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ABSTRACT The slopes of Mount Merapi (Mt. Merapi) are an area prone to hydrological disasters due to elevation and orography. Hydrological

disasters that have the potential to occur include floods, erosion, landslides, and drought which are closely related to extreme rainfall. Spatial and

temporal variability of rainfall in mountainous areas requires rainfall data that can represent rainfall events. Therefore, this research aims to obtain

the reliability of satellite rainfall data in the extreme rainfall indices. The CHIRPS, GPM-IMERG FINAL (IMERG-F) and GPM-IMERG LATE (IMERG-L) will

be used in the reliability analysis of satellite-based rainfall compared to observed rainfall station. To validate satellite rain data, statistical criteria are

utilized with parameters such as Correlation Coefficient (R), Root Mean Squared Error (RMSE), and Relative Bias (RB). Satellite-based rainfall estimates

have a weak to moderate correlation (0.19 – 0.55), the RMSE value is relatively good (12.18 – 31.35 mm) and the observed bias tends to underestimate

the estimated values. The capabilities of the IMERG-F, IMERG-L and CHIRPS satellites as alternative rainfall data in the Mt. Merapi area are quite good

where IMERG-L has the best performance in capturing rainfall above 50 mm (R50mm), Consecutive Dry Days (CDD) indices, max 1–day and 5-day

precipitation (Rx1day and Rx5day). The potential for extreme rainfall that is most prone to trigger lava floods occurs in the western region of Mt. Merapi

at Ngandong Station (Sta. Ngandong). In this region, there is a high occurrence of extreme rainfall events. For instance, there were 501 instances of

R50mm with an intensity of 77 mm day-1, Total Precipitation (PRCPTOT) reaches 3385 mm, Rx5day reaches 393 mm, and Consecutive Wet Days (CWD)

lasts for 30 days. The results of this analysis can assist in climate understanding and modeling of extreme rainfall relevant to the region and support

water resource management and disaster risk mitigation.
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1 INTRODUCTION

The management of water is crucial for its multi-

ple roles in sustaining life. It must be used wisely,

controlled to prevent destruction, and conserved

for future sustainability asmentioned inWater Re-

sources Act (Undang-undang Nomor 17 Tahun 2019

tentang SumberDayaAir, 2019). Rainfall is a signif-

icant aspect of the global water cycle, and heavy

rainfall with an intensity of over 50 mm day-1 can

trigger extreme weather events, according to Me-

teorology, Climatology, and Geophysics Agency.

Based on data from National Disaster Manage-

ment Agency, in 2022, Indonesia faced 3,542 dis-

aster events, and the frequency of such events can

cause hydrological disasters such as floods, severe

droughts, and tropical cyclones. This poses a high

risk to the affected areas.

Rainfall varies spatially and temporally, and it re-

quires evenly distributed measuring instruments

Figure 1 Map of research location

to collect adequate data in a region (Misnawati

et al., 2018). However, some regions lack good

quality and sufficient rainfall measurement data.

In such cases, satellite-based rainfall data esti-
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Table 1. Resolution of SPPs

IMERG-F IMERG-L CHIRPS V02

Dataset
Integrated Multi-satellite

Retrievals for GPM Final Run

Integrated Multi-satellite

Retrievals for GPM Late Run

Climate Hazards group InfraRed

Precipitation with Stations

Source NASA NASA CHC, UCB

Spatial res. 0.1° (± 10 km) 0.1° (± 10 km) 0.05° (± 5 km)

Temporal res. Daily Daily Daily

Availability 2000 - 2021 2000 - now 1981 - now

Range 60°S - 60°N 60°S - 60°N 50°S - 50°N

mates are used, but recent comparisons reveal that

no single dataset is consistently better in all rain-

fall parameters analyzed (Rauniyar et al., 2017).

Certain areas nearMt. Merapi are at risk for hydro-

logical disasters due to elevation and orographics

(Prayuda, 2012; Partiwi et al., 2012). The direc-

tion and speed of wind also have a significant im-

pact on rainfall patterns onmountain slopes. Typ-

ically, slopes facing west experience higher rain-

fall compared to those facing east. Data on rain-

fall at Mt. Merapi shows that the higher the el-

evation, the more rainfall there is to the north

and west, with maximum annual and daily rain-

fall recorded in these areas (Prayuda, 2015; Sofia,

2017). Daily rainfall tends to behigher at night and

in the morning than during the day due to cooling

(Rahmawati et al., 2021), which can trigger disas-

ter events in the area.

Putra et al. (2019) conducted studies on alterna-

tive rainfall measurements in the Mt. Merapi re-

gion and found that measured rainfall data and

radar have periods of NR (Not Recorded) data that

can significantly affect disaster early warning sys-

tems. Satellites provide wider coverage of rainfall

patterns and complete data lengths, making de-

tecting rainy and dry days easier.

Research related to the extreme rainfall indices

has been done before, but due to the many weak-

nesses of rain gauge data scattered in theMt. Mer-

api area such as blank data or unrecorded data, this

research is important to examine the use of satel-

lite rain that is appropriate for use in the Mt. Mer-

api region that is able to represent the character-

istics of extreme rain.

The aim of this study is to evaluate the ability of

satellite rainfall, identify and assess the potential

for extreme rainfall that can trigger natural disas-

Table 2. Value Q/
√
n and R/

√
n (Harto, 1993)

n
Q/

√
n R/

√
n

90% 95% 99% 90% 95% 99%

10 1.05 1.14 1.29 1.21 1.28 1.38

20 1.10 1.22 1.42 1.34 1.43 1.60

30 1.12 1.24 1.46 1.40 1.50 1.70

40 1.13 1.26 1.50 1.42 1.53 1.74

50 1.14 1.27 1.52 1.44 1.55 1.78

100 1.17 1.29 1.55 1.50 1.62 1.86

∞ 1.22 1.36 1.63 1.62 1.75 2.00

ters. This information will then be used to estab-

lish an early warning system for disaster events,

which will serve as a scientific basis for decision

makers. The analysis of extreme rainfall in the

Mt. Merapi region will provide valuable insights

for planning, disaster riskmitigation, and decision

making, and will also help to improve the under-

standing of early warning systems for disaster risk.

2 METHODS

2.1 Location and Research Data

The study is located on the Mt. Merapi area,

which is administratively between Klaten, Mage-

lang, Boyolali and Sleman Regency (Figure 1). The

data used in this study is secondary data, namely

ground rainfall station was collected from official

documents issued by Balai Teknik Sabo and Satel-

lites Precipitation Products (SPPs).

Real-time global rainfall can be obtained through

satellite-based rainfall by capturing microwave

and infrared signals. These SPPs showers provide

spatial continuity and consistency, making them

useful for detecting uneven spatial distribution of

observed rainfall (Liu et al., 2022). GPM-IMERG

has high correlation with observed rainfall, tem-
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poral and daily scale rainfall accumulation, light-

moderate rainfall, able to detect days without rain

(drought), and able to represent rain at low to

moderate altitudes (Zhang et al., 2018; Liu et al.,

2022). CHIRPS is best for describing wet periods,

seasonal or monthly patterns (Ayehu et al., 2018;

Wiwoho et al., 2021). According to Filho et al.

(2022), IMERG-F and CHIRPS are better at captur-

ing extreme rainfall compared to other rain satel-

lites. Table 1 contains information on the SPPs

used in this study.

2.2 Data Consistency Test

To ensure reliable rainfall data, it is necessary to

conduct data reliability tests to verify that the ob-

tained data comes from the same population and

to assess the error rate of the ground station data

(Yuono and Mulyandari, 2021). The Rescaled Ad-

justed Partial Sum (RAPS) method is more thor-

ough as it does not rely on other station data as

a reference. In the RAPS method, if the obtained

value is smaller than the critical value for the year

and the appropriate confidence level, then the data

is considered reliable.

The reliability of rainfall data at stations around

Mt. Merapi has previously been tested (Sapan

et al., 2022). In this study, the time span of rain-

fall data analyzed is until 2022. Data consistency

test can be calculated using the following equation

(Harto, 1993).

S∗
0 = 0 (1)

S∗
k = Σk

i=1(Yi − Ȳ ), with k = 1, 2, ..., n (2)

S∗∗
k =

S∗
k

Dy
, with k = 1, 2, ..., n (3)

D2
y = Σn

i=1

(Yi − Ȳ )2

n
(4)

With n number of data Y; Yi annual rainfall value

to – i; average rating; S∗k cumulative deviation

value; S∗∗k RAPS test value; and Dy standard devi-

ation.

Q = max|Sk
**|, 0 ≤ k ≤ n (5)

R = maxSk
** −minSk

**, 0 ≤ k ≤ n (6)

The statistics that can be used as a tool to test

their usefulness and the critique values Q and R

are shown in Table 2.

2.3 Validation Test

To assess how accurately a model predicts hydro-

logical processes, we use a process called valida-

tion. During this stage, we compare statistical

indicators that measure the performance of SPPs

against measured rainfall. These indicators in-

clude the R, RMSE, and RB. The R value measures

the linear relationship between SPPs and ground

station data. It ranges from -1 to 1, with 0 indicat-

ing no correlation. The RMSE measures the mag-

nitude of the mean absolute error between SPPs

and surface rainfall data,where 0 is a perfect score.

RB shows the SPPs bias. The optimal value for RB

is 0. A positive value indicates an overestimate of

rainfall, while a negative value indicates an under-

estimate. We can represent these statistical pa-

rameters in an equation, as shown in Table 3.

2.4 Extreme Rainfall Indices

Experts from the Expert Team On Climate Change

Detection and Indices (ETCCDI, etccdi.pacificcli-

mate.org/list_27_indices.shtml) have studied the

extreme rainfall indices, which is calculated

through frequency and intensity indicators using

measured rainfall data. This indices is used to

monitor extreme conditions, climate change, and

aid in disaster mitigation. Sapan et al. (2022) con-

ducted a study on the extreme rainfall indices in

the Mt. Merapi area by examining the PRCPTOT

indices and adding a review of the CDD, CWD,

R50mm,Rx1day, and Rx5day indices. The extreme

rainfall indices were calculated using Climpact2

software, and Figure 2 developed by UNSW shows

the display. Table 4 provides a further explanation.

3 RESULTS

3.1 Data Description

The description of the data period and recorded

data is shown in Table 5. The accuracy of rain-

fall data plays a crucial role in the analysis pro-

cess. Station data often contains a percentage of

unrecorded data, ranging from 5.3% to 52%. This

inconsistency in data loss or unrecorded data is a
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Table 3. Summary of statistical parameters

Statistical parameters Equation Range
Optimum

value
Source

Correlation

coefficient (R)
R =

Σn
i=1(Xi− ¯X)(Yi− ¯ )Y√

Σn
i=1(Xi−X̄)2Σn

i=1(Yi−Ȳ )2
[-1, 1] 1 (Pratiwi et al., 2020; Gustoro et al., 2022)

Root Mean

Squared Error (RMSE)
RMSE =

√
Σn

i=1(Xi−Yi)2

n
[0, ∞) 0 (Hambali et al., 2019; Baig et al., 2022)

Relative bias (RB) RB =
Σn

i=1(Xi−Yi)
Σn

i=1Xi
100% (-∞,∞) 0 (Gupta et al., 1999; Farzana et al., 2019)

where X observed rainfall; Y SPPs; and n amount of data.

Table 4. Extreme rainfall indices (WMO, 2023)

Indices Unit Information

CDD Consecutive dry days day
Maximum number of consecutive annual rainless days,

P ≤ 1 mm

CWD Consecutive wet days day
Maximum number of consecutive annual rainy days,

P ≥ 1 mm

R50mm Precipitation above 50mm day Number of annual rainy days, P ≥ 50 mm

Rx1day Max 1 – day precipitation mm Maximum rainfall total for 1 day

Rx5day Max 5 – day precipitation mm Maximum rainfall total over 5 days

PRCPTOT Annual contribution from wet days mm Total precipitation (P ≥ 1 mm)

Figure 2 ClimPACT2 (WMO, 2016)

contributing factor to the use of SPPs in hydrolog-

ical analyses.

Table 5. Data period and data are not recorded (NR)

Name
Data period

(Year)

Data NR

(%)

Sta. Jrakah 1980 – 2022 40.8 %

Sta. Ngandong 1983 – 2022 52.1 %

Sta. Plosokerep 1983 – 2022 41.1 %

Sta. Pucanganom 1983 – 2022 40.3%

Sta. Randugunting 1983 – 2022 11.9%

Sta. Sopalan 1986 – 2022 20.6%

Sta. Sorasan 1980 – 2022 5.3%

Sta. Talun 1980 – 2022 37.4%

Sta. Sukorini 1980 – 2022 37.7%

Sta. Stabelan 2014 – 2022 22.6%

CHIRPS 1981 – 2022 0%

IMERG-F 2000 – 2021 0%

IMERG-L 2000 – 2022 0%

3.2 Data Consistency Test

We conducted data pruning tests using the RAPS

method at SPPs and observed rainfall (CHIRPS,

IMERG-F and IMERG-L) during each data period.

After summarizing the data consistency test re-

sults, it was discovered that Jrakah, Plosokerep,

Randugunting, Sorasan, and Sukorini station had

inconsistent data. Sorasan station represents the

smallest percentage of NR in the southern Mount
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Table 6. SPPs test results against observed rainfall

Station Validation test results

Merapi region, so it was included in the analy-

sis. Sta. Pucanganom has consistent rainfall sta-

tion data but was not used because the area is al-

ready represented by Sta. Talun, which has less

unrecorded rainfall data. Sopalan and Randugunt-

ing Station were not used due to their long dis-

tance from the Mt. Merapi area. Therefore, the

observed rainfall stations used in the analysis are

Ngandong, Talun, Stabelan, and Sorasan Station.

On the other hand, all rainfall points matching the

coordinates of the observed rainfall in SPPs had

fixed data periods, which is illustrated in Figure

3. When the value obtained from Q and R test is

greater than the value in Q and R table, the data is

considered inconsistent.

3.3 Validation Test

The ability of SPPs to be validated based on the

parameters R, RMSE and RBIAS is shown in Ta-

ble 6 above. The results of the validation tests re-

vealed that CHIRPS rainfall data had the weakest

correlation to observations compared to IMERG-

F and IMERG-L. The correlation between SPPs

and observations only showed a weak to moder-

ate correlation (0.30-0.55), which is because the

analysis was done for daily rainfall. However,

the RMSE value was relatively good (12.18-19.26

mm), where CHIRPS performed better at Sta. So-

rasan, while IMERG-F had a smaller error value at

other stations. For RBIAS test results, CHIRPS had

the smallest percentage of bias at Ngandong, and

Talun Station. For IMERG-F, it had the smallest

percentage of bias at Sta. Sorasan, and IMERG-L

at Sta. Stabelan.

3.4 Extreme Rainfall Indices

Extreme rainfall indices, which includes R50mm,

PRCPTOT, CDD, CWD, Rx1day and Rx5day were

processed using Climpact2 software within the

RStudio application.

3.4.1 R50mm Indices

Rainfall intensity above 50 mm, the extreme rain-

fall indices R50mm, is indicated as heavy rainfall

according to BMKG and extreme rainfall according

to WMO and is measured by the R50mm indices,

as shown in Figure 4.

When analyzing the frequency distribution of

rainfall events, it was found that the Sta. Ngan-

dong had the highest frequency with 501 events,

while the Sta. Stabelan had the lowest with only

80 events. The areas with the highest frequency of

R50mm events were located around Mt. Merapi,

which had a higher elevation and orographic in-

fluence. This information is supported by studies

conducted by Prayuda (2015). The average heavy

rainfall in the Sta. Ngandong was 77 mm, and the

closest SPPs was IMERG-L due to its data distribu-

tion pattern and whisker resemblance. Similarly,

in the Sta. Sorasan, the average heavy rainfall was

70 mm, and the closest SPPs was IMERG-F, which

was able to capture the heavy rainfall in the area

better than CHIRPS. In Sta. Stabelan, the average

heavy rainfall was 72 mm, and the closest SPPs

was IMERG-L. Finally, in the Sta. Talun, the aver-

age heavy rainfall was also 71 mm, and the closest

SPPs distribution was IMERG-L.

3.4.2 PRCPTOT Indices

One of the indices, PRCPTOT, indicates the

amount of annual rainfall, as seen in Figure 5. Ac-

cording to the ground station, the southwest re-

gion of Mt. Merapi (Sta. Ngandong) experienced
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Figure 3 Results of the consistency test for observed rainfall based on critique values Q (a) and R (b).

(a) Sta. Ngandong (b) Sta.Sorasan

(c) Sta.Stabelan (d) Sta.Talun

Figure 4 Rainfall intensity above 50 mm

the highest average annual rainfall at 3385 mm,

while the northwest side (Sta. Stabelan) had an

average of 2223 mm, the west region (Sta. Talun)

had an average of 1920 mm, and the South region

(Sta. Sorasan) had an average of 1757 mm. Al-

though located in proximity, the weather stations

experienced different indices due to orographic in-

fluences. In 2017 and 2019, the PRCPTOT indices

reflected the highest and lowest values.

The correlation in the scatter plot ofmonthly rain-

fall data is higher compared to annual rainfall

data. This is because monthly data offers a higher

time resolution, resulting in more data points and

improving the accuracy of correlation estimates.

Additionally, monthly data can reveal seasonal

fluctuations and changes in rainfall patterns that

occur throughout the year,while annual data com-

bines all fluctuations into one number per year.

3.4.3 CDD, CWD, Rx1day and Rx5day Indices

Table 7 shows the extreme rainfall indices, in-

cluding CDD, CWD, Rx1day, and Rx5day, as seen

in the boxplot. The annual CDD indices indicate

the number of consecutive days without signifi-

cant rainfall (less than 1mm) throughout the year.

The longest CDD was observed at Sta. Stabelan

with a duration of 60 days, while the shortest was

at Sta. Ngandong with 39 days. IMERG-L is the

closest in distribution to the CDD indices of the

measuring station in termsof position, spread, and

mean value. The annual CWD indices show the

number of consecutive days with significant rain-

fall (greater than 1 mm) throughout the year. The

longest CWD was observed at Sta. Ngandong with

a duration of 17 days and a maximum of 30 days.

The shortest was at Sta. Sorasan with a duration
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5 Scatterplot of satellite-based rainfall against observed rainfall (a) Sta. Ngandong monthly, (b) Sta. Ngandong annual, (c) Sta.
Stabelan monthly, (d) Sta. Stabelan annual, (e) Sta. Sorasan monthly, (f) Sta. Sorasan annual, (g) Sta. Talun monthly, (h) Sta. Talun
annual

of only 10 days and a maximum of 18 days. Due

to its sensitivity to light rainfall and spatial and

temporal resolution, SPPs is not capable of provid-

ing detailed analysis of CDD andCWD indices. The

Rx1day indices expresses the amount of daily ex-

treme rainfall. The highest rainfall was recorded at

Sta. Sorasanwith a total of 277mm,while CHIRPS,

IMERG-F, and IMERG-L captured a maximum of

73 mm, 189 mm, and 170 mm of rain, respectively.

The lowest rainfall was observed at Sta. Stabelan

with a total of 152.2 mm,while CHIRPS, IMERG-F,

and IMERG-L captured 112 mm, 91 mm, and 133

mm of rain, respectively. This indicates that the

southern and western regions experience higher

extreme rainfall. IMERG-L closely reflects the dis-

tribution of the Rx1day indices. The Rx5day in-

dices have a greater intensity than Rx1day due to

the cumulative value of extreme rainfall over five

days. The highest 5 daily extreme rains were ob-

served at Sta. Ngandong, with a maximum of 393

mm and an average of 126 mm. The lowest was

at Sta. Sorasan, with a maximum intensity of 283

mm and an average of only 64 mm. Overall, SPPs

has a good ability to capture the Rx5day extreme

Rainfall indices.

4 DISCUSSION

Based on the results described in Section 3, it is

evident that some observed rainfall stations may

provide unreliable rainfall data due to equipment

malfunctions (such as ink jams, dead clocks, bro-

ken loggers, etc.) or natural disasters like the 2010

eruptions (Sandy Putra et al., 2012). It can be con-

cluded that SPPs can provide reliable rainfall in-

formation with data classified as prevalent. The

results of validation tests have shown that SPPs

data has data that is able to represent surface rain-

fall. In general, SPPs that has better performance

in the Mt. Merapi area is IMERG-L. This result

is also supported by Talchabhadel et al. (2021)

who examined the ability of several rain satellites

to evaluate extreme rainfall in Nepal and found

IMERG-LATE to be the best.

After conducting research, it was discovered that

there were notable differences between the PRCP-

TOT indices obtained from SPPs and the measur-

able rainfall data collected on the ground. The cor-

relation between SPPs and observed rainfall yearly

indicated a weak to strong relationship (0.118-

0.897), while the correlation on a monthly scale

was moderate to strong (0.457-0.678). CHRIPS
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Table 7. Extreme rainfall indices

Station CDD (day) CWD (day) Rx1day (mm) Rx5day (mm)

Sta. Ngandong

Sta. Sorasan

Sta. Stabelan

Sta. Talun

exhibited the weakest correlation across all four

stations on a monthly scale, while IMERG-F per-

formed exceptionally well at Sorasan and Sta-

belan Stations, and IMERG-L excelled at Talun and

Ngandong Stations. On an annual scale, CHRIPS

had the highest correlation at Sta. Sorasan, fol-

lowed by IMERG-F at Sta. Stabelan and IMERG-

L at Ngandong and Talun Stations. Spatially this

station is not too far away but has a fairly different

indices, this occurs due to orographic influences

(Partiwi et al., 2012). These indices show the high-

est and lowest values in 2017 and 2019 which are

visible on the PRCPTOT indices. Higher rainfall

amounts are associatedwith floods and landslides,

while lower rainfall is associated with droughts

and wildfires.

Overall, IMERG-L was the most effective in cap-

turing rainfall above 50 mm, which is considered

heavy rainfall by BMKG,while CHIRPSwas less ca-

pable of representing heavy rainfall in both inten-

sity and frequency. For extreme rainfall indices

such as CDD, CWD, Rx1day and Rx5day, the most

reliable satellite rainfall datasetwas IMERG-L.An-

other study by Ramadhan et al. (2022) in Indone-

sia also suggests that IMERG-L is a better approxi-

mation for precipitation frequency, amount, dura-

tion, and intensity indices.
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In this study, IMERG-L was found to be superior

to other SPPs. This was also observed in a pre-

vious study by Tan and Santo (2018) in Malaysia,

where IMERG-L had the least bias and overestima-

tion compared to other datasets during flood peri-

ods. It is worth noting that satellite rainfall data

does not account for orographic influences anddif-

ferences in spatial resolution. This means that re-

gions that are still within the same 1 spatial grid

are considered to have the same rainfall charac-

teristics, despite clear differences. Therefore, the

use of SPPs in mountainous areas requires further

analysis to address the effects of orography and

spatial resolution. This is in line with research at

Brantas Watershed by Wiwoho et al. (2021) which

also explained that errors from SPPs are generally

related to slope, wind, altitude, and evapotranspi-

ration.

5 CONCLUSION

The analysis of extreme rainfall indices (CDD,

CWD, Rx1day, Rx5day, PRCPTOT) in the Mt. Mer-

api region involves a comparison between mea-

sured rainfall data from stations and satellite rain-

fall data (CHIRPS, IMERG-F, and IMERG-L) for ap-

proximately 40 years from 1980 to 2022. SPPs

estimates have a weak to moderate correlation

(0.19 – 0.55), the RMSE value is relatively good

(12.18 – 31.35 mm) and the observed bias tends

to underestimate the estimated values, this occurs

because the analysis is conducted on daily-scale

rainfall data. Overall, all three satellite rainfall

datasets can capture extreme rainfall intensity in-

dices (R50mm, CDD, Rx1day, Rx5day, and PRCP-

TOT) effectively. The SPPs capabilities of CHIRPS,

IMERG-F, and IMERG-L as alternative rainfall data

in the Mt. Merapi region are quite good, with

IMERG-L performing the best in capturing rainfall

above 50 mm, CDD, Rx1day, and Rx5day indices,

followed by IMERG-F and, lastly, CHIRPS. The re-

gion most vulnerable to triggering lahars due to

extreme rainfall is in the western part of Mt. Mer-

api (Sta. Ngandong), where extreme rainfall in-

dices (R50mm), PRCPTOT, Rx5day, and CWD are

very high (77 mm with a frequency of up to 501

events, 3385 mm, 393 mm). The results of this

analysis can contribute to a better understanding

of the climate and modeling of extreme rainfall

relevant to the region, supporting water resource

management and disaster risk mitigation efforts

This, in turn, can aid in water resource manage-

ment and disaster risk mitigation efforts. For in-

stance, it can support hydrology analysis, water

availability analysis required for irrigation and raw

water needs, as well as provide valuable data input

for the earlywarning system. The real-time results

of this analysis are reliable and proven to be effec-

tive.
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APPENDIX A. SUPPLEMENTARY DATA

Supplementary material related to this

article can be found, in the online ver-

sion, at https://drive.google.com/drive/fold-

ers/1l6LJfFV_K_sj1qxLo5gE1wnupVqye-

DuY?usp=sharing
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