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ABSTRACT On November 21, 2022, a My, 5.6 earthquake struck Cianjur, West Java, Indonesia, causing extensive damage to buildings, infrastructure,
and public facilities, and resulting in 602 fatalities and thousands of injuries. The earthquake’s hypocenter was located near the Cugenang Sub-District,
leading to the identification of the previously unmapped Cugenang Fault as its source. This discovery highlights the need to reassess seismic hazards
in the region, as it reveals the existence of previously unrecognized active faults. This study conducts a probabilistic seismic hazard analysis (PSHA) for
Cianjur using an updated seismic source model that incorporates the Cugenang Fault. We apply updated ground motion prediction equations (GMPEs)
and utilize the logic tree method to account for uncertainties in attenuation equations and source parameters. Ground motion is expressed as peak
ground acceleration (PGA) on both bedrock and surface conditions for return periods of 100, 150, 250, 500, 1,000, 2,500, 5,000, and 10,000 years. These
return periods capture the hazard levels associated with both frequent low-magnitude and rare high-magnitude earthquakes. Our findings indicate that
high PGA values in the Cianjur area are concentrated around crustal faults, exceeding 1.0 g for return periods of 2,500 years and beyond. The Cugenang
Fault has a localized impact, with its influence extending up to approximately 10 km from the fault line. A seismic hazard disaggregation analysis confirms
that crustal faults are the dominant seismic sources in the region. The results of this study provide valuable insights for updated seismic risk in Cianjur

and support future mitigation strategies, urban planning, and infrastructure design to enhance earthquake resilience in the affected area.
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1 INTRODUCTION

On November 21, 2022, Cianjur and neighboring areas
were hit by an M, 5.6 earthquake, with the hypocenter
located inland at a depth of 10 km. According to a re-
port from the Cianjur Regional Disaster Management
Agency (BPBD), the earthquake caused severe dam-
age, resulting in 602 fatalities and over 56,000 dam-
aged buildings. Among the damaged structures were
critical public facilities, including 700 schools and 18
medical centers. The shallow depth of the hypocen-
ter was a significant factor contributing to the exten-
sive destruction (Kramer and Stewart, 2024). However,
discussion emerged because the epicenter was located
approximately 10 km from the nearest mapped fault,
suggesting that the event may have originated from an
unmapped source (Supendi et al., 2023). Historically,
Cianjur experienced a major earthquake in 1834 with an
estimated intensity of VIII - IX on the Modified Mercalli
Intensity scale (Setiyono et al., 2019). However, due to
the absence of seismological instruments at that time,
the precise location and depth of its hypocenter remain
unknown. Aside from this event and the 2022 earth-
quake, no other significant shallow earthquakes have
been recorded in the Cianjur Region (see Figure 1).

Cianjur is situated within a volcanic arc formed by
the subduction of the Australian Plate beneath the
Eurasian Plate (Hall and Spakman, 2015). This tec-
tonic activity has produced several active crustal faults
in the region, including the Cimandiri Fault (Marliyani
et al., 2016), the Lembang Fault (Daryono et al., 2019),
and the Baribis Fault (Aribowo et al., 2022). Supendi
et al. (2023) analyzed the source of the 2022 Cianjur
earthquake using seismic wave data. They determined
that it originated from a conjugate fault composed of
two segments oriented in North-Northwest - South-
Southeast (NNW - SSE) and West-Southwest - East-
Northeast (WSW - ENE) directions. This fault was sub-
sequently named the Cugenang Fault, as it is located in
the Cugenang Sub-District (Supendi et al., 2023). The
slipping along of these faults could generate a tectonic
earthquake (Maheswari, 2024).

Cianjur District consists of 32 sub-districts and has a
total population of 2,535,002 people, with Cianjur Sub-
District being the most densely populated area (BPS-
Statistics of Cianjur Regency, 2024). The majority of
the district’s population is concentrated in the north-
ern region, which is characterized by flat terrain. This
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Figure 1 Seismic activity records around Cianjur for shallow earthquakes (<50 km) with significant magnitudes (>M4.5) from January
1900 - 22 November 2022. Seismic data based on BMKG repository catalogue, USGS earthquake catalogue and the IRIS earthquake

browser. The red star represents hypocenter of 2022 earthquake (Supendi et al., 2023). Red lines represent fault lines (Marliyani et al.,
2016; Supendi et al., 2023). Basemap based on DEMNAS (https://tanahairindonesia.go.id).

area is located near the Cugenang Fault (see Figure 1),
making it essential to reassess the seismic hazard level
to ensure that appropriate mitigation measures are in
place.

Probabilistic seismic hazard analysis (PSHA) is used
to estimate seismic hazard by assessing the probabil-
ity of earthquake occurrence and magnitude over spe-
cific return periods. This method aids in optimizing the
balance between cost, performance, and risk in engi-
neering design (Cornell, 1968). A previous study con-
ducted by the National Centre for Earthquake Study
(PUSGEN) produced a national-scale seismic hazard
map (Widiyantoro et al., 2022), while Damanik et al.
(2023) developed a seismic hazard map specifically for
West Java, which includes Cianjur. However, neither
study accounted for the Cugenang Fault as an earth-
quake source. This study evaluates seismic hazard in
Cianjur by incorporating all known earthquake sources
across multiple return periods. We consider eight re-
turn periods: 100, 150, 250, 500, 1,000, 2,500, 5,000,
and 10,000 years. Shorter return periods, such as 150
years, are applicable to residential and everyday in-
frastructure, including roads, while a 1,000-year return
period is typically used for bridge infrastructure (SNI
2833:2016). The 2,500-year return period is designated
for critical infrastructure (SNI 1726:2019). Longer re-
turn periods, such as 5,000 and 10,000 years, are used
for structures where failure would lead to catastrophic
consequences, such as nuclear facilities (Bommer et al.,
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2011). Earthquake ground motion is quantified as peak
ground acceleration (PGA) at both bedrock and surface
levels, accounting for local site conditions.

2 DATA
2.1 Seismic Source Characterization

Seismic sources capable of generating ground motion
in the study area include subduction interfaces, crustal
faults, and background seismicity. The subduction
interface source model represents earthquakes occur-
ring at the boundary of the subduction zone. For this
study, a depth limit of 50 km is applied to the sub-
duction interface source model, while deeper seismicity
within the Benioff zone is represented by a deep back-
ground source model (Asrurifak et al., 2010). The Java
Megathrust results from the subduction of the Aus-
tralian Plate beneath the Eurasian Plate (Hall and Spak-
man, 2015). It is divided into three segments: the
Sunda Strait, West-Central Java, and East Java Megath-
rust, with an estimated maximum magnitude of M,, 8.8
(Irsyam et al., 2017). Historical earthquakes along the
West Java segment include the tsunamigenic events of
2006 and 2009, which had magnitudes of My, 6.8 and M,,
7.3, respectively (Setiyono et al., 2019). The detailed
seismic parameters used in this study, including fault
geometry, slip rates, and Gutenberg-Richter values, are
listed in Table 1.
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Figure 2 Map of seismic sources in the study area. Black dot represents the capital of Cianjur District. Red lines indicate fault lines. Fault
numbered 1 - 6 are segments of the Cimandiri Fault (Marliyani et al., 2016), Fault numbered 7 is the Lembang Fault (Daryono et al.,
2019); Fault numbered 8 - 12 are segments of the Baribis Fault System (Aribowo et al., 2022), Fault numbered 13 is the Cugenang Fault

(Supendi et al., 2023). Area shaded red are subduction interface 14) Sunda Strait Megathrust and 15) West-Central Java Megathrust
(Widiyantoro et al., 2022). Basemap based on DEMNAS (https://tanahair.indonesia.go.id).

Crustal faults within a 250 km radius of the study
area are also considered seismic sources (Irsyam et al.,
2015). As shown in Figure 2, these include the
Cimandiri Fault (Marliyani et al., 2016), the Baribis
Fault (Aribowo et al., 2022), the Lembang Fault (Dary-
ono et al., 2019), and the newly identified Cugenang
Fault Supendi et al. (2023). Key parameters for as-
sessing seismic hazard from these faults include slip
rates, estimated maximum magnitudes, and fault ge-
ometry (see Table 1). Fault geometry consists of fault
length, dip angle, and the depth of the seismogenic
layer. The seismogenic layer, which is the brittle por-
tion of a fault capable of nucleating earthquakes, has
depth boundaries that define its upper and lower limits
(Scholz, 2019). In this study, the top and bottom depths
of the seismogenic layer are based on previous studies
(Irsyam et al., 2017; Supendi et al., 2023). Other fault
parameters used in this study are derived from previous
research: Cimandiri Fault has a length ranging from 9.6
to 21 km with 60° dip and slip rate ranging from 0.1 to
0.5 mm/year (Marliyani et al., 2016), Lembang Fault has

alength of 29 km with 75° dip and slip rate of 2 mm/year
(Daryono et al., 2019), Baribis Fault has a length rang-
ing from 19 to 48 km with dip 65° (Aribowo et al., 2022)
and slip rate of 1.2 mm/year (Damanik et al., 2023), Cu-
genang Fault length is 8 and 4.6 km with dip 87° and 69°
for each segment, respectively (Supendi et al., 2023).

Apart from the 2022 earthquake, no previous seismic
activity has been recorded on the Cugenang Fault (Su-
pendi et al., 2023). There are no prior studies investi-
gating its slip rate, so for estimation purposes, we adopt
the slip rate of the nearest fault, the Cimandiri Fault, at
approximately 0.1 mm/year. This low slip rate is con-
sistent with the limited seismic activity observed on the
Cugenang Fault.

The possible maximum magnitudes for the faults are
estimated using magnitude-fault length scaling rela-
tionships. For most crustal faults, the attenuation
model developed by Cheng et al. (2019) is used, as it
has been found to produce the smallest misfit for In-
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Seismic Segment Fault type Doip Length Top Bottom Slip Rate  Mpax Par'frrlze ter
source name ®) (km) (km) (km) (mm/year) (My) .
a;bvalue
Cimandiri Loji Left-lateral reverse 60 9.6 3 18 0.5 6.5? -
Cidadap Left-lateral reverse 60 21 3 18 0.5 6.9° -
Nyalindung Left-lateral reverse 60 19 3 18 0.4 6.9? -
Cibeber Left-lateral reverse 60 16 3 18 0.4 6.8° -
Saguling Left-lateral strike-slip 60 11 3 18 0.1 6.6% -
Padalarang Left-lateral strike-slip 60 19 3 18 0.1 6.9° -
Lembang Lembang Left-lateral strike-slip 75 29 3 18 2.0 6.4° -
Baribis Rarata Left-lateral strike-slip 90 25 3 18 1.2 6.3 -
Salak Reverse 65 19 3 18 1.2 6.1° -
Klapanunggal Reverse 65 24 3 18 1.2 6.3° -
Citarum Reverse 65 43 3 18 1.2 6.7° -
Citarum front Reverse 65 48 3 18 1.2 6.8° -
Cugenang NNW - SSE Right-lateral strike-slip 87 8 5 15 0.1 6.2¢ -
WSW - ENE Left-lateral strike-slip 69 4.6 5 15 0.1 5.7 -
Java Sunda Strait Reverse 15 280 - - 4.0 8.7  5.99;1.15
Megathrust ~ West-central Java Reverse 15 320 - - 4.0 8.7¢ 5.55;1.08

Mmax value based on ®Marliyani et al. (2016), ® magnitude scaling relationship by Cheng et al. (2019),
© magnitude scaling relationship for slow slip rate (Stirling et al., 2008), @Irsyam et al. (2017)

donesia (Gunawan, 2021). However, since the Cheng
et al. (2019) model is not suitable for slow-slip faults
(<1 mm/year), the scaling relationship for low slip rate
crustal faults by Stirling et al. (2008) is used for the
Cugenang Fault. Cugenang Fault has a dip angle 87°
and 69° for each segment with a seismicity depth of
10 km (Supendi et al., 2023). Based on this approach,
the estimated maximum magnitudes for the Cugenang
Fault are M,, 6.2 for NNW - SSE segment and M,, 5.7
for WSW - ENE segment. The maximum magnitude es-
timation for the Cimandiri Fault is based on Marliyani
et al. (2016).

Background seismicity is generally classified by depth
into shallow background seismicity (0 - 50 km) and
deep background seismicity (50 - 300 km). Shal-
low background seismicity represents fault-generated
earthquakes with magnitudes ranging from My, 4.5 to
6.5, while deep background seismicity corresponds to
subduction intraslab events with magnitudes between
M,, 5 and 7.5 (Irsyam et al., 2020). The magnitude-
frequency distribution for background seismicity is es-
timated using the smoothed gridded seismicity method
(Frankel, 1995), based on earthquake records from the
BMKG, United States Geological Survey (USGS), and
the Incorporated Research Institutions for Seismology
(IRIS) from January 1, 1900, to August 31, 2024.

2.2 Local Site Condition

Shallow geological conditions can either amplify or at-
tenuate earthquake-induced ground motion (Kramer
and Stewart, 2024). Seismic site conditions are stan-
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dardized by measuring the shear wave velocity in
the upper 30 meters of the Earth’s surface (V).
In this study, topographic slope is used as a proxy
for V3° (Wald and Allen, 2007). Wald and Allen
(2007) developed their V3° model using topographic
data with a resolution of 30 arc seconds. To en-
sure consistency, we use GMTED2010 topographic
data, which also has a resolution of 30 arc sec-
onds, obtained from the United States Geological Sur-
vey (USGS) [https://topotools.cr.usgs.gov/gmted view
er/index.html] (Danielson and Gesch, 2011). Seismic
site classification follows the National Earthquake Haz-
ards Reduction Program (NEHRP) site class system,
which categorizes ground motion response based on
V30 values (Borcherdt, 1994). This classification is used
to estimate ground motion at various locations within
the study area.

3 METHOD
3.1 Ground Motion Prediction Equation

Engineering design requires objective and quantita-
tive assessments of ground motion generated by earth-
quakes. To predict ground motion, ground motion pre-
diction equations (GMPEs) are used, which are derived
from historical earthquake data (Baker et al., 2021).
Currently, no region-specific GMPEs have been devel-
oped for Java or Indonesia; therefore, the selection of
GMPE:s in this study is based on tectonic and geologi-
cal similarities with other regions where they have been
developed. This study considers three types of seismo-
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Figure 3 Logic tree used for seismic hazard calculation for (A)
subduction interface, (B) crustal fault, (C) shallow background,
and (D) deep background seismic source.

genic sources: subduction interface, crustal fault, and
subduction intraslab. GMPEs for the subduction inter-
face seismogenic source using equations from Atkin-
son and Boore (2003), Abrahamson et al. (2016) and
Zhao et al. (2006). GMPEs for the crustal fault seismo-
genic source from Boore et al. (2014), Campbell and Bo-
zorgnia (2014) and Chiou and Youngs (2014). GMPEs
for the subduction intraslab seismogenic source from
Abrahamson et al. (2018), Atkinson and Boore (2003)
and Zhao et al. (2006). To account for uncertainties
in GMPE attenuation and source models, we apply the
logic tree method, which allows for the integration of
multiple GMPEs in the seismic hazard assessment. The
logic tree structure used in this study is presented in
Figure 3.
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3.2 Magnitude Frquency Distribution

Magnitude-frequency distribution (MFD) is a mathe-
matical model that describes the relative likelihoods of
all events that can be generated by a particular source
or region (Baker et al., 2021). We use two types of MFD
to determine seismic hazard. The first MFD expresses
the annual frequency of earthquakes on a linear scale
in a logarithmic scale with a and b parameters, where a
value represents total seismic activity and the b value
represents relative likelihood of small versus large
magnitudes (Gutenberg and Richter, 1944). The sec-
ond MFD are hybrid method that combines parameters
from Gutenberg and Richter (1944) with moment rates
from Schwartz and Coppersmith (1984) and Youngs and
Coppersmith (1986). Gutenberg-Richter MFD is used
for background seismicity sources, whereas the hybrid
MFD is used for subduction interfaces and crustal fault
sources. Seismic hazard calculations are processed us-
ing the OpenQuake engine (Pagani et al., 2014) as peak
ground acceleration (PGA) with a site spacing of 1 km.

4 RESULTS

Ground motion was calculated for return periods of
100, 150, 250, 500, 1,000, 2,500, 5,000, and 10,000 years.
Seismic hazard assessment was conducted under two
conditions: bedrock (V3° ~ 760 m/s) and local site con-
ditions. For the bedrock calculations, we used a V3°
value of 760 m/s, as this represents the lower bound-
ary of Site Class B (rock) according to the NEHRP site
classification (Borcherdt, 1994). This value is derived
from studies of typical rock site conditions, where V3%
is consistently measured at 760 m/s. Consequently, a
constant VZ° value of 760 m/s was applied for seismic
hazard calculations at bedrock. To identify the domi-
nant seismic sources affecting the study area, seismic
hazard disaggregation was performed. The analysis fo-
cused on four densely populated sub-districts in Cian-
jur: Cianjur, Cibeber, Karangtengah, and Cipanas.

4.1 Seismic Hazard at Bedrock

Seismic hazard calculations at bedrock assuming a con-
stant V2" value at ~ 760 m/s. For a 100-year return pe-
riod, the mean peak ground acceleration (PGA) ranges
from 0.042 to 0.281 g. For a 150-year return period,
the mean PGA ranges from 0.060 to 0.405 g. For a 250-
year return period, the mean PGA ranges from 0.083 to
0.539 g. For a 500-year return period, the mean PGA
ranges from 0.118 to 0.705 g. For a 1,000-year return
period, the mean PGA ranges from 0.173 to 0.935 g. For
a 2,500-year return period, the mean PGA ranges from
0.261 to 1.233 g. For a 5,000-year return period, the
mean PGA ranges from 0.350 to 1.490 g. Finally, for a
10,000-year return period, the mean PGA ranges from
0.460 to 1.700 g (see Figure 4).
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Figure 5 Seismic hazard map with local site conditions for respective return periods. The same colour scale is used on each return
periods. Red lines represent fault line. Area bordered by black polygons are Cianjur District. Black dots represent population per sub-
districts. Index map is shown in the bottom right with a red square indicating the study area.
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Fi%ure 6 Seismic hazard disaggregation for four sub-districts in Cianjur using a 2,500-year return period: (A) Cianjur Sub-District, (B)
Cibeber Sub-District, (C) Karangtengah Sub-District, and (D) Cipanas Sub-District. Magnitude and distance used as disaggregation pa-

rameters to identify the most significant seismic sources.

4.2 Seismic Hazard at Local Site

In this section, seismic hazard calculations are con-
ducted while taking local site conditions into account,
and the results are shown in Figure 5. The mean peak
ground acceleration with site effects (PGAM) values for
various return periods range from 0.041 to 0.326 g for
a 100-year return period, 0.059 to 0.453 g for a 150-
year return period, 0.080 to 0.592 g for a 250-year re-
turn period, 0.113 to 0.771 g for a 500-year return pe-
riod, 0.163 to 0.988 g for a 1,000-year return period,
0.240 to 1.250 g for a 2,500-year return period, 0.310
to 1.480 g for a 5,000-year return period, and 0.420 to
1.700 g for a 10,000-year return period, as shown in Fig-
ure 5. Generally, ground motion at local sites exhibits
a lower minimum and a higher maximum PGA value
compared to bedrock, due to site-specific amplification
and de-amplification effects influenced by geological
conditions.

4.3 Seismic Hazard Disaggregation

To identify the dominant seismic sources in the study
area, a seismic hazard disaggregation study was con-
ducted for four of the most populated sub-districts in
Cianjur: Cianjur, Cibeber, Karangtengah, and Cipanas.
The 2,500-year return period was chosen for this anal-
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ysis because it provides a representative scenario for
large but rare earthquakes. Shorter return periods may
not sufficiently capture these significant events, while
longer return periods tend to produce excessively high
values. Furthermore, the 2,500-year return period is
widely used in building codes, including ASCE 7, Eu-
rocode 8, and SNI 1726:2019.

Seismic hazard disaggregation was conducted using
earthquake magnitude and seismic source distance as
parameters (see Figure 6). The most significant earth-
quake scenario for the Cianjur Sub-District occurs at
a maximum distance of 5 km with a magnitude of M,
5.5. In the Cibeber Sub-District, the maximum dis-
tance is also 5 km, but with a magnitude of M,, 6.5. For
Karangtengah Sub-District, the maximum distance is
15 km with a magnitude of M,, 5.5, while in Cipanas
Sub-District, the maximum distance is 25 km with a
magnitude of M, 6.5. Given the relatively short dis-
tances of these events, all occurring within 25 km,
and their moderate magnitudes, the dominant seismic
hazard sources in these areas are identified as crustal
faults.
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5 DISCUSSION

The seismic hazard at bedrock exhibits a uniform pat-
tern due to the assumption of a constant VZ° value of
approximately 760 m/s. In contrast, the seismic haz-
ard at local sites varies significantly depending on site-
specific conditions. The western part of the Cugenang
Sub-District experiences a de-amplification effect due
to its mountainous morphology and solid rock compo-
sition. Conversely, the central region, which includes
the Cianjur, Karangtengah, and Cibeber Sub-Districts,
shows an amplification effect due to its flat terrain
and loose soil composition. These sub-districts are
densely populated, making seismic hazard mitigation
especially critical in these areas.

Both the seismic hazard map at bedrock and the lo-
cal site map indicates high peak ground acceleration
(PGA) values along fault lines and in the direction of
fault dips. The southern area of the Cimandiri Fault
exhibits high PGA values because the fault dips south-
ward. Similarly, the northern part of the study area
shows elevated PGA values due to the presence of
Baribis Fault segments, which also dip southward. The
highest mean PGA values are observed in the eastern
region, near the Lembang Fault, across all return peri-
ods. This is due to the Lembang Fault’s high slip rate
(~2 mm/year), which increases the likelihood of large-
magnitude earthquakes.

Previous seismic hazard assessments in Cianjur have
been conducted by Irsyam et al. (2020) and Damanik
et al. (2023). Compared to these studies, our research
incorporates the Cugenang Fault as a seismic source
and updates the ground motion prediction equations
(GMPEs) with newer models. The seismic hazard maps
presented in this study show higher PGA values in the
northern region due to the addition of Baribis Fault
segments, which were not included in the national seis-
mic hazard map (Irsyam et al., 2017; Widiyantoro et al.,
2022). Additionally, the area around the Cugenang
Fault also exhibits high PGA values starting from the
500-year return period, primarily due to the fault’s low
slip rate (~0.1 mm/year) and the lack of recorded earth-
quake activity. The Indonesian seismic hazard maps
have been compiled at a national scale (Irsyam et al.,
2017; Widiyantoro et al., 2022); consequently, the level
of detail is generally low. This paper presents seismic
hazard maps at a local scale and introduces a newer
source model to provide more precise and relevant re-
sults for assessing seismic hazard in the Cianjur area.

Seismic hazard disaggregation analysis was conducted
for a 2,500-year return period, which serves as the ref-
erence for engineering design loads. The four most
populous sub-districts in Cianjur were selected for this
analysis. The results indicate that the most significant
earthquake events for these sites originate from rela-
tively short distances (<25 km) and have magnitudes
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below M,, 6.5. This suggests that crustal faults are the
dominant seismic hazard source. Specifically, Cianjur,
Karangtengah, and Cipanas Sub-Districts are most af-
fected by the Cugenang Fault, while the Cibeber Sub-
District is primarily influenced by the Cimandiri Fault.
Our findings highlight that the Cugenang Fault poses
the most significant seismic hazard to three of the most
densely populated sub-districts in Cianjur. We hope
that these results provide valuable insights into the
micro-scale seismic hazards posed by the Cugenang
Fault and contribute to more effective seismic risk mit-
igation in the Cianjur District.

6 CONCLUSION

This study assesses the seismic hazard in Cianjur and
its surrounding areas by analyzing peak ground accel-
eration (PGA) at both bedrock and local sites using the
OpenQuake engine. Topographic slope data was used
to estimate VZ° values, which were classified based on
NEHRP site classes. The fault seismic source model in-
cludes the latest identified Cugenang Fault, which was
responsible for the 2022 Cianjur earthquake.

The seismic hazard maps indicate that the distribution
of ground motion follows the pattern of fault strikes.
The highest mean PGA values are concentrated around
the Lembang Fault, while the Cugenang Fault has a
more localized impact near the rupture area. Seismic
source disaggregation analysis was conducted for the
four most populated sub-districts in Cianjur: Cianjur,
Karangtengah, Cibeber, and Cipanas. The results con-
firm that crustal faults are the primary seismic sources,
with the Cugenang Fault and Cimandiri Fault being the
closest sources to Cianjur.

Compared to the 2017 and 2022 Indonesian seismic
hazard maps, this study provides a more detailed as-
sessment, showing a wider range of ground motion val-
ues, including both a lower minimum and a higher max-
imum PGA. These findings contribute to a better un-
derstanding of seismic hazards in Cianjur, thereby sup-
porting more effective earthquake mitigation strate-
gies and infrastructure planning.
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