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ABSTRACT  Several regions across the world are presently experiencing a continuous increase in water scarcity due to the rise in water 
consumption resulting from population development, agricultural and industrial expansion, climate change, and pollution. Droughts are 
increasing in recurrence, severity, duration, and spatial extent as a result of climate change. Drought will be one of the most serious 
threats posed by climate change, often in conjunction with other effects such as rising temperatures and shifting ecosystems. Therefore, 
this study analyzes the spatial distribution of the Drought Hazard Index (DHI) by integrating AHP-GIS-Remote Sensing in Gorontalo 
Regency. AHP was used to determine the significance of each map as an input parameter for the DHI, while GIS-Remote Sensing was 
utilized to supply and analyze all input maps and the study outcome. The DHI assessment consists of four criteria, namely with Normalized 
Difference Vegetation Index accounting for the highest proportion at 42.9%, followed by Land Surface Temperature (33.6%), Normalized 
Difference Moisture Index (16.8%), and Topographic Wetness Index (6.7%), with the consistency of the underlying expert opinion 
measured by the consistency ratio of 0.048. The results indicated that the general hazard of drought in the Gorontalo Regency area was 
low (43.53%), with 17.87% of the whole area experiencing high hazard. The high class of drought was discovered to be centered in the 
central region of Gorontalo Regency, which was mostly used for agricultural and economic purposes, thereby enabling policymakers to 
have evidence to develop management policies suitable for local conditions. Therefore, despite the limits of climatology data, this study 
established the value of satellite-derived data needed to support policymakers in guiding operational actions to drought hazards 
reduction. 
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1 INTRODUCTION

Hydrometeorological disasters are influenced by 
significant meteorological and weather factors, 
such as drought. According to (Sheffield & Eric, 
2011). Drought is a condition in an area that 
experiences water shortages compared to normal 
conditions in various hydrological cycle 
components. This disaster occurs in almost all 
parts of the world, including tropical countries 
such as Indonesia. Generally, drought occurs due 
to extreme human activities, such as land 
degradation, overexploitation of water, and 
desertification (Wijitkosum & Sriburi, 2019). 
Human activities increase the risk of drought, 
thereby making it difficult to accurately predict its 
occurrence and level of hazards (Loon et al., 2016). 

Drought is classified as a hydrometeorological 
disaster with serious environmental, social, 
agricultural, and economic consequences (Ekrami 
et al., 2016). It causes issues such as a lack of 
groundwater, an imbalance of water for crops, and 
a reduction in agricultural yields (Wu et al., 2017). 
Drought is influenced by natural and 
anthropogenic factors and seriously impacts 
global water and food security. Therefore, 
developing a thorough drought risk assessment is 
imperative, particularly in underdeveloped 
countries (Wijitkosum, 2018). In addition, 
conducting an assessment of the level of drought 
hazard in areas at risk of this disaster is very 
important for planning future land development, 
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preventing its occurrence, and minimizing the 
negative impacts (Loon et al., 2016). 

Drought is an inherently complex 
multidimensional process with unknown 
quantitative and qualitative factors (Wijitkosum, 
2018). Real-time drought monitoring systems can 
analyze a large area as Remote Sensing 
technology, and geographic information systems 
(GIS) advances. These systems are increasingly 
being considered drought detection techniques, as 
evidenced by their use in many parts of the world. 
(Belal et al., 2012). For example, Remote Sensing 
data is used to calculate the Normalized Difference 
Vegetation Index (NDVI), Normalized Difference 
Wetness Index (NDWI), Land Surface Temperature 
(LST), Normalized Difference Built-up Index 
(NDBI), and Normalized Difference Moisture 
Index (NDMI). They are employed in the 
monitoring and controlling agricultural drought 
and crop growth (Chang, 1996; Karnieli et al., 
2010; Prasetya et al., 2020; Malik et al., 2019; 
Sholihah et al., 2016). 

Several studies developed numerous models to 
analyze the level of hazard, vulnerability, or risk of 
hydrometeorological disasters with fairly good 
results, such as floods, flash floods, landslides, and 
drought. The most widely used analysis is AHP due 
to its ability to determine the complexity of the 
factors that cause disasters. AHP-GIS is a modern 
graphic visualization tool used by decision-makers 
to disseminate and interpret spatial information 
on the level of hazards, vulnerabilities, and 
disaster risks (Patel & Prashant, 2013; Haq et al., 
2012; Chen et al., 2003; Prasad et al., 2016; 
Chakraborty & Joshi, 2016; Olii et al., 2021). The 
Standardized Precipitation Index (SPI) is widely 
used for describing meteorological droughts over 
a wide range of timescales (McKee et al., 1993). 
This is in contrast to a fairly broad scale of spatial 
variability displayed on maps, which often 
contains limited information concerning local-
scale differences in drought severity across the 
area. Conversely, climate-based drought index 
maps are limited because they provide a 
generalized spatial perspective value of drought 
conditions and fluctuations across wide areas. 
However, improved and more effective drought 

monitoring approaches are needed to aid early 
warning systems. Several studies recently used 
AHP to analyze the level of hazard, vulnerability, 
and danger of drought, which yielded positive 
results despite the complexity of the influencing 
factors. (Moghari et al., 2017; Cheng & Tao, 2010; 
Ekrami et al., 2016; Wijitkosum, 2018; Wijitkosum 
and Sriburi, 2019). In this study, GIS and Remote 
Sensing are integrated with mathematical models 
such as AHP and expected to contribute to region-
based drought analysis significantly. 

This study was carried out in Gorontalo, which is 
one of the regencies in Gorontalo Province prone 
to drought. According to the Disaster 
Management Agency's 2019 Indonesian Disaster 
Risk Index, Gorontalo received a score of 104.14, 
therefore it is in the moderate category (13-144). 
The Recommendation Priority 2 (Integrated Risk 
Assessment and Planning) used by regencies in the 
moderate category is the Preparation of Risk, 
Hazard and Vulnerability Maps. However, the 
map's limitation in containing information on the 
distribution of the level of hazard, vulnerability, 
and risk of drought is one factor that hinders its 
ability to resolve the drought problem. It is 
important to determine the hazard areas of 
drought in order to prevent a wider impact of the 
disaster. Therefore, this study aims to integrate 
AHP, GIS, and Remote Sensing to predict the 
spatial distribution of drought hazard levels in 
Gorontalo Regency using a variety of indices, such 
as Land Surface Temperature (LST), Normalized 
Difference Vegetation Index (NDVI), Normalized 
Difference Moisture Index (NDMI), and 
Topographic Wetness Index (TWI) as references 
for planning, and management of drought.  

2 METHODS 

2.1 Study Area 

Gorontalo Regency is geographically located 
between 0o28'23.22"-0o55'45.08" North Latitude 
and 122o14'43.69"-123o4'48.27" East Longitude 
with a landmass of 2159 km2. The altitude ranges 
from 0 to 2,062 m, with an average elevation of 50 
m above sea level. According to a 2020 survey, the 
administrative area of this regency consists of 19 
districts and 205 villages, with Limboto as its 
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capital city. The largest and smallest districts are 
Asparaga and Tilango, with an area of 430.51 km2 
or 20.25% and 5.79 km2 or 0.27% of the overall land 
area in Gorontalo Regency. This regency's 
northern, eastern, southern, and western parts are 
bordered by Gorontalo Utara, Bone Bolango 
Regency & Gorontalo City, Tomini Bay, and 
Boalemo Regency. The highest temperature of 
35.2oC in 2020 occurred in October, while the 
lowest was in September, at 18.8oC. The highest 
humidity in March and June reaches 97%, while 
the lowest is obtained in January, which reaches 
65% in October. The highest and lowest duration 
of exposure was in September at 79.90% and 
45.10%. The highest rainfall occurs in December, 
with 27 rainy days. 

2.2. Data 

In this study, all maps were displayed in the GIS 
environment as raster models with the Digital 

elevation model (DEM), consisting of a grid size of 
30 x 30 m2 used to analyze the Topographic 
Wetness Index (TWI). Landsat TM 8 OLI (path 113; 
row 59; date acquired = 2019-12-02; path 113; row 
60; date acquired = 2019-12-02) accessed from 
USGS with a grid size of 30 x 30 m2 was used to 
analyze Land Surface Temperature (LST), 
Normalized Difference Vegetation Index (NDVI), 
and Normalized Different Wetness Index (NDWI). 
Cloud cover of Landsat TM 8 OLI was removed by 
Fmask 3.2 version Windows package. Additionally, 
the Gorontalo Regency administrative boundaries 
were-downloaded from GADM. 

2.3 Methodology 

Remote Sensing is the science and art of obtaining 
information on an object, area, or phenomenon 
through the analysis of data acquired by a device 
that is not in contact with the object, area, or 
phenomenon under investigation. In this study, 

Figure 1. Location of the study area

https://earthexplorer.usgs.gov/
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the factors that influence a Drought Hazard Index 
(DHI) such as Land Surface Temperature (LST), 
Normalized Difference Vegetation Index (NDVI), 
and Normalized Different Wetness Index (NDWI) 
were demarcated from Landsat TM 8 OLI image 
using the standard methods of visual 
interpretation of Remote Sensing data. Digital 
Terrain Analysis (DTA) calculated the 
Topographic Wetness Index (TWI) was calculated 
by Digital Terrain Analysis (DTA) using the GIS 
package. The overlay operation is used by most 
GIS, which provides information through the 
combination and use of several maps. During the 
overlay operation, new special elements are 
created based on multiple maps and performed 
using the raster, a data structure well suited for 
this type of operation. All of the maps used in the 
analysis have the same georeference and a similar 
number of grids organized in the same row and 
column. They also have the same grid size and 
coordinate with a program used to examine each 
grid when several maps are combined, thereby 
allowing the same figures to be checked from 
different maps during image combination. In a 
raster overlay, grid numbers are combined in a 
specific way, and the figures obtained are assigned 
to the corresponding grids in the output layer of 
the image. A raster overlay is applied to data that 
contains explicit or ordinal numbers, with each 
grid consisting of a string of characters. The 
figures in each grid correspond to the items of 
raster variables. Further explanation for each DHI 
factor is shown below. 

1. Normalized Difference Vegetation Index 
(NDVI). This method is frequently used to 
measure and assess the vegetation index value 
of a given area. According to the NDVI 
analysis, green plants develop successfully by 
absorbing radiation in the visible light 
spectrum (PAR or Photosynthetically Active 
Radiation) and reflecting it at the near-
infrared area. The spectral pattern definition is 
also based on this theory in addition to the use 
of RED band images, Karnieli et al. (2010) 
discovered a clear negative relationship 
between NDI and LST, indicating that healthy 

green vegetation lowers the surface 
temperature. NDVI is used as a response 
variable to identify and quantify drought 
disturbance in semiarid and arid lands, with 
low values indicating stressed vegetation 
(Table 1 and Figure 2) (Tucker & Choudhury, 
1987). NDVI is calculated using Equation (1) 
(Tucker, 1979): 

N𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
=

𝑏𝑎𝑛𝑑 5−𝑏𝑎𝑛𝑑 4

𝑏𝑎𝑛𝑑 5+𝑏𝑎𝑛𝑑 4
  (1) 

where NIR and RED are the reflection in the 
near-infrared (band 5) and red range (band 4) 
spectrums. 

2. Land Surface Temperature (LST). LST is the 
land's radiative skin temperature as 
determined by infrared radiation. It is a critical 
parameter in all physical processes consisting 
of surface energy and water balance at both 
local and global scales (Malik, et al, 2019; 
Karnieli et al., 2010). LST is necessary to land 
surface processes for climatic reasons and 
regulates sensible and latent heat flux 
exchange (Sun & Pinker, 2003). It can be used 
in various fields, including 
evapotranspiration, climate change, the 
hydrological cycle, plant monitoring, urban 
climate, and environmental studies (Weng, 
2009; Voogt & Oke, 2003; Arnfield, 2003). LST 
classes are shown in Table 2 and Figure 3 use 
LANDSAT-8 with the following steps: 

Conversion to Top of Atmosphere (TOA) 
radiance in Equation (2) (USGS, 2019). 

𝐿λ = 𝑀𝐿 × 𝑄𝑐𝑎𝑙 + 𝐴𝐿 − 𝑂𝑖 (2) 

Table 1. NDVI ranges that are appropriate for the land 
cover classes (Akbar et al., 2019) 

No. Land Cover Class NDVI Range Score 
1. Built-Up 0.015-0.14 6 
2. Barren Land 0.14-0.18 5 
3. Shrub and Grassland 0.18-0.27 4 
4. Sparse Vegetation 0.27-0.36 3 
5. Dense Vegetation >0.36 2 
6. Water <0.015 1 
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Figure 2. Normalized Difference Vegetation Index (NDVI) classes 

Table 2. LST range in degree celcius (Alavipanah et al. 2017) 
No. LST Class LST Range LST Range Score 
1. Very Low LST < LSTmean – 1.5 Stdv <20.6 oC 1 
2. Low LSTmean – 1.5 Stdv < LST < LSTmean – Stdv 20.6 oC – 22.6 oC 2 
3. Moderate LSTmean – Stdv < LST < LSTmean + Stdv 22.6 oC – 30.6 oC 3 
4. High LSTmean + 1.5 Stdv < LST < LSTmean + 1.5 Stdv 30.6 oC – 32.7 oC 4 
5. Very High > LSTmean + 1.5 Stdv >32.7 oC 5 

Note: LST Mean = 26.61 oC; Stdv (Standart Deviation) = 4.03 

 
Figure 3. Land Surface Temperature (LST) classes 
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where 𝐿λis TOA spectral radiance (Watts/m2 sr 
μm), 𝑀𝐿is radiance multiplicative bands, 𝐴𝐿 is 
radiance add band, 𝑄𝑐𝑎𝑙 is quantized and 
calibrated standard product pixel values (DN), 
𝑂𝑖 is correction value for band 10 is 0.29. 

Conversion to Top of Atmosphere (TOA) 
Brightness Temperature (BT) in Equation (3) 
(USGS, 2019). 

𝐵𝑇 =
𝐾2

𝑙𝑛(
𝐾1

𝐿𝜆+1
)

− 273.15  (3) 

where 𝐵𝑇 denotes TOA brightness temperature 
(oC), 𝐿λ is TOA spectral radiance (Watts/m2 sr 
μm), 𝐾1 is 𝐾1 constant band, and 𝐾2 is 𝐾2 
constant band. 

Proportion of Vegetation in Equation (4) 
(Wang et al., 2015). 

𝑃𝑉 = (
NDVI-NDVImin

NDVImax-NDVImin
)

2
              (4) 

where 𝑃𝑉 denotes the proportion of vegetation, 
NDVI is DN values of its image, NDVImax and, 
NDVImin are the maximum and minimum DN 
values from NDVI image. Land Surface 
Emissivity in Equation (5) (Barsi et al., 2014) 

𝐸 = 0.004𝑃𝑣 + 0.986              (5) 

where E island surface emissivity, and 𝑃𝑉is 
proportion of vegetation. Land Surface 
Temperature (LST) in Equation (6) (Jin et al., 
2015). 

LST =
𝐵𝑇

(1+(
𝜆𝐵𝑇
ℎ×𝑐

𝑠

) 𝑙𝑛(𝐸))

 (6) 

where 𝐵𝑇denotes TOA brightness temperature 
(oC), λ is the wavelength of emitted radiance 
(for band 10 is 10.8 and band 11 is 12.0), E 
denotes land surface emissivity, h is Planck’s 
constant (6.626 x 10-34 J s), s is Boltzmann 

constant (1.38 x 10-23 J K ), c is the velocity of 
light (2.998 x 108 m/s).  

3. Normalized Different Moisture Index (NDMI). 
NDMI is calculated as the ratio of the 
difference and number of refracted radiations 
in the NIR and SWIR regions, and it is used to 
identify the crop's level of water stress. NDMI's 
absolute value allows for the interpretation of 
immediate identification of farm or field areas 
experiencing water stress. It is extremely 
sensitive to drought events (Hais et al., 2019) 
and its values range from -1 to 1. Furthermore, 
each value corresponds to a different 
agronomic situation, irrespective of crop type, 
as shown in Table 3 and Figure 4. The following 
is the Equation (7) used to calculate NDMI 
(Gao, 1996). 

NDMI=
NIR-SWIR1

NIR+SWIR1
=

band 5-band 6

band 5+band 6
    (7) 

where NIR is a reflection in the near-infrared 
spectrum (band 5), and SWIR is a reflection in 
the short-wave infrared of the spectrum (band 
6). 

Table 3. NDMI ranges are land cover classes appropriate 
for moisture content (Gulácsi &  Kovács 2015; Amalo et al. 
2018) 

No. Land Cover Class 
NDMI 
Range 

Score 

1. Very High Moisture 
Content  

>0.7 1 

2. High Moisture Content 0.6-0.7 2 
3. Moderate Moisture 

Content 
0.5-0.6 3 

4. Low Moisture Content 0.4-0.5 4 
5. Weak Drought 0.3-0.4 5 
6. Moderate Drought 0.2-0.3 6 
7. Strong Drought 0-0.2 7 
8. Very Strong Drought <0.0 8 
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Figure 4. Normalized Different Moisture Index (NDMI) classes 

4. Topographic Wetness Index (TWI). TWI 
predicts that a significant part of hillslope flow 
occurs as slope-parallel lateral, implying that 
flow accumulation increases with local 
contributing and decreases in local slopes 
(Beven and Kirkby, 1979). TWI is derived by 
integrating the upper and local slopes area, 
which both represent the location's wetness. It 
is structurally appropriate for delineating the 
soil wetness pattern, as shown in Table 4 and 
Figure 5. According to (Yang et al., 2015). TWI 
correlates positively with soil moisture at the 
soil surface of 0–1 m. It is calculated using the 
following Equation (8) (Beven & Kirkby, 1979): 

TWI = 𝑙𝑛 (
𝛼

𝑡𝑎𝑛 𝛽
)        (8) 

where α is the local upslope area draining 
through a unit contour length, which in this 
study equals grid cell width, and β is the 
gradient of the local slope. 

Table 4. TWI ranges based on DEM (Rahmati et al., 2019) 

No. TWI Class TWI Range Score 
1. Very Low Accumulate 

Water 
<5 5 

2. Low Accumulate 
Water 

5 - 10 4 

3. Moderate Accumulate 
Water 

10 - 15 3 

4. High Accumulate 
Water 

15 - 20 2 

5. Very High 
Accumulate Water 

>20 1 
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Figure 5. Topographic Wetness Index (TWI) classes 

3 ANALYTICAL HIERARCHY PROCESS (AHP) METHOD 

The Analytical Hierarchy Process (AHP) is a 
multicriteria decision-making technique that 
establishes a systematic framework for examining 
and integrating the effects of many factors by 
utilising different levels of dependent or 
independent qualitative and quantitative data 
(Saaty, 1980, 2008). This process is carried out by 
structurally comparing all possible paired 
combinations of criteria using a table-matrix with 
relevant values. The tool used to determine the 
weight of each factor is the AHP Excel Template 
compiled by Goepel (2013). The principle of AHP 
is shown in the following matrix (Saaty, 1980, 
2008): 

1. Determine the eigenvectors (Vp) of each 
criterion for each item, As given in Equation 
(9). 

𝑉𝑝 = √𝑊1 × 𝑊2 × 𝑊3 ×. . .× 𝑊𝑛                     (9) 

where n denotes the number of criteria and 
compared Wn rating main parameters. 

2. Determine the weighting coefficients (Cp) 
using the formula in Equation (10). 

𝐶𝑝 =
𝑉𝑝

𝑉𝑝1×𝑉𝑝3×𝑉𝑝3×...×𝑉𝑝𝑛
 
  (10) 

where n is several criteria and Vp is the 
eigenvectors. 

3. Normalize the matrix by dividing each element 
by the column total 

4. Calculate the priority vector by averaging each 
line 

5. To determine the overall priority, multiply each 
column of the matrix by the appropriate 
priority vector; 

6. Divide each global priority by the appropriate 
priority vector to obtain the rational priority; 

7. Calculate the consistency index (CI) expressed 
by Equation (11). 
𝐶𝐼 =

𝜆𝑚𝑎𝑥

𝑛−1
    (11) 

where n is number of criteria and λmax is the 
maximum eigenvalue of the comparison 
matrix. 

8. Calculate the consistency ratio (CR) using 
Equation (12). 
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𝐶𝑅 =
𝐶𝐼

𝑅𝐼
     (12) 

where RI is a random index that represents the 
consistency of a pairwise comparison matrix 
generated at random. Table 5 shows the 
average random consistency index from a 
sample of 500 matrixes (Saaty, 1980) When the 
CR value is less than 10%, the judgment is 
consistent, and the assessment requires 
correction when it is greater than 10%. 

4 RESULTS 

AHP provides a strategy for calibrating a 
numerical scale by employing a pairwise 
methodology, which is particularly beneficial in 
new areas where measurements and quantitative 
comparisons are unavailable. All criteria's 
pairwise comparison matrices, as well as their 
weights, were computed. Elements were 
determined in conjunction with experts and 
subject matter specialists. The matrix utilized the 
proposed values for each factor on Saaty's scale of 
importance, as shown in Table 6. According to the 

AHP computation results, NDVI contributes the 
most to DHI (42.9%), followed by LST (33.6%), 
NDMI (16.8%), and TWI (6.7%). Table 7 is a 
summary of the weights assigned to each 
component group and criterion. 

Consistency Ratio is a CR used to construct 
matrices in AHP, which must be less than 0.1 to 
avoid reversing subjective judgments and weights. 
Table 8 shows the derived weights for the 
components, as well as the CR. These comparisons 
established that it is less than 0.1, with the 
method's upper limit indicating that Equation (13) 
is credible. 

𝐷𝐻𝐼 = 0.429 𝑁𝐷𝑉𝐼𝑆 × 0.336 𝐿𝑆𝑇𝑆 × 0.168 𝑁𝐷𝑀𝐼𝑆 ×

0.067𝑇𝑊𝐼𝑆  (13) 

where 𝐷𝐻𝐼, 𝑁𝐷𝑉𝐼𝑆, 𝐿𝑆𝑇𝑆, 𝑁𝐷𝑀𝐼𝑆, and 𝑇𝑊𝐼𝑆 denote 
Drought Hazard Index, Normalized Difference 
Vegetation Index score (Table 1), Land Surface 
Temperature score (Table 2), Normalized 
Different Moisture Index score (Table 3), and 
Topographic Wetness Index score (Table 4). 

 

Table 5. Random Index (RI) Value (Saaty, 1980, 2008) 

n 1 2 3 4 5 6 7 8 9 
RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 

Table 6. Scale for various elements comparison (Saaty, 1980, 2008) 

Intensity Definition Explanation 
1 Equal importance Two element contribute equally to the goal 
3 Moderate importance Experience and judgement slightly favor one 

element over another 
5 Strong importance Experience and judgement strongly favor one 

element over another 
7 Very strong importance One element is favored very strongly over another, 

it dominance is demonstrated in practice 
9 Extreme importance The evidence favoring one element over another is 

of the highest possible order of affirmation 
2,4,6,8 Can be used to express intermediate values 

Table 7. Matrix of pairwise comparisons of the criteria in relation to the goal 

Parameter LST NDVI NDMI TWI Weight 
LST 1 1/2 3 5 0.336 
NDVI 2 1 2 5 0.429 
NDMI 1/3 1/2 1 3 0.168 
TWI 1/5 1/5 1/3 1 0.067 
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Table 8. Parameter of Consistency Ratio 

Parameter Value 
λmax 4.131 
n 4 
Random Index (RI) 0.90 
Mean Relative Error (MRE) 29.5% 
GCI 0.17 
Psi 8.3% 
Consistency Index (CI) 0.37 
Consistency Ratio (CR) 4.8% 

The study's primary visualization result is shown 
in Figure 6. This was accomplished by combining 
the criteria weights from Equation (13) with 
some GIS-related operations such as layer 
overlay, raster conversion, and clipping. Figure 6 
is classified into 5 classes based on the likelihood 
of DHI, namely very low, low, moderate, high, 
and very high. The Natural Breaks method was 
used to divide the space, which compiles similar 
values while minimizing class differences. A 
total of 106,797.42 ha, or 50.07% of the areas, 
were classified as having a very low or low 
drought hazard. A moderate drought hazard 
occupied up to 24.41% of the total area, while 

only 21.66% had a high or very high drought 
hazard, as shown in Table 9. Low and moderate 
drought occurred in the northern part of the 
study area and partly spread to the south, 
dominated by forest areas. The high drought was 
found to be concentrated in the central part of 
Gorontalo Regency, mostly used for agricultural 
and economic purposes (Figure 7). Therefore, the 
area's development needs to be carefully planned 
to implement drought avoidance measures. It is 
specifically critical in drought-prone areas to 
define land use and develop human activities 
compatible with the region's capacity. 

The created DHI is an invaluable resource for risk 
management, damage estimation, land-use 
zoning, life, and property insurance claim 
validation, land tax valuation, lifeline emergency 
services, and risk reduction efforts by planning 
agencies and local governments. Additionally, 
the technique used in this study is easily 
transferable to other regions capable of 
evaluating additional criteria in accordance with 
data availability. 

 

 
Figure 6. Distribution of drought hazard 
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Table 9. Distribution of Classes of DHI in Gorontalo Regency 

Classes of Drought Range Weight Area (Ha) %Area 
Very Low < 2.645 13,965.66 6.55 
Low 2.645 - 3.467 92,831.76 43.53 
Moderate 3.467 – 4.289 52,064.10 24.41 
High 4.289 – 5.112 38,117.34 17.87 
Very High > 5,112 8,072.28 3.78 
Limboto Lake - 2,325.00 1.09 
Cloud Cover - 5,903.00 2.77 
Total  213,279.14 100.00 

 

Figure 7. Comparing the distribution of high drought hazards with land use based on google earth 

5 DISCUSSION 

Several studies have been conducted on DHI in 
various regions around the world. However, none 
produced an integrated DHI map using Remote 
Sensing (RS), Geographic Information Systems 
(GIS), and Analytic Hierarchy Process (AHP). This 
is generally because the Indonesian National 
Aeronautics and Space Agency only uses a single 
variable, namely the Normalized Difference 
Vegetation Index (NDVI), and the SPI method to 
conduct DHI.  

The method used in this study is consistent with 
the climatological and geomorphological 
parameters used in preliminary studies with the 
addition of Remote Sensing parameters such as 
LST, NDVI, and NDMI (Belal et al., 2012; 
Wijitkosum and Sriburi, 2019; Cheng and Tao, 

2010; Moghari et al., 2017; Wijitkosum, 2018; 
Ekrami et al., 2016). Numerous drought studies 
that utilize data derived from satellites have been 
conducted. The Temperature Condition Index 
(TCI) and Normalized Difference Vegetation Index 
(NDVI) were developed by combining reflectance 
in the visible, near-infrared, and thermal bands, 
thereby considerably improving early drought 
detection, monitoring, and forecasting of its 
consequences on agriculture (Gebrehiwot et al., 
2011; Belal et al., 2012). Study carried out by (Belal 
et al., 2012). successfully extended satellite data 
analysis to large-area vegetation monitoring and 
biomass productivity estimation using National 
Oceanic and Atmospheric Administration (NOAA) 
AVHRR data. Dutta et al. (2015) found that NOAA-
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AVHRR NDVI derived VCI estimates can be useful 
for monitoring the onset, duration, and spatial-
temporal extent of agricultural drought. 
Meanwhile,. Rousta et al., (2020) stated that 
MODIS NDVI-derived from VCI with precipitation 
and LST images are useful for monitoring drought 
in Afghanistan. The relationship was negative 
between all NDVI categories with extreme and 
moderate drought conditions (Rousta et al., 2020). 
According to (Malik et al., 2019) the relationship 
between LST and NDVI has shown a strong 
negative correlation in summer, rainy, and winter 
seasons (R2 > 0.9). The use of the NDVI threshold 
and the consideration of separating croplands 
from other land cover types reduces the inclusion 
of misclassified drought areas, thereby improving 
agricultural drought estimation (Faridatul & 
Ahmed, 2020). The combination of the NDVI and 
LST provides extremely useful information for 
agricultural drought monitoring and early warning 
systems for farmers with a high negative 
correlation (Sruthi & Aslam, 2015). This study 
found that NDVI significantly influences the DHI 
in Gorontalo (42.9%) and LST (33.6%) using 76.5% 
Landsat TM 8 OLI. According to Bajgiran et al. 
(2008), individual metrological stations 
discovered substantial connections between NDVI 
levels and rainfall data in semiarid environments. 
These connections are because other local 
elements such as topography, soil characteristics, 
previous years' stress, and the area's land cover 
features need to be considered (Gebrehiwot et al., 
2011). 

NDVI and NDMI are useful for detecting and 
observing a specific drought area. The vegetative 
stress, surface water, and poor soil moisture 
saturation are all significant indicators used by the 
NDI and NDMI to detect the severity of drought in 
a specific area (Bhattacharya et al., 2021).  These 
factors are useful for monitoring and assessing 
drought conditions in the vegetation and moisture 
aspects (Lin et al., 2010; Lin et al., 2011). TWI is 
used to confirm that hilltops are more susceptible 
to drought than lowlands in the catchment area, 
where water is more available as flow accumulates 
(Muukkonen et al., 2015). Furthermore, high and 
low TWI values represent potentially wetter and 
drier converging and diverging terrains (Adams et 

al., 2014). Bennie et al. (2008) stated that fine-
scale topographic diversity within an area 
influences spatial patterns of tree development 
and growth responsiveness to climate. 
Topography influences water and energy 
variations throughout complicated terrain, 
leading to top climatic conditions and topographic 
gradients. These include varying levels of 
temperature, evapotranspiration, soil moisture, 
and vegetation patterns on the landscape. 

Several studies on general drought hazards in 
various locations have been conducted in 
Indonesia. However, none resulted in a 
comprehensive drought hazard map. Therefore, 
this study is the first to create a drought hazard 
map using the GIS-RS-AHP method in Indonesia. 
Furthermore, meteorological stations and 
networks in large countries are generally 
insufficient and underdeveloped. The spatial 
resolution of rainfall data derived from these 
weather stations has been estimated to be greater 
than 100 km2 due to the sparse distribution and 
distance. Additionally, due to the sparse nature of 
infrastructure networks in major countries', 
continuous rainfall records are few or impossible 
to gather promptly. In addition, meteorological 
drought indices, e.g., SPI, RAI, and SPEI, have 
been commonly used and limited by the 
distribution of weather stations with the provision 
of only point data (Faridatul & Ahmed, 2020). 
Therefore, they failed to visualize the spatial 
detail with the inability to determine drought 
susceptibility across spatial units, thereby 
decreasing the reliability of the drought index. In 
contrast, RS-based indices facilitate multi-
temporal drought vulnerability mapping on a 
regional scale. Therefore, utilizing GIS-RS-AHP to 
transform qualitative and quantitative factors in 
DHI maps was critical in fixing this issue. This is a 
promoting study with the ability to produce DHI 
maps when expanded to encompass a wider 
portion of the country. However, it is difficult to 
obtain clean data due to cloud cover, which can 
reduce the accuracy of the results. Therefore, a 
longer time span of satellite data is needed to 
obtain more reliable results. This means the study 
was unable to compare the results obtained with 
the drought that occurred in the field due to the 
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absence of real drought disaster information. 
Hence, it only compared the results with google 
earth (Figure 7) and the drought hazard map 
obtained from https://inarisk.bnpb.go.id/. This 
map is prepared using the SPI method and divides 
the hazard level into 3 classes: low, medium, and 
high. Based on this method, Gorontalo Regency is 
dominated by a high level of drought hazard, 
which is spread in almost all regions. 

6 CONCLUSION 

In conclusion, the AHP computation results show 
that NDVI is the most important contributing 
factor to DHI, accounting for 42.9%, followed by 
LST (33.6%), NDMI (16.8%), and TWI (6.7%), at CR 
value of 0.048. Areas with low, high, and very high 
DHI are 43.53% (9831.76 ha), 17.87%, and 3.78% of 
the total landmass. 

Remote Sensing methods that give improved real-
time and spatially continuous data usable for 
conducting rigorous drought risk assessments 
across wide areas are beneficial to a country with 
a big land area, such as Indonesia. Satellite data 
can also be used to monitor droughts, provide 
early warnings, and mitigate the impacts of 
drought. In line with this, the local government or 
other stakeholders need to utilise a huge database 
to ascertain the spatial diversity of drought in the 
Gorontalo Regency. Additionally, these findings 
showed that extensive regional study is beneficial 
in appropriately identifying and regionalizing the 
drought phenomenon. 

Therefore, policymakers will have evidence to 
develop drought management policies that are 
suited for local conditions. This study is also 
expected to highlight the critical role of satellite-
derived data in measuring the severity of droughts 
in the tropics and the tool's utility in supporting 
policymakers in guiding practical measures for 
drought hazard reduction. 

DISCLAIMER 

The authors declare and attest that this study is 
solely for academic purposes. 

AVAILABILITY OF DATA AND MATERIALS 

All data are available from the authors. 

AUTHOR CONTRIBUTION STATEMENTS 

Olii, M.R. developed the Drought Hazard Index 
(DHI) model using the Analytical Hierarchy 
Process (AHP). Olii, A., and Pakaya, R. used 
Remote Sensing and Geographic Information 
System to conduct an analytical analysis of the 
DHI factors. All authors made significant 
contributions to the discussion of the results and 
the writing of the manuscript. 

ACKNOWLEDGMENTS 

The authors are grateful to all the organizations 
mentioned in this study for providing the 
necessary data and the Engineering Faculty of 
Universitas Gorontalo for providing financial 
support through study funding 

REFERENCES 

Adams, H.R., Barnard, H.R. & Loomis, A.K., 2014. 
Topography alters tree growth-climate 
relationships in a semi-arid forested catchment. 
Ecosphere, 5(11), pp.1–16. 

Akbar, T.A., Hassan, Q.K., Ishaq, S., Batool, M., 
Butt, H.J. & Jabbar, H., 2019. Investigative spatial 
distribution and modelling of existing and future 
urban land changes and its impact on urbanization 
and economy. Remote Sensing, 11(2). 

Alavipanah, S.K., Mogaddam, M.K. & Firozjaei, 
M.K., 2017. Monitoring spatiotemporal changes of 
heat island in Babol City due to land use changes. 
In: International Archives of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences. 
Tehran, Iran.pp.17–22. 

Amalo, L.F., Ma’Rufah, U. and Permatasari, P.A., 
2018. Monitoring 2015 drought in West Java using 
Normalized Difference Water Index (NDWI). IOP 
Conference Series: Earth and Environmental Science, 
149(1), pp.1–7. 

Arnfield, A.J., 2003. Two decades of urban climate 
research: A review of turbulence, exchanges of 
energy and water, and the urban heat island. 
International Journal of Climatology, 23(1), pp.1–
26. 

Bajgiran, P.R., Darvishsefat, A.A., Khalili, A. and 



Vol. 8 No. 1 (January 2022) Journal of the Civil Engineering Forum 

94  

Makhdoum, M.F., 2008. Using AVHRR-based 
vegetation indices for drought monitoring in the 
Northwest of Iran. Journal of Arid Environments, 
72(6), pp.1086–1096. 

Barsi, J.A., Schott, J.R., Hook, S.J., Raqueno, N.G., 
Markham, B.L. and Radocinski, R.G., 2014. 
Landsat-8 thermal infrared sensor (TIRS) vicarious 
radiometric calibration. Remote Sensing, 6(11), 
pp.11607–11626. 

Belal, A.A., El-Ramady, H.R., Mohamed, E.S. and 
Saleh, A.M., 2012. Drought risk assessment using 
remote sensing and GIS techniques. Arabian 
Journal of Geosciences, 7(1), pp.35–53. 

Bennie, J., Huntley, B., Wiltshire, A., Hill, M.O. and 
Baxter, R., 2008. Slope, aspect and climate: 
Spatially explicit and implicit models of 
topographic microclimate in chalk grassland. 
Ecological Modelling, 216(1), pp.47–59. 

Beven, K.J. and Kirkby, M.J., 1979. A physically 
based, variable contributing area model of basin 
hydrology. Hydrological Sciences Bulletin, 24(1), 
pp.43–69. 

Bhattacharya, S., Halder, S., Nag, S., Roy, P.K. and 
Roy, M.B., 2021. Assessment of Drought Using 
Multi-parameter Indices. In: P.K. Roy, M.B. Roy 
and S. Pal, eds. Advances in Water Resources 
Management for Sustainable Use, 1st ed. Singapore: 
Springer Singapore.pp.243–255. 

Chakraborty, A. & Joshi, P.K., 2016. Mapping 
disaster vulnerability in India using analytical 
hierarchy process. Geomatics, Natural Hazards and 
Risk, [online] 7(1), pp.308–325. Available at: 
<https://doi.org/10.1080/19475705.2014.897656>. 

Chang, D.Y., 1996. Applications of the extent 
analysis method on fuzzy AHP. European Journal of 
Operational Research, 95(3), pp.649–655. 

Chen, K., Blong, R. and Jacobson, C., 2003. 
Towards an Integrated Approach to Natural 
Hazards Risk Assessment Using GIS : With 
Reference to Bushfires. Environmental 
Management, 31(4), pp.546–560. 

Cheng, J. & Tao, J.P., 2010. Fuzzy comprehensive 

evaluation of drought vulnerability based on the 
Analytic Hierarchy Process- An empirical study 
from Xiaogan City in Hubei Province. Agriculture 
and Agricultural Science Procedia, 1, pp.126–135. 

Dutta, D., Kundu, A., Patel, N.R., Saha, S.K. and 
Siddiqui, A.R., 2015. Assessment of agricultural 
drought in Rajasthan (India) using remote sensing 
derived Vegetation Condition Index (VCI) and 
Standardized Precipitation Index (SPI). Egyptian 
Journal of Remote Sensing and Space Science, 
[online] 18(1), pp.53–63. 

Ekrami, M., Marj, A.F., Barkhordari, J. & 
Dashtakian, K., 2016. Drought vulnerability 
mapping using AHP method in arid and semiarid 
areas: a case study for Taft Township, Yazd 
Province, Iran. Environmental Earth Sciences, 
75(12), pp.1–13. 

Faridatul, M.I. & Ahmed, B., 2020. Assessing 
agricultural vulnerability to drought in a 
heterogeneous environment: A remote sensing-
based approach. Remote Sensing, 12(20), pp.1–17. 

Gao, B.C., 1996. NDWI A Normalized Difference 
Water Index for Remote Sensing of Vegetation 
Liquid Water From Space. Remote Sensing of 
Environment, 58, pp.257–266. 

Gebrehiwot, T., van der Veen, A. and Maathuis, B., 
2011. Spatial and temporal assessment of drought 
in the Northern highlands of Ethiopia. 
International Journal of Applied Earth Observation 
and Geoinformation, [online] 13(3), pp.309–321. 
Available at: 
<http://dx.doi.org/10.1016/j.jag.2010.12.002>. 

Goepel, K.D., 2013. Implementing the Analytic 
Hierarchy Process as a Standard Method for Multi-
Criteria Decision Making in Corporate Enterprises 
– a New AHP Excel Template with Multiple Inputs. 
In: International Symposium on the Analytic 
Hierarchy Process. 

Gulácsi, A. & Kovács, F., 2015. Drought 
Monitoring With Spectral Indices Calculated From 
Modis Satellite Images In Hungary. Journal of 
Environmental Geography, 8(3–4), pp.11–20. 

Hais, M., Hellebrandová, K.N. & Šrámek, V., 2019. 



Journal of the Civil Engineering Forum Vol. 8 No. 1 (January 2022) 

 95 

Potential of Landsat spectral indices in regard to 
the detection of forest health changes due to 
drought effects. Journal of Forest Science, 65(2), 
pp.70–78. 

Haq, M., Akhtar, M., Muhammad, S., Paras, S. and 
Rahmatullah, J., 2012. Techniques of Remote 
Sensing and GIS for flood monitoring and damage 
assessment: A case study of Sindh province, 
Pakistan. Egyptian Journal of Remote Sensing and 
Space Science, [online] 15(2), pp.135–141. 
Available at: 
<http://dx.doi.org/10.1016/j.ejrs.2012.07.002>. 

Jin, M., Li, J., Wang, C. and Shang, R., 2015. A 
practical split-window algorithm for retrieving 
land surface temperature from Landsat-8 data and 
a case study of an urban area in China. Remote 
Sensing, 7(4), pp.4371–4390. 

Karnieli, A., Agam, N., Pinker, R.T., Anderson, M., 
Imhoff, M.L., Gutman, G.G., Panov, N. and 
Goldberg, A., 2010. Use of NDVI and land surface 
temperature for drought assessment: Merits and 
limitations. Journal of Climate, 23(3), pp.618–633. 

Lin, M.L., Chu, C.M. & Tsai, B.W., 2011. Drought 
risk assessment in western inner-mongolia. 
International Journal of Environmental Research, 
5(1), pp.139–148. 

Lin, M.L., Wang, Q., Sun, F., Chu, T.H. and Shiu, 
Y.S., 2010. Quick spatial assessment of drought 
information derived from MODIS imagery using 
amplitude analysis. World Academy of Science, 
Engineering and Technology, 43(7), pp.628–632. 

Loon, A.F.V., Stahl, K., Baldassarre, D.G., Clark, J., 
Rangecroft, S., Wanders, N., Gleeson, T., Dijk, 
A.I.J.M.V., Tallaksen, L.M., Hannaford, J., 
Uijlenhoet, R., Teuling, A.J., Hannah, D.M., 
Sheffield, J., Svoboda, M., Verbeiren, B., Wagener, 
T. and Van Lanen, H.A.J., 2016. Drought in a 
human-modified world : reframing drought 
definitions , understanding , and analysis 
approaches. Hydrol. Earth Syst. Sci., 20, pp.3631–
3650. 

Malik, M.S., Shukla, J.P. and Mishra, S., 2019. 
Relationship of LST, NDBI and NDVI using 
landsat-8 data in Kandaihimmat watershed, 

Hoshangabad, India. Indian Journal of Geo-Marine 
Sciences, 48(1), pp.25–31. 

McKee, T.B., Doesken, N.J. and Kleist, 1993. The 
relationship of drought frequency and duration to 
time scales. In: Proceedings of the Eighth Conference 
on Applied Climatology. Boston: American 
Meteorological Society.pp.179–184. 

Moghari, S.M.H., Araghinejad, S.& Azarnivand, A., 
2017. Fuzzy analytic hierarchy process approach 
in drought management: Case study of 
Gorganrood basin, Iran. Journal of Water Supply: 
Research and Technology - AQUA, 66(3), pp.207–
218. 

Muukkonen, P., Nevalainen, S., Lindgren, M. and 
Peltoniemi, M., 2015. Spatial occurrence of 
drought-associated damages in Finnish boreal 
forests: Results from forest condition monitoring 
and GIS analysis. Boreal Environment Research, 
20(2), pp.172–180. 

Olii, M.R., Olii, A. & Pakaya, R., 2021. The 
Integrated Spatial Assessment of The Flood 
Hazard Using AHP-GIS: The Case Study of 
Gorontalo Regency. Indonesian Journal of 
Geography, 53(1), pp.126–135. 

Patel, D.P. & Prashant, S.K., 2013. Flood Hazards 
Mitigation Analysis Using Remote Sensing and 
GIS : Correspondence with Town Planning 
Scheme. Water Resources Management, 27, 
pp.2353–2368. 

Prasad, A.S., Pandey, B.W., Leimgruber, W. and 
Kunwar, R.M., 2016. Mountain hazard 
susceptibility and livelihood security in the upper 
catchment area of the river Beas , Kullu Valley , 
Himachal Pradesh, India. Geoenvironmental 
Disasters, 3(3), pp.1–17. 

Prasetya, T.A.E., Munawar, Taufik, M.R., Chesoh, 
S., Lim, A. and McNeil, D., 2020. Land Surface 
Temperature Assesment in Central Sumatra, 
Indonesia. Indonesian Journal of Geography, 
[online] 52(2), pp.239–245. Available at: 
<http://marefateadyan.nashriyat.ir/node/150>. 

Rahmati, O., Kalantari, Z., Samadi, M., Uuemaa, E., 
Moghaddam, D.D., Nalivan, O.A., Destouni, G. and 



Vol. 8 No. 1 (January 2022) Journal of the Civil Engineering Forum 

96  

Bui, D.T., 2019. GIS-based site selection for check 
dams in watersheds: Considering 
geomorphometric and topo-hydrological factors. 
Sustainability (Switzerland), 11(20). 

Rousta, I., Olafsson, H., Moniruzzaman, M., 
Zhang, H., Liou, Y.A., Mushore, T.D. and Gupta, 
A., 2020. Impacts of drought on vegetation 
assessed by vegetation indices and meteorological 
factors in Afghanistan. Remote Sensing, 12(15), 
pp.1–21. 

Saaty, T.L., 1980. The Analytic Hierarchy Process. 
New York: McGraw Hill. International. 

Saaty, T.L., 2008. Decision making with the 
analytic hierarchy process. International Journal 
Services Sciences, 1(1), pp.83–98. 

Sheffield, J. & Eric, F.W., 2011. Drought : past 
problems and future scenarios. London, 
Washington D.C.: Eartscan. 

Sholihah, R.I., Trisasongko, B.H., Shiddiq, D., 
Iman, L.S., Kusdaryanto, S., Manijo and Panuju, 
D.R., 2016. Identification of Agricultural Drought 
Extent Based on Vegetation Health Indices of 
Landsat Data: Case of Subang and Karawang, 
Indonesia. Procedia Environmental Sciences, 33, 
pp.14–20. 

Sruthi, S. X & Aslam, M.A.M., 2015. Agricultural 
Drought Analysis Using the NDVI and Land 
Surface Temperature Data; a Case Study of 
Raichur District. Aquatic Procedia, [online] 4, 
pp.1258–1264. Available at: 
<http://dx.doi.org/10.1016/j.aqpro.2015.02.164>. 

Sun, D. & Pinker, R.T., 2003. Estimation of land 
surface temperature from a Geostationary 
Operational Environmental Satellite (GOES-8). 
Journal of Geophysical Research: Atmospheres, 
108(11), pp.1–15. 

Tucker, C.J., 1979. Red and photographic infrared 
linear combinations for monitoring vegetation. 
Remote Sensing of Environment, 8(2), pp.127–150. 

Tucker, C.J. & Choudhury, B.J., 1987. Satellite 
remote sensing of drought conditions. Remote 
Sensing of Environment, 23(2), pp.243–251. 

USGS, 2019. Landsat 8 Data Users Handbook. 5th 
ed. [online] USGS, United State: USGS. Available 
at: 
<https://landsat.usgs.gov/documents/Landsat8Da
taUsersHandbook.pdf>. 

Voogt, J.A. & Oke, T.R., 2003. Thermal remote 
sensing of urban climates. Remote Sensing of 
Environment, 86(3), pp.370–384. 

Wang, F., Qin, Z., Song, C., Tu, L., Karnieli, A. and 
Zhao, S., 2015. An improved mono-window 
algorithm for land surface temperature retrieval 
from landsat 8 thermal infrared sensor data. 
Remote Sensing, 7(4), pp.4268–4289. 

Weng, Q., 2009. Thermal infrared remote sensing 
for urban climate and environmental studies: 
Methods, applications, and trends. ISPRS Journal 
of Photogrammetry and Remote Sensing, [online] 
64(4), pp.335–344. Available at: 
<http://dx.doi.org/10.1016/j.isprsjprs.2009.03.007
>. 

Wijitkosum, S., 2018. Fuzzy AHP for drought risk 
assessment in lam Ta Kong watershed, the north-
eastern region of Thailand. Soil and Water 
Research, 13(4), pp.218–225. 

Wijitkosum, S. and Sriburi, T., 2019. Fuzzy AHP 
integrated with GIS analyses for drought risk 
assessment: A case study from Upper Phetchaburi 
River Basin, Thailand. Water (Switzerland), 11(5). 

Wu, J., Lin, X., Wang, M., Peng, J. and Tu, Y., 2017. 
Assessing agricultural drought vulnerability by a 
VSD Model: A case study in Yunnan Province, 
China. Sustainability, 9(6), pp.1–16. 

Yang, L., Chen, L. and Wei, W., 2015. Effects of 
vegetation restoration on the spatial distribution 
of soil moisture at the hillslope scale in semi-arid 
regions. Catena, [online] 124, pp.138–146. 

 


