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ABSTRACT Finite Element Method (FEM) has been the state-of-the-art method in the geotechnical analysis since it was first formulated
in the 40s. This method can handle Multiphysics simulation, soil-structure, soil-water interaction, and time history analysis. Though
powerful, the standard Lagrangian FEM suffers from mesh distortion when handling large strain deformation problems. This mesh entan-
glement problem makes modelling post-failure analysis considerably challenging, if not impossible, using FEM. Therefore, the Material
Point Method (MPM) was introduced to solve these large strain deformation problems. Adapted from the Particle in Cell (PIC) method,
MPM is a hybrid method that combines the Eulerian and Lagrangian approaches by utilizing moving material points that are moving over
spatially fixed computational mesh. The method’s features enables it to calculate not only fluid mechanics such as in PIC but also solid
mechanics and their intermediatory states. To demonstrate the capability of this method and its consistency with FEM in geotechnical
analysis, this article presents a comparison of FEM and MPM analysis on a hypothetical slope using the Mohr-Coulomb constitutive model.
The results obtained from the simulation showed that both FEM and MPM are consistent with each other, specifically in a small strain
scheme. However, in large strain deformation, MPM was able to obtain convergent results while FEM could not. The MPM simulation
was also able to animate post-failure behavior, calculate post-failure strains and stress distribution, and present the model’s final geometry.
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1 INTRODUCTION

In geotechnical engineering, problems encoun-
tered are mostly associated with soil deforma-
tion. One common problem that holds catas-
trophic danger is slope instability which occurs in
both natural and man-made environments. To ad-
dress this imminent danger, engineers developed
various analytical methods to predict the possibil-
ity of such an event occurring. Currently, most
slope stability analyses involve failure prediction
and safety factor determination. Although such
analysis could help minimize the possibility of the
event occuring, it does not prevent it entirely. It is
thus, also very important to understand the post-
failure soil behavior, indicating further damage
could be prevented.

One popular method that has been used for this
purpose over a long period is the limit equilib-
rium method (LEM). The notion consists of equi-

librium analysis of the forces around the assumed
failure plane (i.e., circular and planar failure sur-
faces). Other notable methods that emerged in-
clude Bishop, Janbu, and Fellenius among others.

As a force-based method, LEM is simple and user-
friendly, but it cannot calculate the basic physics
of the stress-strain relationship. Therefore, any
deformation that occurs in the model is practically
ignored and any problems associated with stress
concentration and deformation compatibility can-
not be solved using this method.

Another method that has been used extensively
in the past decades is the Finite Element Method
(FEM). While it is difficult to pinpoint the first time
this method was formulated, it has been in use
since the early 1940s. Presently, FEM can be con-
sidered the state-of-the-art method in geotechni-
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cal engineering analysis. This is because of the
method’s ability to work in a continuum domain
and its capability to model history-dependent ma-
terial behavior such as soil. In FEM, the contin-
uous domain is discretized into smaller elements
before they are solved. Also, this method incor-
porates a weak formulation of momentum bal-
ance laws, reducing the order of the approxima-
tion function needed to calculate element behav-
ior.

The Conventional FEM algorithm uses Lagrangian
mesh to keep track of the material domain. The
mesh has well-defined free surfaces and can accu-
rately model deformation and this feature is most
favorable in modeling solid mechanics. However,
soil behaviors can differ from normal solid mate-
rials due to their granular nature. Granular ma-
terials have peculiar properties. These materials
strength is determined by their ability to with-
stand shear stresses. When these shear stresses
exceed the material’s capacity, it will deform ex-
tensively along with large shear strain. Such con-
ditions limits the effectiveness of FEM consider-
ing the fact that under large deformation, the La-
grangian mesh could be so distorted that accuracy
is lost. Figure 1 shows a mesh distortion in slope
stability analysis. The mesh geometry, as shown
in the figure, has been extremely deformed to a
point that it practically resembles a line, whereas
its original shape was a triangle. Typically, pro-
prietary FEM software will stop calculating when
such condition is met since the results will just di-
verge.

The way FEM behaves under large strain defor-
mation is a problem in post-failure analysis be-
cause conclusions cannot be taken from diverging

Figure 1. Example of extreme mesh distortion in conven-
tional FEM simulation (Ceccato, 2015)
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results. Attempts have been made to solve this
problem using various re-meshing techniques, but
there is still no optimal procedure currently avail-
able for such function. Forcing to re-mesh only
creates an exponential increase in computational
cost, which is undesirable.

Furthermore, to deal with large deformations,
variations of FEM such as Eulerian FEM were for-
mulated. The Eulerian FEM uses spatially fixed
mesh to track material deformation and this solu-
tion directly solves the mesh distortion problem.
However, because the computational mesh is now
separated from the material, convective terms ap-
pear in the equations and create more complexity
due to their matrix non-symmetrical properties.

In practice, the Eulerian FEM is more often cou-
pled with standard Lagrangian FEM. It is called
a Coupled Eulerian-Lagrangian (CEL) FEM. This
approach presents the benefit of Eulerian Mesh
strictly to the high strain region of the model,
theteby making the computation efficient. Al-
though its success in modeling large deformation,
CEL is mostly effective in modeling solid and fluid
interaction in which both material behavior is pre-
sumably consistent in the simulation. With soil,
things are different since the behavior could be
continually changing in the simulation. For de-
tails of CEL implementations in the geotechnical
engineering field, readers are referred to (Henke
et al., 2010).

Following this, other than mesh-based methods
such as FEM, meshless or mesh-free methods have
also been developed to accommodate large strain
deformation problems. These methods are re-
ferred to as meshless because the space is dis-
cretized into several material points/particles in-
stead of meshed elements as in FEM. These mate-
rial points, or particles, interacts with each other
in a relatively flexible manner.

One of the oldest meshless methods developed is
the Smoothed Particle Hydrodynamics (SPH). This
method originated from astrophysicists who were
studying dust clouds and star explosions (Lucy,
1977; Pastor et al., 2009), in their study, presented
a depth-integrated, coupled model discretized us-
ing SPH. This model was then applicated in a land-
slide run-out analysis which was conducted by
Pastor et al. (2014).
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Furthermore, another notable meshless method is
the Material Point Method (MPM). According to
Sulsky et al. (1994), this method was originally
an extension of the Particle-in-Cell method which
was developed by Harlow (1964) to facilitate solid
mechanics. In this study, MPM and conventional
FEM were compared, specifically for post-failure
large deformation analysis.

2 METHODOLOGY

2.1 Finite Element Method (FEM)

Similar with any other numerical method, the
principle of FEM is rooted in the idea of dis-
cretizing a continuum body into smaller elements.
These elements, which are depicted in Figure 2,
are assumed to behave linearly. Furthermore,
in computational mechanics, the Equation 1 that
governs all material behavior is the conservation
law of mass, momentum, and thermodynamics.
When neither mass nor heat is leaving and/or en-
tering the system, however, these laws could be
narrowed down to the conservation law of mo-
mentum alone. This is convenient because in
terms of FEM analysis, the total mass in the sys-
tem is constant and heat flux is ignored. The gov-
erning Equation 1 in a Lagrangian representation
can thus be expressed as:

p(dv)/dt = div(a™) + pg 1)

Where (dv)/dt is the vector of acceleration,o is the
Cauchy’s stress tensor, and g is the gravity vector.
Notice that in the standard momentum conserva-
tion there exist a second order term on the left-
hand side. The presence of this term causes prob-
lems because the approximation function needed
to solve the Equation 1 must be differentiable, at

“| %

4 - Point Gaussian 9 - Point Gaussian

Figure 2. Gaussian point in quadrilateral elements for fi-
nite element integration
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least twice. To tackle this problem, FEM imple-
ments an arbitrary weighting function édv and in-
tegrate all the terms.

Subsequently, since the element used in FEM con-
sists of several nodes, a shape function can be im-
plemented to interpolate values from a discrete
nodal value to any point within the elements. In
order to obtain a precise value, the values calcu-
lated with the shape function were located on the
gaussian points of each element, as shown in Fig-
ure 2. Subsequently, there was a divergence in the
implementations as various people try to optimize
the solution and improve the FEM performance.
For further implementation details, readers are re-
ferred to PLAXIS (2021).

2.2 Material Point Method

MPM is in a nutshell is an extension of FEM.
Their only difference is that in MPM, discretiza-
tion comes in the form of material points (MPs).
Figure 3 shows the material point discretization
scheme in MPM. These MPs carry all the informa-
tion, including stresses, displacements, and veloc-
ities, regarding the Lagrangian description of mo-
tion. While the points were carrying all the in-
formation, the momentum balance equations cal-
culation was carried out in the background of the
Eulerian computational mesh. Since the informa-
tion is stored in the material points, the calcu-
lated value in the nodes can be discarded after
each calculation step. To simplify understanding,
these MPs can be compared to the gaussian in-
tegration points in FEM. Unlike gaussian points,
these MPs are able to move in the computational
mesh and cross element boundaries freely. Thus,
leveraging the benefits of both the mesh-based
and mesh-free methods. The complete MPM for-

Void

* o ¥ ®

Material point
Continuum body
Node

Grid / Cell

Figure 3. Material Point Method discretization of contin-
uum body (Fern, 2016)
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Figure 4. Computational cycle of the Material Point
Method (Fern, 2016)

mulation and its implementation are discussed by
Kafaji (2013) rigorously.

The MPM calculation procedure for explicit one-
step time increment is depicted in Figure 4. The
cycle starts with mapping information from MPs to
the nodes of the computational mesh using shape
functions. Similar to FEM, the mass in each MP is
strictly constant, hence, the mass balance Equa-
tion 1 is automatically satisfied. Therefore, in the
next step, only momentum balance equations are
solved in each node to obtain primary unknown
variables (i.e., nodal accelerations). These nodal
values are then remapped into each MPs to fur-
ther update their information. At this point, the
nodal values can be discarded and prepared for
the next cycle. Finally, the updated MPs informa-
tion is then used to determine the new locations,
stresses, strains, etc of the points.

Subsequently, the usage of Eulerian computa-
tional mesh in MPM automatically eliminates
the problem of mesh entanglement. It also
makes treating fictional contacts between bodies
straightforward and efficient (Hamad et al., 2017).
Because most MPM algorithms were derived from
FEM, transitioning to MPM seems more natural
than other meshless methods. However, consid-
ering the fact that no method is by any means per-
fect, some drawbacks need to be addressed. They
include cell-crossing instability, relatively higher
computational cost than FEM, and enforcement of
boundary conditions (de Vaucorbeil et al., 2020).
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3 NUMERICAL SIMULATIONS

3.1 Model Configuration

To perform the comparison study, a homogenous
2D clay slope with geometry, as shown in Figure
5, was selected and simulated using both FEM and
MPM. The slope and the vertical rolling bountry
rested on a fixed boundary condition on the bot-
tom and on each side of the model, respectively.
Furthermore, to facilitate the possibility of deep-
seated landslides, a 5 m deep and 25 m wide layer
of base soil was provided. The slope had a 4.5-m
height and 26.6° inclination.

The FEM simulation in this study was performed
using PLAXIS and that of the MPM was performed
using codes provided by the CB-Geo computa-
tional geomechanics research group (Kumar et al.,
2019). In PLAXIS , the domain was discretized us-
ing triangular mesh automatically with a “Fine”
element distribution. The mesh produced by the
computer program had 15 nodes by default and
this implies smoother interpolation capabilities.

Meanwhile, in CB-Geo MPM, the domain meshed
with uniform quadrilateral elements with 4-nodes,
and size similar to that of PLAXIS’s mesh. This
produced 0.5 c¢cm square elements in the dis-
cretized domain. After which the MPs were in-
jected into the domain in such a way that each el-
ement/cell can have at most 16 MP. The configu-
rations for the FEM and MPM analysis are listed in
Tables 1 and 2, respectively.

Following this, to successfully create larger defor-
mation and comparable results between the two
methods, an initial load of 15 kPa was added to
the top of the slope after the initial phase was
calculated. The load was then incremented by
15 kPa after each step until the calculation re-
sults diverge. This load was selected in accordance
with the study conducted by Zhou and Sun (2020),
where it was assumed that 15 kPa is equivalent to
a load of a story building, hence, the incremental
load was applied to generate large deformations.
In addition, stressed points from 3 areas (top, mid-
dle, and bottom) were selected to monitor the de-
formation which had occurred due to the loading
scheme. The areas selected were consecutively lo-
cated at 0 m, -3 m, and -6 m from the center of the
load into the soil.
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Figure 5. Schematic description of the hypothetical slope with an incremental uphill loading configuration

Table 1. FEM analysis configuration

Parameter Value

Element type 15-noded Triangular
Average element size 1.034 m

Number of nodes 2999

Number of stress points 4284

Table 2. MPM analysis configuration

Parameter Value
Element type 4-noded Quadrilateral
Element size 0.5x0.5m

Particles per element 16 MP/cell
Number of particles 11024
Time steps 0.0005 s

Table 3. Mohr-Coulomb Parameter

Parameter Symbol Value
Density p 1600 kgm
Young’s modulus E 5600 kPa
Poisson ratio v 0.3
Cohesion c 5 kPa
Friction angle ’ 30°
Dilatancy angle v 0°

3.2 Mohr-Coulomb

The examples shown in this study used Mohr-
Coulomb constitutive model which is widely used

in geotechnical engineering practice. The model
is simple and relatively easy to use. There are 2
parameters used in the model to calculate the soil
shear strength: the cohesion ¢’ and the friction an-
gle ¢’. The relationship between the 2 parameters
can be expressed as:

T = otan(p) + ¢ (2)

Where 7 is the shear stress and o is the normal
stress. Furthermore, the input parameters for
the Mohr-Coulomb soil model are listed in Table
3. These parameters were used to simulate loose
sand with Ngpt of 8. The cohesion, however, was
determined at 5 kPa to maintain the numerical cal-
culation consistency and prevent failure prema-
turely.

In terms of the model parameter, there was no sig-
nificant difference between FEM and MPM. Both
models used the Mohr-Coulomb model to simu-
late soil behavior. However, unlike FEM whose ba-
sic algorithm calculates problems implicitly, the
MPM algorithm calculates problems explicitly. It
is required that the user should thus provide a
magnitude of time step that MPM can work with.
Although this could be any arbitrary small num-
ber, it is recommended to use a critical time step
such as de Béjar and Danielson (2016) proposed for
explicit integration of dynamic higher-order FEM
to produce an efficient running time and an eco-
nomic analysis.
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Another thing to consider is the number of parti-
cles per element. This could be opted based on the
ideal number of gaussian points for integration. In
a 2D element, for example, the number could be
from 4 MPs/cell up to 16 MPs/cell or even more de-
pending on the fineness expected in the model.

3.3 Simulation of Small-Strain Deformation

The results of the finite element and material
point simulations are shown in Figure 6. As ex-
pected, the finite element analysis had no prob-
lems calculating displacements and maintaining
a convergent result in small strain phases. The
first row of the snapshots was taken at stage 4, in
which the slope was given a load of 60 kPa. This
was where the figure started to showing noticeable
deformation on the top surface of the slope. The

Finite Element Method

Stage 4

Stage 7

Stage 10

0000 0010 0020 0030 0040 0050 0.060 0.070
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next row shows the slope’s condition at stage 7, in
which another 45 kPa was added to the initial load.
At this stage, some areas of the slope had reached a
critical state and had become plastic. Finally, the
last row shows the slope’s condition at stage 10,
which was the stage before PLAXIS started feed-
backing calculation errors due to the soil collaps-
ing. The plastic failure distribution in this stage is
shown in Figure 7 which indicated that there was
a most likely punching shear failure occurring.

MPM, as shown in the right column of Figure 6,
provided a seemingly consistent result compared
to FEM analysis. This result is further supported
by Figure 8 which presents the comparison be-
tween volumetric strains in all 3 control points
(i.e., top, middle, and bottom) tracked in each
stage of loading, with the top point located di-

Material Point Method

|
0080 0090 0100 0110 0120 0130 0140 0.180

Displacements Magnitude

Figure 6. Displacement magnitude (meter) calculated at stage 4 (60 kPa), stage 7 (105 kPa), and stage 10 (150 kPa) with

FEM and MPM
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Figure 7. Plastic points in FEM analysis at stage 10
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Figure 8. Volumetric strain comparison between FEM and MPM

rectly under the load. In this area, however, both
MPM and FEM appear to agree with one another
in the stages. The second area was located about 3
m under the first point. In this area, FEM appears
to show a higher volumetric strain from stage 5 to
the end. Finally, on the last point, MPM and FEM
agreed to one another again. Conclusively, the
volumetric strain between MPM and FEM shows an
average error of 15.59 % with a standard deviation
of 14.26 %.

Subsequently, the strain value discrepancies cal-
culated with FEM and MPM could be addressed
according to the shape of the mesh used (i.e.,
quadrilateral and triangular). The mesh shale

4

Loading stages

6 8 10 0 2 4 6 8 10
Loading stages

could cause differences in the failure planes pre-
dicted which explains the location in which both
methods’ results diverge. Accordingly, the prob-
lem with mesh shapes needs to be further investi-
gated to properly understand how its impact dif-
fers quantifiably. The difference could also be ad-
dressed with regard to the fact that the material
points, which act as gaussian points in MPM, are
generally not in the optimal position for numerical
integration. Moreover, in some locations, MPM
shows sudden spikes of strains or stresses which
usually occur due to cell-crossing noise. Such
errors are common in quasi-static problems, in
which the rate of loading is very slow, hence, the
effect of inertia becomes insignificant. In this sit-
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Figure 9. Simulation result for large deformation settings. The color map represents the strain magnitude

uation, Bardenhagen and Kober (2004) introduced
the Generalized Interpolation MPM (GIMPM) to
mitigate this effect. This interpolation method
was then further improved by Sadeghirad et al.
(2011) into what is now known as Convected Par-
ticle Domain Interpolation (CPDI) MPM.

3.4 Simulation of Large-Strain Deformation

The load applied to the slope only slightly de-
formed it. However, the advantages of MPM are
more apparent in large deformation settings. To
achieve this condition, the slope received an ex-
ceptional load of 390 kPa at stage 10 as opposed to
the prior 150 kPa.

Furthermore, to create a bigger picture of the de-
formation, the model was first to reset to its ini-
tial condition. The 390 kPa load was added all to-
gether to the model. In order to also prevent ma-
terial oscillation due to sudden loading, the load
was applied gradually in a linear manner with a
time interval of 3s, and the time step used to calcu-
late this simulation was reduced to 0.0001s to pre-
vent the occurrence of numerical errors and create
smoother results.

Figure 9 shows the simulation result in the form of
snapshots. The color contour in these snapshots

represents the strain magnitude which was calcu-
lated by Equation 3.

lel] = V(e.e) 3)

Where, ¢ is the total strain tensor calculated from
the constitutive Equation 3. The first snapshot was
taken at t = 5s in which the load was just fully
applied to the model. The second snapshot was
taken at t = 25s. At this time, some areas near
the foot of the load had already deformed signif-
icantly and the compression stress from the load
created a wedge zone which was also apparent in
Terzaghi’s general failure plane assumption. Ac-
cordingly, the third snapshot was taken at t = 50s
and this was when the failure plane became appar-
ent. The fourth was taken at t = 75s which shows
the sliding of the landmass over the failure plane.
Lastly, the fifth shot was taken at t = 100s. At this
stage, the final deposition profile of the failure was
depicted.

This extreme load simulation indicated the occur-
rence of a sliding failure. The material’s final de-
position shows that the soil will settle at an ele-
vation of 8.3 m from the bottom boundary. In a
real case scenario, these simulation results could
be useful, for example Zhou and Sun (2020) used a
combination of MPM and Monte Carlo simulation
to determine landslide risk quantitatively.
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4 CONCLUSIONS

The result of this study shows that MPM produces
comparable outcomes to FEM in terms of slope
stability. Furthermore, MPM has the capability
to accurately deal with large deformations usually
occuring from extreme loads and this puts FEM at
q disadvantage.

During the simulation period of large deforma-
tion, MPM was able to track the deformation level
presumably accurately. It could also identify the
slope failure type along with the final geometry of
the model post-failure. It also provided the defor-
mation process in accordance with its natural ex-
plicit integration scheme.

Some keynotes that should be considered are sum-
marized as follows:

1. In a general situation consisting of small de-
formation, FEM still performs relatively more
accurately than MPM.

2. In areas where particles receive a very slow
loading rate, while crossing a cell, an error
might occur, hence, a more sophisticated al-
gorithm (i.e., GIMP, CPDI, XMPM, etc.) is
needed.

3. The time needed to run MPM is significantly
longer than FEM but this factor was not con-
sidered in this study.

The usage of FEM in the industry is currently in-
comparable to MPM. This fact was inextricably
linked to the software’s popularity and availabil-
ity. However, when given a specific problem, MPM
might be the better solution to use.
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