
https://doi.org/10.1371/journal.pone.0061606
Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. AntiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47(W1):W81-7.
https://doi.org/10.1093/nar/gkz310
Sanz LM, Crespo B, De-Cózar C, Ding XC, Llergo JL, Burrows JN, García-Bustos JF, Gamo FJ. Plasmodium falciparum in vitro killing rates allow to discriminate between different antimalarial mode-of-action. PLoS One 2012;7(2):e30949.
https://doi.org/10.1371/journal.pone.0030949
Das A. Anticancer effect of antimalarial artemisinin compounds. Ann Med Health Sci Res 2015;5(2):93-102.
https://doi.org/10.4103/2141-9248.153609
Paulus C, Rebets Y, Tokovenko B, Nadmid S, Terekhova LP, Myronovskyi M, et al. New natural products identified by combined genomics-metabolomics profiling of marine Streptomyces sp. MP131-18. Sci Rep 2017; 7: 1-11.
https://doi.org/10.1038/srep42382
Hamamoto H, Urai M, Ishii K, Yasukawa J, Paudel A, Murai M, et al. Lysocin e is a new antibiotic that targets menaquinone in the bacterial membrane. Nat Chem Biol 2015; 11(2):127-33.
https://doi.org/10.1038/nchembio.1710
Shao L, Zi J, Zeng J, Zhan J. Identification of the herboxidiene biosynthetic gene cluster in Streptomyces chromofuscus ATCC 49982. Appl Environ Microbiol 2012;78:2034-8.
https://doi.org/10.1128/AEM.06904-11
Kappner M, Hasenböhler A, Zähner H. Stoffwechselprodukte von mikroorganismen. Arch Microbiol 1977 Dec 15;115(3):323-31.
https://doi.org/10.1007/BF00446459
Li L, Deng W, Song J, Ding W, Zhao QF, Peng C, et al. Characterization of the saframycin a gene cluster from Streptomyces lavendulae NRRL 11002 revealing a nonribosomal peptide synthetase system for assembling the unusual tetrapeptidyl skeleton in an iterative manner. J Bacteriol 2008;190(1):251-63.
https://doi.org/10.1128/JB.00826-07
Gerber NN, Lechevalier HA. Geosmin, an earthy-smelling substance isolated from Actinomycetes. Appl Microbiol 1965; 13(6):935-8.
https://doi.org/10.1128/AEM.13.6.935-938.1965
Matsuo Y, Kanoh K, Jang JH, Adachi K, Matsuda S, Miki O, et al. Streptobactin, a tricatechol-type siderophore from marine-derived streptomyces sp. YM5-799. J Nat Prod 2011; 74(11):2371-6.
https://doi.org/10.1021/np200290j
Wei F, Wang Z, Lu C, Li Y, Zhu J, Wang H, et al. Targeted discovery of pentaketide ansamycin aminoansamycins A-G. Org Lett 2019; 21(19):7818-7822.
https://doi.org/10.1021/acs.orglett.9b02804
Graf R, Anzali S, Buenger J, Pfluecker F, Driller H. The multifunctional role of ectoine as a natural cell protectant. Clin Dermatol 2008;26(4):326-33.
https://doi.org/10.1016/j.clindermatol.2008.01.002
Maxson T, Tietz JI, Hudson GA, Guo XR, Tai HC, Mitchell DA. Targeting reactive carbonyls for identifying natural products and their biosynthetic origins. J Am Chem Soc 2016 23;138(46):15157-15166.
https://doi.org/10.1021/jacs.6b06848
Giessen TW, Franke KB, Knappe TA, Kraas FI, Bosello M, Xie X, et al. Isolation, structure elucidation, and biosynthesis of an unusual hydroxamic acid ester-containing siderophore from actinosynnema mirum. J Nat Prod 2012; 75(5):905-14.
https://doi.org/10.1021/np300046k
Kodani S, Bicz J, Song L, Deeth RJ, Ohnishi-Kameyama M, Yoshida M, et al. Structure and biosynthesis of scabichelin, a novel tris-hydroxamate siderophore produced by the plant pathogen Streptomyces scabies 87.22. Org Biomol Chem 2013;11(28):4686-94.
https://doi.org/10.1039/c3ob40536b
Lin X, Cane DE. Biosynthesis of the sesquiterpene antibiotic albaflavenone in streptomyces coelicolor. mechanism and stereochemistry of the enzymatic formation of epi-isozizaene. J Am Chem Soc 2009; 131(18):6332-3.
https://doi.org/10.1021/ja901313v
Lai Z, Yu J, Ling H, Song Y, Yuan J, Ju J, et al. Grincamycins i-k, cytotoxic angucycline glycosides derived from marine-derived actinomycete Streptomyces lusitanus SCSIO LR32. Planta Med 2018 Feb;84(3):201-207.
https://doi.org/10.1055/s-0043-119888
Alberti F, Leng DJ, Wilkening I, Song L, Tosin M, Corre C. Triggering the expression of a silent gene cluster from genetically intractable bacteria results in scleric acid discovery. Chem Sci 2018; 10(2):453-463.
https://doi.org/10.1039/C8SC03814G
Baskar V, Madhanraj P, Kanimozhi K, Panneerselvam A. Characterization of carotenoids from Streptomyces sp. of marine and fresh water environment. Arch Appl Sci Res 2010, 2 (6): 380-388.
Kishi K, Yazawa K, Takahashi K, Mikami Y, Arai T. Structure-activity relationships of saframycins. J Antibiot (Tokyo) 1984; 37(8):847-52.
https://doi.org/10.7164/antibiotics.37.847
Kaneda S, Hour-Young C, Yazawa K, Takahashi K, Mikami Y, Arai T. Antitumor activity of new semisynthetic saframycin derivatives. Jpn J Cancer Res 1986; 77(10):1043-9.
Yashiro T, Sakata F, Sekimoto T, Shirai T, Hasebe F, Matsuda K, et al. Immunosuppressive effect of a non-proteinogenic amino acid from Streptomyces through inhibiting allogeneic T cell proliferation. Biosci Biotechnol Biochem 2019; 83(6):1111-1116.
https://doi.org/10.1080/09168451.2019.1591262
Sadaka C, Ellsworth E, Hansen PR, Ewin R, Damborg P, Watts JL. Review on abyssomicins: inhibitors of the chorismate pathway and folate biosynthesis. Molecules 2018; 23(6):1371.
https://doi.org/10.3390/molecules23061371
Sharma I, Sullivan M, McCutchan TF. In vitro antimalarial activity of novel semisynthetic nocathiacin I antibiotics. Antimicrob Agents Chemother 2015;59(6):3174-9.
https://doi.org/10.1128/AAC.04294-14
Pradines B, Rogier C, Fusai T, Mosnier J, Daries W, Barret E, et al. In vitro activities of antibiotics against Plasmodium falciparum are inhibited by iron. Antimicrob Agents Chemother 2001; 45(6):1746-50.
https://doi.org/10.1128/AAC.45.6.1746-1750.2001
Mbaba M, de la Mare JA, Sterrenberg JN, Kajewole D, Maharaj S, Edkins AL, et al. Novobiocin-ferrocene conjugates possessing anticancer and antiplasmodial activity independent of HSP90 inhibition. J Biol Inorg Chem 2019; 24(2):139-149.
https://doi.org/10.1007/s00775-018-1634-9
Pavić K, Rubinić B, Rajić Z, Fontinha D, Prudêncio M, Uzelac L, et al. Primaquine homodimers as potential antiplasmodial and anticancer agents. Bioorganic Med Chem Lett 2019; 29(19):126614.
https://doi.org/10.1016/j.bmcl.2019.08.018
Van Huijsduijnen RH, Guy RK, Chibale K, Haynes RK, Peitz I, Kelter G, et al. Anticancer properties of distinct antimalarial drug classes. PLoS One 2013; 8(12):e82962.