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ABSTRACT Soil erosion presents substantial environmental and economic challenges, especially in areas prone to land degradation. This study

assesses the use of Machine Learning (ML) methods—Support Vector Machines (SVM) and Generalized Linear Models (GLM)—to model Soil Erosion

Susceptibility (SES) in the Saddang Watershed, Indonesia. It incorporates environmental, hydrological, and topographical factors to improve prediction

accuracy. The approach includes multi-source geospatial data collection, erosion inventory mapping, and relevant factor selection. SVM and GLM

were applied to classify SES, with performance evaluated using accuracy, AUC, and precision metrics. Results show SVM classified 40.59% of the

area as moderately susceptible and 38.50% as low susceptibility. GLM identified 24.55% as very low and 38.59% as low susceptibility. Both models

demonstrated high accuracy (SVM: 87.4%, GLM: 87.2%) and strong AUC values (SVM: 0.916, GLM: 0.939), though GLM showed better specificity and

recall. Feature importance analysis highlights that GLM favors hydrological factors like river proximity and drainage density, while SVM balances across

various environmental inputs. These findings affirm the value of ML-based geospatial modeling for SES assessment, supporting interventions such

as reforestation and erosion control. SVM is suitable for localized planning, whereas GLM offers strategic-level insights. This research contributes

to advancing environmental modeling by embedding domain knowledge into ML frameworks, and suggests future work integrate real-time remote

sensing and more sophisticated models for broader SES prediction.

KEYWORDS Soil Erosion Susceptibility (SES); Geospatial Modelling; Machine Learning (ML); Support Vector Machines (SVM); Generalized Lin-
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1 INTRODUCTION

Soil erosion remains a critical environmental chal-

lenge that impacts ecosystems, agriculture, and

infrastructure (Olii et al., 2023). The degrada-

tion of fertile topsoil, the sedimentation of water-

ways, and the loss of vegetation cover are among

the detrimental effects caused by soil erosion,

which can lead to long-term ecological damage

(Arabameri et al., 2019) and economic losses (Al-

mouctar et al., 2021). Therefore, predicting and

managing soil erosion susceptibility (SES) is es-

sential for sustainable land use and environmen-

tal conservation (Kucuker and Giraldo, 2022), re-

quiring accurate and reliablemodels to assess ero-

sion risk across different areas. Traditionally, SES

modeling has relied on empiricalmethods that use

historical data and simple statistical relationships

to forecast erosion patterns (Saini et al., 2015).

However, these methods often fail to capture the

complex interactions among various environmen-

tal variables that influence soil erosion processes,

such as rainfall intensity, soil type, land use, and

topography (Olii, Olii, Olii, Pakaya and Kironoto,

2024). Consequently, there is a growing need for

more sophisticated modeling approaches that can

better account for these complexities and provide

more accurate predictions (Kucuker and Giraldo,

2022; Golijanin et al., 2022).

When combined with Machine Learning (ML)

techniques, geospatial modeling significantly en-

hances SES analysis and prediction. ML models

such as Random Forest (RF), Decision Tree (DT),
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Figure 1 Location of the study area

Artificial Neural Networks (ANN), Support Vector

Machines (SVM), and Generalized Linear Models

(GLM) can handle complex, non-linear relation-

ships between environmental factors that influ-

ence SES, which might not be fully captured by

traditional geospatial models (Gayen et al., 2019;

Al-Bawi et al., 2021). Integrating these models

with Geographic Information System (GIS) and re-

mote sensing data enables more accurate map-

ping and prediction of SES spatial patterns (Olii,

Kironoto, Olii, Pakaya and Olii, 2024). This ap-

proach supports a data-driven framework in which

models can learn from large datasets, adapt to

diverse geographical contexts, and improve pre-

diction accuracy by incorporating classified and

weighted factors tailored to local environmental

conditions. The synergy between geospatial mod-

eling andML thus provides powerful tools formore

effective land management and soil erosion pre-

vention strategies.

Most studies utilizingML for SESmodeling rely on

raw or normalized continuous data without prior

classification into discrete classes or the assign-

ment of weights based on expert judgment (Phinzi

and Szabó, 2024; Huang et al., 2023; Golkarian

et al., 2023). While this approach facilitates au-

tomation, it can result in less interpretable mod-

els, as the continuous nature of the data may ob-

scure important distinctions between categories

of environmental factors. Moreover, the absence

of expert-informed weighting can lead to under-

estimation or overestimation of variable signifi-

cance, potentially reducing model accuracy and

robustness.

To address this issue, this study introduces a

novel approach that integrates traditional clas-

sification and weighting of environmental fac-

tors with advanced ML models, such as SVM

and GLM, for SES mapping. In contrast to pre-

vious studies that apply these models in isola-

tion, this study emphasizes the innovative com-

bination of pre-classifying variables into discrete

categories and assigning expert-derived weights.

This methodology enhances model interpretabil-

ity,making resultsmore accessible to practitioners

and decision-makers while also mitigating com-

monML challenges, such as data complexity, over-

fitting, and multicollinearity. Furthermore, the

flexible classification framework allows the model

to be customized to diverse geographic settings,

thereby increasing its applicability and robust-

ness. Overall, this study offers a significant ad-

vancement over conventional approaches by im-

proving both prediction accuracy and model sta-

bility, particularly in regions with distinct envi-

ronmental characteristics.

2 MATERIALS ANDMETHODS

2.1 Study Area

The Saddang Watershed, located in southwestern

Sulawesi, Indonesia, covers an area of 4,909 km2
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Figure 2 Research flowchart

across South and West Sulawesi provinces, with

coordinates of 2°43’–3°34’S and 119°14’–120°3’E

(Figure 1). This location is traversed by the Sad-

dang River, which flows through the districts of

Enrekang, Tana Toraja, North Toraja, and Polewali

before discharging into theMakassar Strait via the

Barbana and Paria Figure 1 stuaries. This water-

shed is crucial for irrigation and energy produc-

tion. The Benteng Dam supports irrigation across

more than 94,000 hectares of farmland, while the

BakaruHydroelectric Power Plant generes 128MW

of electricity. Furthermore, its groundwater po-

tential, estimated at 1.354 million m2year-1, con-

tributes significantly to local water supply and

agriculture.

The region features a diverse geomorphology, in-

cluding karst hills, volcanicmountains, and deeply

eroded folded terrain. Land use within the wa-

tershed is equally varied, comprising settlements,

rice fields, plantations, forests, and mixed dryland

agriculture, all of which support vital local eco-

nomic activities. The topography is highly varied,

with elevations ranging from 44 m to 2,880 m and

an average altitude of 1,277 m. The watershed ex-

periences a tropical climate with an average an-

nual temperature of 23°C. October is typically the

warmest month (26°C), while June is the coolest

(22°C). Average annual rainfall is approximately

2,500 mm, peaking in May (387 mm) and reaching

a minimum in September (68 mm). These char-

acteristics underscore the watershed’s ecological

and economic significance, highlighting its criti-

cal role in regional development and environmen-

tal management.

2.2 Overview of Methodological Framework

The methodological framework of this study com-

prised several key steps for assessing SES, as illus-

trated in Figure 2.

2.2.1 Data Collection

This study utilized a range of geospatial and en-

vironmental datasets from various platforms with

distinct spatial resolutions. Shuttle Radar Topog-

raphy Mission (SRTM) data at a 30×30 m2 res-

olution provided detailed elevation information

for topographic analysis. Landsat 9 OLI/TIRS im-

agery, also at 30×30 m2 resolution, was used to
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assess vegetation greenness; both datasets were

accessed via the USGS Earth Explorer. SoilGrids

contributed soil property maps at a 250×250 m2

resolution, including information on soil texture,

organic carbon content, and bulk density, which

were essential for land use analysis. Rainfall data,

with a spatial resolution of 0.25°×0.25°, was ob-

tained from the NASA POWER Data Access Viewer

and was used to analyze precipitation patterns.

High-resolution imagery from SAS Planet and

Google Earth provided detailed visual monitor-

ing of land surface changes, enabling the identi-

fication of soil erosion features. Administrative

boundary data in shapefile format from GADM

supported geographic analysis. These datasets

provided comprehensive insights into the study

area, facilitating analyses of elevation, land cover,

soil properties, and precipitation patterns for en-

vironmental research.

2.2.2 Soil Erosion Inventory Mapping

The soil erosion inventory map is a key compo-

nent in developing the SES model, serving as the

dependent variable in this study. Mapping SES ac-

curately in the Saddang watershed required iden-

tifying eroded and non-eroded areas based on ge-

ographic coordinates from 1,992 field survey lo-

cations—993 with erosion and 999 without—ana-

lyzed using SAS Planet and Google Earth. These

data points were then used to construct a bi-

nary SES model, classifying each location based

on the presence or absence of soil erosion. For

model development, 1195 samples (60% of the to-

tal dataset) were randomly selected for training ,

while the remaining 797 samples (40%) were re-

served for model validation (Figure 1). The types

of soil erosion identified across the watershed in-

cluded sheet, rill, gully, and mass movements.

2.2.3 Selection of the SES Factors

The selection of factors influencing SES for this

study was guided by several criteria: (i) the avail-

ability and reliability of data, (ii) insights from

previous studies, (iii) the connectivity and vari-

ability of the data, and (iv) the specific geo-

environmental characteristics of the study area.

Based on these considerations, a comprehensive

set of 11 key factors influencing SES was identified

and compiled. The spatial distribution of these

SES factors is illustrated in Figure 3.

2.2.3.1 Rainfall Erosivity

The rainfall erosivity quantifies the potential of

rainfall to cause soil erosion based on the inten-

sity and kinetic energy of rainfall events. Higher

rainfall erosivity values indicate a greater poten-

tial for soil detachment and transport. The most

widely used method for estimating rainfall erosiv-

ity is through the R-factor in the Universal Soil

Loss Equation (USLE), expressed as:

R =

12∑
i=1

1.735× 10

[
1.5log10

[
Pm2

Pa

]
−0.018188

]
(1)

whereR is the rainfall erosivity factor (MJmmha-1

h-1 year-1), Pm is the monthly rainfall (mm), and

P a is the annual rainfall (mm).

2.2.3.2 Topographic Wetness Index (TWI)

The Topographic Wetness Index reflects the sus-

ceptibility of an area to soil saturation and wa-

ter accumulation, both of which can influence soil

erosion by increasing soil moisture and reducing

slope stability. TWI is calculated using the for-

mula:

TWI = ln

[
As

tanβ

]
(2)

where As is the upslope contributing area and β is

the slope gradient (in radians).

2.2.3.3 Stream Power Index (SPI)

The Stream Power Index represents the erosive

power of flowing water and its capacity to trans-

port sediment. Higher SPI values indicate a

greater potential for soil erosion due to the in-

creased hydraulic force exerted by surface runoff.

SPI is calculated using the following formula:

SPI = ln [Astanβ] (3)

WhereAs is the upslope contributing area and β is

the slope gradient (in radians).

2.2.3.4 Distance to River

The distance to the river significantly influences

soil erosion by affecting the likelihood of sedi-
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3 SES factors in Saddang Watershed
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ment transport into water bodies. Areas located

closer to rivers are generally more susceptible to

soil erosion due to increased water flow veloc-

ity and higher potential for sediment detachment

and movement. This proximity also contributes to

greater riverbank instability and accelerates sur-

face erosion processes. As the distance to the river

decreases, SES tends to increase, there by elevat-

ing the risk of sedimentation in the river and in-

tensifying erosion in these vulnerable areas.

2.2.3.5 Drainage Density

Drainage density reflects the total length of

streams and rivers per unit area in a watershed. A

higher drainage density indicates amore dissected

landscape, which can enhance surface runoff and

increase the potential of soil erosion. Drainage

density is expressed as follows:

Dd =
ls
WA

(4)

Where ls is the total length of the river (km) and

WA is a watershed area (km2).

2.2.3.6 Slope Length Factor

The Slope Length Factor (LS) quantifies the com-

bined effect of slope length and steepness on soil

erosion. In general, longer and steeper slopes lead

to increased surface runoff velocity and volume,

thereby elevating soil erosion risk. The LS factor is

a key component of the USLE and is typically cal-

culated using the following expressions:

LS =

[
λ

22.13

]m
10.8sinβ + 0.03 if tanβ0.09 (5)

LS =

[
λ

22.13

]m
16.8sinβ − 0.5 if tanβ ≥ 0.09 (6)

m =
F

1 + F
(7)

F =
sinβ/0.0896

3(sinβ)0.8 + 0.56
(8)

Where λ is slope length (m),β is the slope gradient

(in radians),m is the slope length exponent, and F
is the ratio between rill soil erosion and inter-rill

soil erosion.

2.2.3.7 Topographic Roughness Index (TRI)

The Topographic Roughness Index quantifies the

variability of terrain elevation, with higher values

indicating steeper and more rugged landscapes.

Such terrains are typically more prone to soil ero-

sion due to enhanced surface runoff and reduced

vegetation cover. TRI is commonly calculated as

the standard deviation of elevation values within

a specified window or grid cell, using the following

equation (Riley et al., 1999):

TRI = Y

(∑
(xij − x00)

2

)0.5

(9)

In the context of the Topographic Roughness In-

dex (TRI), the grid cell at (0,0) refers to the central

cell within a defined moving window (commonly

3×3). The values of xij correspond to the elevations
of the surrounding eight neighboring cells. TRI is

calculated by measuring the elevation differences

between the central cell and its neighbors, provid-

ing a quantitative measure of surface roughness

or terrain variability. A higher TRI value indicates

greater topographic irregularity, which can influ-

ence hydrological flow paths and soil erosion po-

tential.

2.2.3.8 Bulk Density

The bulk density reflects the soil’s compactness

and porosity, influencing water infiltration and

root penetration. High bulk density indicates

compacted soil with reduced pore space, result-

ing in lower infiltration rates and increased surface

runoff, which in turn elevates the risk of soil ero-

sion.

2.2.3.9 Clay Ratio

The clay ratio represents the proportion of clay

particles in the soil,which influences soil structure

and its SES. Soils with higher clay content tend

to be more cohesive, which can reduce erosion.

However, under certain conditions, such as intense

rainfall or poor drainage, these soils may become

prone to surface crusting and erosion. The clay ra-

tio is calculated using the following formula:

CL =
%clay

%sand+%silt
(10)
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Figure 4 AUC-ROC Graph

where %clay, %sand, and %silt refer to the respec-

tive proportions of soil particle sizes.

2.2.3.10 Organic Carbon

Soil organic carbon content influences soil struc-

ture, stability, and resistance to soil erosion.

Higher levels of organic carbon enhance soil ag-

gregation, which improves infiltration capacity

and reduces surface runoff, there by decreasing the

risk of soil erosion. Soil organic carbon is typi-

cally measured in units of decigrams per kilogram

(dg/kg) of soil.

2.2.3.11 Normalized Difference Vegetation Index (NDVI)

The Normalized Difference Vegetation Index

(NDVI) is an indicator of vegetation cover and

health, where higher NDVI values represent

denser and more vigorous vegetation. Dense

vegetation mitigates soil erosion by reducing the

impact of raindrops and slowing down surface

runoff. NDVI is derived from satellite imagery

using the following formula:

NDVI =
NIRband − Redband
NIRband + Redband

(11)

where NIR is the reflectance in the near-infrared

spectrum, and RED is the reflectance in the red

portion of the spectrum.

2.2.4 Soil Erosion Modeling Using Machine Learning
Models

Soil erosion modeling using ML involves predict-

ing the likelihood and extent of soil erosion based

on various environmental factors. ML models can

capture complex relationships among these fac-

tors and the underlying soil erosion processes, of-

fering a flexible and data-driven approach to SES

assessment.

2.2.4.1 Support Vector Machines (SVM)

The Support Vector Machines are applied in soil

erosionmodeling to classify and predict areaswith

varying SES based on hydrological, environmen-

tal, and topographical factors. SVM identifies

the optimal hyperplane that maximizes the mar-

gin between different SES classes, effectively dis-

tinguishing between high-susceptibility and low-

susceptibility zones. To address complex, non-

linear relationships among input variables, SVM

uses kernel functions that project the data into

a higher-dimensional feature space where linear

separation becomes feasible. A commonly used

SVM classification function is:

f(x) = sign(wφ(x) + b) (12)

where w is the weight vector, φ(x) represents the
transformation of the input data into a higher-

dimensional space, b is the bias term, and sign (.)

determines the class label (+1 or -1). The func-

tion f(x) outputs the predicted class based on the

sign of the result. By training on datasets that in-

clude both eroded and non-eroded locations, SVM

can effectively generalize and predict SES in previ-

ously untested areas, making it a powerful tool for

soil conservation and landmanagement planning.

2.2.4.2 Generalized Linear Models (GLMs)

Generalized Linear Models are used in soil ero-

sion studies to analyze the relationship between

soil erosion factors and observed outcomes—such

as the presence or absence of erosion—by extend-

ing traditional linear regression to accommodate

non-normal response variable distributions, in-

cluding binary and count data. GLMs connect pre-

dictor variables to the response variable through a

specified link function, enabling the modeling of
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Table 1. Weights, Classes, and Scores of SES Factors

No.
SES

Factors
Categories

Weight Classes of

Factors

Area

(km2)

Area

(%)
Scores

SVM GLM

1
Rainfall erosivity

(MJ mm ha-1 h-1 year-1)

Hydrological

Data

0.076 0.085

<1,750 - - 1

1,750-2,000 1,430 29.1 2

2,000-2,250 1,951 39.7 3

2,250-2,500 1,528 31.1 4

>2,500 - - 5

2
Topographical Wetness

Index (TWI)
0.093 0.063

<5 1,960 39.9 1

5-10 2,692 54.8 2

10-15 227 4.6 3

15-20 28 0.6 4

>20 2 0.0 5

3 Stream Power Index (SPI) 0.038 0.032

<0 19 0.4 1

0-5 4,014 81.8 2

5-10 830 16.9 3

10-15 41 0.8 4

>15 5 0.1 5

4 Distance to River (m) 0.107 0.376

>1,600 2,777 56.6 1

1,200-1,600 454 9.3 2

800-1,200 492 10.0 3

400-800 540 11.0 4

<400 645 13.1 5

5 Drainage Density (km/km2) 0.134 0.282

0.0-0.2 2,011 41.0 1

0.2-0.4 1,815 37.0 2

0.4-0.6 925 18.8 3

0.6-0.8 150 3.1 4

0.8-1.0 8 0.2 5

6 Slope Length Factor

Topographic

Data

0.121 0.052

<0.4 949 19.3 1

0.4-1.4 95 1.9 2

1.4-3.1 210 4.3 3

3.1-6.8 614 12.5 4

>6.8 3,041 61.9 5

7
Topographic Roughness

Index (TRI)
0.064 0.052

0.0-0.2 949 19.3 1

0.2-0.4 95 1.9 2

0.4-0.6 210 4.3 3

0.6-0.8 614 12.5 4

0.8-1.0 3,041 61.9 5

8 Bulk Density (cg/cm3)

Environmental

Data

0.022 0.001

<50 - - 1

50-75 18 0.4 2

75-100 2,898 59.0 3

100-125 1,993 40.6 4

>125 - - 5

9 Clay Ratio 0.099 0.143

0.0-0.2 - - 1

0.2-0.4 129 2.6 2

0.5-0.6 2,837 57.8 3

0.7-0.8 1,915 39.0 4

0.8-1.0 28 0.6 5

10 Carbon Organic (dg/kg) 0.088 0.098

>125 62 1.3 1

100-125 1,865 38.0 2

75-100 2,175 44.3 3

50-75 788 16.0 4

<50 19 0.4 5

11
Normalized Difference

Vegetation Index (NDVI)
0.108 0.283

>0.7 - - 1

0.5-0.7 313 6.4 2

0.3-0.5 3,889 79.2 3

0.2-0.3 305 6.2 4

<0.2 402 8.2 5
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Table 2. Accuracy metric of the SES Model

Accuracy Metrics Unit
ML Algorithm

SVM GLM

Accuracy % 87.4 87.2

Classification Error % 12.6 12.8

AUC 0.916 0.939

Precision % 87.6 86.1

Recall % 86.5 89.4

F Measure % 87.0 87.7

Sensitivity % 86.5 89.4

Specificity % 85.0 88.3

complex and potentially non-linear relationships.

This flexibility makes GLMs particularly suitable

for predicting SES under varying hydrological, en-

vironmental, and topographical conditions. The

general form of a GLM is expressed as:

g(µ) = β0 + β1X1 + β2X2 + ...+ βpXp (13)

where g(µ) is the link function that relates the

mean of the response variable µ to the linear pre-

dictors, while β0, β1,…, βp and X1, X2,…, Xp are

the independent variables (SES factors). GLMs are

valuable tools for understanding the probabilistic

nature of soil erosion andpredicting its occurrence

under various scenarios.

2.2.5 Weighting and Scoring

Modeling SES using weighted forms of SVM and

GLM involved incorporating the relative impor-

tance of each contributing factor. Weights were

assigned to individual factors based on their influ-

ence on SES, as shown in Table 1. These weights

were then multiplied by factor-specific scores for

different factor classes in Table 1, ensuring that

the contributions of each factor were accurately

represented in the model’s predictions.

2.2.6 Evaluating The Models’ Performance and Normal-
ization

The performance of SVM and GLM in predict-

ing SES was evaluated using various metrics and

methods to assess accuracy, reliability, and gen-

eralization. Common evaluation metrics included

accuracy, precision, recall, and F-measure, which

assessed the models’ ability to correctly identify

true positiveswhileminimizing false positives and

(a)

(b)

Figure 5 Soil Erosion Susceptibility (SES) Maps Based on SVM [a]
and GLM [b]

negatives. In addition, Receiver-Operating Char-

acteristic (ROC) curves and the Area Under the

Curve (AUC) were used to evaluate the overall dis-

criminative power of the models. These perfor-

mance assessments are critical in determining the

effectiveness of the models in identifying SES-

prone areas and ensuring their predictive robust-

ness on unseen data. These evaluation methods

provide a comprehensive framework for refining

and enhancing SVM and GLM performance in en-

vironmental modelling and SES analysis.

The normalization of SES results is an important

post-processing step that involves scaling predic-
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tion outputs to a common range to facilitate con-

sistent interpretation and comparison across dif-

ferent datasets or scenarios. This process trans-

forms SES values to a standardized scale—typically

between 0 and 1—thereby reducing biases intro-

duced by differences in data magnitude and allow-

ing for clearer visualization and ranking of ero-

sion susceptibility. Normalization is commonly

performed using themin-max scalingmethod, de-

fined as:

Xnorm =
X −Xmin

Xmax −Xmin
(14)

where X is the original value, Xmin is the mini-

mum value in the dataset, and Xmax is the maxi-

mum value in the dataset.

3 RESULTS

3.1 Model Performance Evaluation

Figure 4 shows that GLM outperformed SVM in

terms of AUC, with values of 0.939 and 0.916, re-

spectively. This result indicated that GLM had

a stronger discriminative ability in distinguish-

ing between susceptible and non-susceptible ar-

eas, which is essential for generating reliable SES

maps. Furthermore, GLM’s recall and sensitivity

were higher than SVM’s, 89.4% and 86.5%, respec-

tively, indicating that GLM was more effective in

identifying true positives, reducing the suscepti-

bility to underestimating SES areas—a key factor

in environmental conservation and land manage-

ment (Rahmati et al., 2017). Additionally, GLM

achieved higher specificity (88.3% vs. SVM’s 85%),

indicating better performance in correctly iden-

tifying non-susceptible areas and reducing false

positives. This higher specificity enhances the

model’s utility in supporting targeted and cost-

effective soil conservation strategies (Bui et al.,

2020). While SVM exhibited slightly better preci-

sion (87.6% vs. GLM’s 86.1%), reflecting a lower

rate of false positives, the overall performance of

GLM across multiple evaluation metrics suggest

that it provides a more balanced and robust ap-

proach to SES modeling—particularly in contexts

where minimizing both false negatives and false

positives is critical.

3.2 Spatial Distribution of Soil Erosion Susceptibility (SES)

Table 3 compares SES across different classes us-

ing the SVM and GLM, revealing notable contrasts

in their predictions. One of the most striking dif-

ferences is seen in the “Very Low” susceptibility

class: GLM assigned 24.55% of the area to this cat-

egory, while SVM assigned only 4.37%. This result

suggests that GLM tends to generalize and classify

broader regions as having minimal susceptibility,

possibly due to its smoothing tendencies over fine-

scale variations. In contrast, SVM’s sensitivity to

subtle patterns in the data results in more con-

servative and spatially restricted identification of

“Very Low” SES areas.

A similarly notable difference emerged in the

“Moderate” class, with SVM assigning 40.59% of

the area compared to only 21.84% byGLM.This re-

sult suggests that SVM is more precise in captur-

ing gradual transitions in SES, thereby distributing

the susceptibility values more evenly across mid-

range categories. On the other hand, both models

demonstrated strong agreement in the “Low” sus-

ceptibility class, with nearly identical area propor-

tions—38.50% for SVMand 38.59% for GLM—indi-

cating a shared ability to identify regionswith con-

sistently low erosion risk, likely due to more ro-

bust patterns in the underlying data. Differences

resurface in the “High” and “Very High” classes.

SVM identified a greater area in the“High”suscep-

tibility class (15.56%) compared to GLM (13.32%),

while GLM slightly surpassed SVM in the “Very

High” category (1.23% vs. 0.98%). This pattern

may reflect SVM’s ability to detect more transi-

tional zones from moderate to high susceptibility,

whereas GLM may be better suited to identifying

extreme cases with strong, generalized signals.

Figure 5 further illustrates that areas catego-

rized as “High” and “Very High” susceptibility by

bothmodels are predominantly located along river

channels and tributaries. This pattern is consis-

tent with the geomorphological reality that prox-

imity to water bodies increases exposure to ero-

sive forces. The presence of concentrated wa-

ter flow, frequent saturation, and riverbank dy-

namics—such as meandering and high-discharge

events—amplify soil detachment and transport in

these zones, making them particularly vulnera-

ble to erosion. Overall, the SES distribution pat-

terns suggest that SVM offers a more nuanced
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Table 3. The SES class area of each Machine Learning Algorithm

No. Normalization Range Classes of Soil Erosion Susceptibility

Support Vector Machines

(SVM)

Generalized Linear Models

(GLM)

Grid

Total

Area

(km2)
%

Grid

Total

Area

(km2)
%

1 0.0 - 0.2 Very Low 238,436 215 4.4 1,339,038 1,205 24.6

2 0.2 - 0.4 Low 2,099,817 1,890 38.5 2,104,967 1,894 38.6

3 0.4 - 0.6 Moderate 2,213,906 1,993 40.6 1,191,423 1,072 21.8

4 0.6 - 0.8 High 848,573 764 15.6 726,729 654 13.3

5 0.8 - 1.0 Very High 53,583 48 1.0 67,158 60 1.2

Total 5,454,315 4,909 100 5,429,315 4,886 100

and detailed classification, making it advanta-

geous for localized, site-specific erosion control

and management. In contrast, GLM provides a

broader, more generalized assessment, which is

well-suited for strategic-level planning and prior-

itization of conservation resources. These differ-

ences highlight the importance of selecting amod-

eling approach that aligns with the objectives of

the study—whether for precision targeting of ero-

sion hotspots or for broader land-use planning and

policy development.

3.3 Feature Importance and Interpretation

Table 1 highlights the weights assigned to various

factors by eachmodel, revealing insights into their

relative significance in predicting SES. For SVM,

the highest weights were assigned to distance to

the river (0.107), drainage density (0.134), and

slope length factor (0.121). This weighting pattern

suggests that SVM places substantial emphasis on

topographic and hydrological features. These pri-

orities are consistent with findings in recent liter-

ature. For example, Band et al. (2020) emphasized

the importance of slope length and drainage den-

sity in predicting soil erosion due to their direct in-

fluence on runoff and soil erosion processes. Slope

length affects the velocity and energy of surface

water flow, thereby impacting the degree of soil

detachment,while drainage density influences the

distribution and concentration of runoff across the

landscape (Vu Dinh et al., 2021). The importance

of distance to rivers also aligns with studies such

as Pourghasemi et al. (2020), which found that

proximity to water bodies plays a key role in sedi-

ment transport and the onset of erosion processes.

In contrast, GLM assigned the highest weights to

the distance to the river (0.376), drainage density

(0.282), and NDVI (0.283). This result suggests

a greater sensitivity of GLM to both proximity to

hydrological features and land cover conditions.

The high weight given to distance to rivers and

drainage density reinforces their critical roles in

shaping erosion patterns, consistentwith the find-

ings of Band et al. (2020). Meanwhile, the elevated

importance of NDVI in the GLM model highlights

the relevance of vegetation cover in modulating

SES.As Bui et al. (2020) observed,NDVI serves as a

reliable indicator of vegetative health and density,

both of which contribute to soil stabilization and

reduced erosion risk.

4 DISCUSSION

4.1 Strengths and Weaknesses of Each Model

For SES modelling, the GLM offers several advan-

tages, particularly in terms of flexibility and in-

terpretability. GLM accommodates a variety of

predictor variable types and can model different

forms of SES outcomes, including binary and con-

tinuous responses. Its interpretability is espe-

cially valuable in understanding the influence of

environmental factors on SES, thereby supporting

evidence-based land management decisions. For

instance, GLM assigned high weights to the dis-

tance to river (0.376) and NDVI (0.283), highlight-

ing their significant roles in soil erosion processes.

These factors affect sediment transport and vege-

tation cover, which are consistently identified in

the literature as key drivers of erosion dynamics

(Arabameri et al., 2019; Gayen et al., 2019; Rah-

mati et al., 2017; Igwe et al., 2020).

However, one limitation of GLM lies in its assump-

tion of a linear relationship between predictors

and the response variable, which may restrict its
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ability to capture the inherently complex and non-

linear nature of soil erosion processes (Jiang et al.,

2021). Additionally, GLMmay underperformwhen

dealing with high-dimensional datasets or intri-

cate interactions among variables. While GLM

demonstrated strong performance, as evidenced

by an AUC of 0.939 (vs. SVM’s 0.916), its capac-

ity to fully capture non-linear relationships may

be limited compared to more advanced machine

learning techniques.

On the other hand, SVM is particularly well-suited

for SES modelling due to its ability to model com-

plex, non-linear relationships between predictors

and response variables. SVM excels in handling

high-dimensional data and capturing intricate in-

teractions,making it a powerful tool for represent-

ing themultifaceted processes underlying soil ero-

sion. The SVM model placed strong emphasis on

drainage density (0.134) and slope length factor

(0.121), highlighting its effectiveness in capturing

topographic influences, in line with findings from

previous studies (Olii et al., 2023).

SVM’s flexibility in employing various kernel func-

tions allows it to adapt to different data structures,

thereby enhancing predictive accuracy in SES as-

sessments (Mustafa et al., 2018). Nonetheless,

SVM has some drawbacks, including its computa-

tional intensity and limited interpretability—chal-

lenges for practitioners who require a clear un-

derstanding of the factors driving erosion (De-

vos et al., 2009). Despite these drawbacks, SVM

demonstrated strong predictive performance,with

a precision of 87.6% and a recall of 86.5%, indicat-

ing its robustness and reliability in SES classifica-

tion tasks.

4.2 Implications for Spatial Susceptibility Assessment and
Environmental Management

The findings of SES assessments carry significant

implications for land management practices, par-

ticularly when integrating ML models like SVM

and GLM with geospatial data. As shown in Ta-

ble 3, both models effectively delineate areas with

varying degrees of susceptibility. Notably, GLM

identified a substantially larger area as having

very low susceptibility (24.55%) compared to SVM

(4.37%), suggesting a broader generalization of

low-risk zones. This ability to delineate high-

susceptibility zones enables more targeted inter-

ventions—such as reforestation, terracing, and the

construction of check dams—which are essential

for preventing soil erosion and enhancing land

productivity

Furthermore, the data suggests that the two mod-

els may emphasize different risk areas. For ex-

ample, SVM assigned a higher percentage of the

area to the moderate susceptibility class (40.59%)

than GLM (21.84%), highlighting SVM’s sensitiv-

ity to transitional zones. These insights support

previous findings that targeted soil conservation

measures can enhance agricultural yields and re-

duce environmental degradation, demonstrating

the practical benefits of using ML models in SES

assessments (Mosavi et al., 2020). The applica-

tion of such data-driven insights in land manage-

ment not only optimizes resource allocation but

also aligns with sustainable development goals by

mitigating the adverse impacts of soil erosion on

ecosystems and human livelihoods (Rahmati et al.,

2017; Arabameri et al., 2018).

The broader environmental implications of spa-

tial SES assessments extend beyond immediate

land management applications, particularly when

considering the differing weight distributions and

classification patterns identified by SVM and GLM

models. For instance, SVM’s higher sensitivity in

identifying moderately susceptible areas (40.59%)

suggests that it may be more effective in predict-

ing and managing soil erosion in regions where

SES is less apparent but still ecologically and eco-

nomically significant. In contrast, GLM’s empha-

sis on very low susceptibility areas (24.55%) can

assist in prioritizing zones for preventive mea-

sures, ensuring that areas currently at low risk are

managed to avoid future degradation.

Accurate SES mapping is crucial for watershed

management (Farhan et al., 2013), as it sup-

ports the prediction of sediment loads in rivers

and reservoirs, a key factor in maintaining water

quality and preventing downstream flooding (Olii,

Olii, Olii, Pakaya and Kironoto, 2024). Moreover,

the adaptability of these models to various geo-

graphic and environmental contexts, as indicated

by the correlation between different model out-

puts and environmental factors, highlights their

utility in broader global environmental manage-

ment efforts. This adaptability is particularly im-

portant for integration into climate change adap-
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tation strategies, where SESmodels can be used to

anticipate shifts in erosion patterns resulting from

changing precipitation regimes and land use dy-

namics (Eekhout and de Vente, 2022).

Ultimately, SES models, with their ability to char-

acterize nuanced differences in susceptibility lev-

els, serve as valuable tools for addressing global

environmental challenges such as desertification,

biodiversity loss, and unsustainable land use.

Their application supports long-term sustainabil-

ity goals by providing a scientific basis for policy-

making, conservation planning, and land degra-

dation mitigation at multiple scales (Eekhout and

de Vente, 2022).

5 CONCLUSION

The integration of ML techniques, such as SVM

and GLM, in the geospatial modelling of SES sig-

nificantly enhances predictive accuracy and relia-

bility compared to traditional methods. The anal-

ysis revealed that the SVM model predominantly

classified the study site as areas having moderate

(40.59%) and low (38.50%) SES, whereas the GLM

model identified a larger portion of areas with very

low (24.55%) and low (38.59%) SES. Both models

exhibited high accuracymetrics, with SVM achiev-

ing an accuracy of 87.4%, closely followed by GLM

at 87.2%.

In terms of model discrimination ability, GLM

recorded a slightly higher AUC of 0.939 compared

to 0.916 for SVM, indicating its superior perfor-

mance in distinguishing between different SES

classes. An analysis of contributing factors further

highlighted differences in model behavior: GLM

placed greater emphasis on hydrological variables,

such as distance to rivers and drainage density,

while SVM distributed weight more evenly across

a wider range of topographical and environmen-

tal factors. This finding suggested that GLM may

offer a more hydrologically focused interpretation

of soil erosion dynamics, whereas SVM provides a

broader, more balanced perspective.

The robust performance of both models—vali-

dated through cross-validation techniques—un-

derscores their potential for dynamic and reliable

SES assessments. Such data-driven insights are

essential for effective land management and soil

conservation strategies, particularly in erosion-

prone regions. Ultimately, these findings highlight

the value of adopting innovative machine learn-

ing approaches in environmental modeling to ad-

dress the complex and evolving challenges of land

degradation, watershed protection, and sustain-

able development.
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