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ABSTRACT This research simulated one-dimensional wave propagation by solving the shallow water equations using the Preissman
implicit numerical scheme due to its ability to maintain simplicity and stability at a larger time step value. This numerical model was
fundamentally developed to satisfy the shallow water condition, where the water depth or horizontal-length scale is much smaller
than the free-surface disturbance wavelength or vertical-length scale, and to comprehensively test the accuracy of the model. Con-
sequently, three different types of waves were considered and these include (1) tidal, (2) roll, and (3) solitary. In the first case, the
model was proven to be robust and accurate due to its relatively-small errors for both water-surface elevation and velocity indicating
that the Preismann scheme is suitable for longwave simulations. In the second case, it was fairly accurate in capturing the periodic
permanent roll waves despite showing a higher water-surface elevation than the one observed and this discrepancy is due to the
neglect of the turbulent Reynold stress in the model. Meanwhile, the last case showed remarkable discrepancies in the water-surface
elevation because the dispersion effect is quite significant during the wave propagation. This indicates that the Preismann scheme
underestimated the wave crest along with time when the dispersion term was neglected. All simulations were performed using the tridi-
agonal matrix algorithm, thereby eliminating the need for iterations for the solution of the Preismann scheme. The findings of this study
are beneficial to the next generation of the Preissmann-schememodels which can be designed to include turbulence and dispersion terms.
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1 INTRODUCTION
Almost all phenomena in the coastal zone are ac-
tively dominated by waves, thereby, becoming the
most concerning aspect of infrastructure design.
It was found that these waves are caused by sev-
eral external and internal factors such as wind,
the geometry of the sea, astronomical tide, earth-
quake on the seabed, and others (Pratomo et al.,
2016). Wind is the most apparent factor in gen-
erating waves followed by the astronomical tide
caused by the gravitational attraction between the
earth, sun, and moon. Meanwhile, the less impor-
tant waves capable of causing great losses in some
places are those generated seismically through
tsunamis and by moving vessels (Sorensen, 2006).

Significant improvements have recently been
made in describing and predicting wave propaga-
tion processes in shallow water numerical mod-

eling, and this concept is based on the smallness
of the ratio between water depth and wavelength.
Thismodeling process is classified into two groups
which are dispersion and non-dispersion which
typically deal with the shallow water equations
(SWE) in either primitive or conservative form. It
is important to note that the dispersion and non-
dispersionmodels lie on the non-hydrostatic term
included in the SWE in the form of Boussinesq-
type models, non-hydrostatic shallow water, or
vertically averaged and moment equations as ex-
plained in (Ginting and Ginting, 2020).

The SWE dispersion model is suitable to simulate
the deep-water or short wave, specifically where
its speed depends on the wavelength. This causes
the vertical-length scale to be much greater than
the horizontal one, to an extent that the non-
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hydrostatic effects cannot be neglected. How-
ever, the non-dispersion is suitable for simulat-
ing shallow-water or long waves, where its speed
is independent of the wavelength. It was discov-
ered that the vertical velocity component does not
affect the pressure distribution thereby satisfying
the hydrostatic assumption. Based on this ex-
planation, the SWE dispersion model is suitable
for modeling both short and longwave modeling
specifically for those that involve transformation
processes from the deep to the shallow water.

A non-dispersion model is still a common ap-
proach for practical purposes and in coastal appli-
cations because it has a computational cost that
is 3 to 4 times lower than that of dispersion. An
example is seen in the recent work of Audusse
et al. (2019), where both models were compared
in simulating tsunami waves generated by a land-
slide, and was discovered that the non-dispersion
model performs better than that of dispersion in
the generation zone but conversely in the propa-
gation zone. Moreover, the non-dispersion model
producesmuch less computational cost in terms of
complexity compared to that of dispersion. Fur-
ther examples of accurate prediction for tsunami
propagation using the non-dispersion model are
shown in (Ginting and Mundani, 2019; Arcos and
LeVeque, 2015; Meister et al., 2016). Therefore,
the decision to either use the dispersion or non-
dispersion model depends on the modeling re-
quirements.

In this present research, the one-dimensional
SWE derived from the Navier-Stokes equations
was utilized to describe the fluid motion based
on the conservation of mass and momentum.
This has a dispersive effect which is neglected
in the SWE when the uniform distribution value
of vertical velocity and hydrostatic pressure is
assumed. Based on this, Preissmann’s implicit
scheme which is found to be stable over larger
values is employed to numerically solve the 1D
SWE, and tomodel the wave propagation that typ-
ically includes a long simulation time. It is impor-
tant to note that this Preissmann scheme has been
applied to several popular commercial and non-
commercial codes, such as DUFLOW (Clemmens
et al., 1993) and HEC-RAS (Brunner and USACE,
2016). These two findings discovered that the so-
lutions of the Preissmann scheme may have false
oscillations, particularly when the flow conditions

shifted from free-surface to pressurized flow.

A study by An et al. (2018) proposed a new hy-
brid numerical solution to solve this problem by
combining the upwind and centered flux solver.
Although the Preissmann scheme is generally
created for non-transcritical flows, Sart et al.
(2010) employed it to solve transcritical flows by
modifying the formulation only in transcritical
zones while maintaining its conservative proper-
ties. This present study aims to investigate the
accuracy of the in-house codes by utilizing the
Preissmann scheme against the three cases of the
wave propagation problem. The first case is to
simulate the tidal wave, which is typically a long
wave problem, and the second is focused on sim-
ulating the roll wave propagation being periodi-
cally permanent over the time, while the third en-
tails the simulation of the solitary wave with the
aim of observing the largest discrepancy produced
by the scheme for incorporating the dispersion ef-
fect. In these simulations, the tridiagonal matrix
algorithm is applied to the solution of the Preiss-
mann scheme, thereby eliminating the need for it-
erations.

2 METHOD

This research begins with several related liter-
ature reviews followed by the solution of the
one-dimensional SWE by developing an in-house
codewithPreissmann’s implicit schemewhichwas
written in Fortran and compiled using the Intel
Fortran compiler 64-Bit version 2020. The code
is subsequently tested and compared with some
benchmark cases related to the simulations of
wave propagation. Figure 1 represents the flow
chart of the research methodology.

The results of the comparison test with other
benchmarks are further compared with the mea-
sured data obtained from the other published jour-
nals to show the relationship between the nu-
merical models developed using the Preissmann
scheme and other methods.

2.1 Governing Equations

The SWE has been widely used as the governing
equation for modeling open channel flows. Mean-
while, by neglecting the vertical acceleration and
the translational motion of fluid elements, the
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Figure 1 Research Flowchart

mass conservation or continuity and the momen-
tum equations in the 1D form are described as fol-
lows:

∂A

∂t
+

∂Q

∂x
= 0 (1)

1
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∂Q

∂t
+

1

A

∂
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(
βQ2

A

)
+ g

∂η

∂x
− gS0 + g

Q|Q|
K

= 0 (2)

where the discharge, wetted area, and water depth
are denoted by Q, A, and η respectively. The
variable β is the Boussinesq coefficient and it is
equated to 1, g is the gravity acceleration t is the
time, S0 is the bed slope, andK = n2

mA2R4/3, where
nm is the Manning coefficient and R is the hy-
draulic radius of the channel.

2.2 Preissmann Scheme

The SWE,written as a partial differential equation,
is discretized by using the Preissmann scheme and
this implicit finite-difference method is uncondi-
tionally stable and suitable for modeling phenom-
ena that have a long simulation time (Chollet and
Cunge, 1980) as seen in Figure 2.

The following is the basic formulation of the
Preissmann scheme:
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Figure 2 The Preissmann Implicit Scheme

∂f

∂t
≈

fn+1
j+1 − fn

j+1 + fn+1
j − fn

j

2∆t
(5)

Where, f (x,t) is an unknown variable includingQ,
A, and h, together with its temporal and spatial
derivatives. The variable θ is a weighting factor
with a value between 0.5 and 1, the superscript n
refers to the time axis, while the subscript j refers
to the spatial axis x.

2.3 Discretization of Governing Equations

The first step of using the Preissmann scheme is to
discretize the continuity equations as follows:

∂A

∂t
+

∂Q

∂x
= q,B

∂η

∂t
+

∂Q

∂x
= q (6)
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SinceB and q are the channel width and discharge
per unit width, respectively, the above equations
are converted into:

aj∆ηj+1 + bj∆Qj+1 = cj∆ηj + dj∆Qj +Gj (8)

aj = B
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∆x , Cj = −B
2∆x , dj = θ
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Qn

j

∆x

The next step is to discretize themomentumequa-
tions, written as follows:
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Afterwards, the first term of Equation 9 is dis-
cretized as:
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Meanwhile, the Vonvey’s variant of Preissmann is
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Furthermore, the four equations above are con-
verted into the form:

a∗j∆ηj+1+b∗j∆Qj+1+c∗j∆Qj+1+d∗j∆Qj+G∗
j (15)

The Taylor series below is firstly used before con-
verting into the form of Equation 15:
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Subsequently, Equation 15 can be written as: a∗j =
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Afterwards, the two general equations, 8 and 15
will be reviewed, starting with Equation 8:
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Also, Equation 16 is rewritten as:
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By summing Equation 22 with Equation 24, the
following is obtained:
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By considering (aj + a∗j ) = (aj), where j = 1 and j
= 2 are taken as example:
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The formulations above do not produce a tridiag-
onal matrix, and therefore, another solution must
be found by assuming a linear relationship, which
is by substituting the equations∆Qj = Ej∆ηj + Fj

into Equation 8 and Equation 15, to yield:

aj∆ηj+1 + bjQj+1 =
(
cj + djEj

)
∆ηnj + djFj +Gj

(28)

a∗j∆ηj+1 + b∗jQj+1 =
(
c∗j + d∗jEj
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∆ηnj + d∗jFj +G∗

j
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From Equation 28, the following is acquired:

∆ηj =
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And from Equation 30, the following is abstracted:
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When Equation 28 is subtracted from Equation 29,
then:
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∗
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∗
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j )(cj + djEj)

(32)

It is important to note that Equation 32 is identical
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with∆Qj+1 = Ej+1∆ηj+1 + Fj+1, then:

∆Qj+1 =

−

{
aj(c

∗
j + d∗jEj)− a∗j (cj + djEj)

}
∆ηj + 1{

bj(c
∗
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} +
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j )(cj + djEj){
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∗
j + d∗jEj)− b∗j (cj + djEj)

}
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Therefore:
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}
{
bj(c

∗
j + d∗jEj)− b∗j (cj + djEj)
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j + d∗jEj)− (d∗jFj +G∗

j )(cj + djEj){
bj(c

∗
j + d∗jEj)− b∗j (cj + djEj)

}
(35)

The values of Ej+1 and Fj+1 depend on that of
Ej and Fj , and this numerical solution requires
two boundary conditions which include upstream
and downstream. Therefore, there are three possi-
ble conditions, namely tidal η(t), hydrographQ(t),
and rating curve Q(η) which are explained in the
following boundary conditions.

- If η(t) is given as a boundary condition, then:

∆Q1 = E1∆η1 + F1 (36)

∆η1 =
∆Q1

E1
− F1

E1
(37)

Letting ∆η1 be independent from ∆Q1

E1
, the value

of ∆Q1

E1
≈ 0, and therefore, E1 = -a is taken, where

a ≈ 104 - 106 and F1 = -a∆η1 = -a (ηn+1
j+1 − ηn1 ).

- If Q(η) is given as a boundary condition, then:

∆Q1 = E1∆η1 + F1, E1 = 0, F1

= (∆Q1) = (Qn+1
1 −Qn

1 )
(38)

- If Q(η) is given as a boundary, then:

∆Q1 = E1∆η1 + F1 (39)

Applying the Taylor series, where Q(t + ∆t) =

Q(t) + ∆Q or Q(t + ∆t) = Q(η) + ∂Q(η)
∂η ∆η, the

following is gotten:
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∂Qn

1

∂η1
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E1 =
∂Qn

1
∂η1

, F1 = 0

The three methods above are used to determine
the value of E1 and F1. Meanwhile, the following
conditions must be satisfied to determine ∆η and
∆Q:

- If η(t) is given as a boundary condition, then:

∆ηj = ηn+1
j − ηnj (42)

- If Q(t) is given as a boundary condition, then:

∆ηj =
(∆Qj − Fj)

Ej
(43)

The double sweep method for the Preissmann
scheme is expressed as follow:

ajηj+1 + bj∆Qj+1 = cj∆ηj + dj∆Qj +Gj (44)

a∗j∆ηj+1 + b∗j∆Qj+1 = c∗j∆ηj + d∗j∆Qj +G∗
j (45)

The two equations above are elimated by∆Qj such
that

∆Qj =
(aj∆ηj+1 + bj∆Qj+1 − cj∆ηj −Gj

dj
(46)

∆Qj =
a∗j∆ηj+1 + b∗j∆Qj+1 − c∗j∆ηj −G∗

j

d∗j
(47)

Equation 46 is substracted by Equation 47, then:(
ajd

∗
j − a∗jdj

)
∆ηj+1 +

(
bjd

∗
j − b∗jdj

)
∆Qj+1−(

cjd
∗
j − c∗jdj

)
∆ηj −

(
Gjd

∗
j −G∗

jdj

)
= 0

(48)
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∆ηj =
(ajd

∗
j − a∗jdj)

(cjd∗j − c∗jdj)
∆ηj+1 +

(bjd
∗
j − b∗jdj)

(cjd∗j − c∗jdj)

∆Qj+1 −
(Gjd

∗
j −G∗

jdj)

(cjd∗j − c∗jdj)
= 0

(49)

Equation 49 is changed to:

∆ηj = Vj∆ηj+1 +Wj∆Qj+1 +Xj (50)

The proposed correlation is written as:

∆Qj = Ej∆ηj + Fj (51)

ajηj+1+bj∆Qj+1 = cj

(
Vj∆ηj+1 +Wj∆Qj+1 +Xj

)
+ dj

(
Ej∆ηj + Fj

)
+Gj (52)

ajηj+1 + bj∆Qj+1

= cjVj∆ηj+1 + cjWj∆Qj + cjXj + djEj(
Vj∆ηj+1 +Wj∆Qj+1 +Xj

)
+ djFj +Gj (53)

(aj−cjVj−djEjVj)∆ηj+1+(bj−cjWj−djEjWj)

∆Qj+1 = cjXj + djEjXj + djFj +Gj (54)

Equation 54 is changed to the form of ∆Qj+1 =
Ej+1∆ηj+1 + Fj+1, where:

∆Qj+1 =
−(aj − cjVj − djEjVj)

bj − cjWj − djEjWj

=
−aj + cjVj + djEjVj

bj − cjWj − djEjWj

=
Vj(cj + djEj)− aj
bj −Wj(cj + djEj)

(55)

∆Qj+1 =
cjXj + djEjXj + djFj +Gj

bj − cjWj − djEjWj

=
Xj(cj + djEj) + djFj +Gj

bj −Wj(cj + djEj)

(56)

3 RESULT

3.1 Case 1: Rectangular Channel with Tidal Force

The channel is rectangular with 5,000m and 1,000
m length and width, respectively. A tidal force
with an amplitude of 2.5 m is applied at the chan-
nel upstream with a period of 12 hours, while the
downstream is closed. The initial depth is 10 m
for cold start condition without any slope, and the
analytical solutions for the depth and velocity are
written as:

η =
a

cos
(

2πL√
gh

) sin
(

2πL√
gh

[
x
L − 1

])
sin

(
2πt

)
(57)

u =
−a

√
gh

h cos
(

2πL√
gh

) sin
(

2πL√
gh

[
x
L − 1

])
cos

(
2πt

)
(58)

where a, L, 2π, t, η, and u represent amplitude,
length of the channel, tidal frequency, time, wave
height, and wave velocity, respectively.

The domain is discretized into 200 segments in the
x-direction andwas simulated for 24 hours. Figure
3 shows the analytical result versus the numeri-
cal model at x = 2,500 m. The average error rates
from the analytical result for water depth and ve-
locity, are 1.81% and 1.175%, respectively which
indicated that the numerical model is quite accu-
rate.

3.2 Case 2: Roll wave in a Rectangular Channel

A rectangular channel having a length of 24.4 m
with a slope and width of 0.1201 m and 0.1175 m
respectively, was used to produce periodic perma-
nent roll waves. Its normal depth is 0.0053 m and
the amplitude of the perturbations imposed at the
inlet of the channel is 0.5%. According to Cao et al.
(2015), steady water discharge of 8.02 x 10-4 m3/s
is given at the inlet and the water depth is set as:

hin = hn + hamsin(2πt/T ) (59)

where hn is the normal depth, the perturbation
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Figure 3 Case 1: Comparison of Numerical and Analytical
Results for Water Depth and Velocity

amplitude ham =0.5% of hn, and T refers to the
perturbation period imposed at the inlet of the
channel. The computational value is set in such
a way that the forward wave does not reach the
downstream boundary within the time of compu-
tation as conducted by (Cao et al., 2015). A dimen-
sionless water depth is defined as h∗=h/hn and the
spatial step is set to be 0.001 m with a Courant
number of 2. Figure 4 shows that the numerical
model exhibits a stable performance, and the de-
viations are still considerable from the measured
data originally performed by (Brock, 1967).

3.3 Case 3: Solitary Wave in a Channel

There has been no change in the shape and ve-
locity of the wave traveling on the flat channel
because friction and viscosity are not considered.
Therefore, this case aims to simulate a solitary
wave on a flat and frictionless channel. According
to Kang and Jing (2017) and Stelling and Zijlema
(2003) the water elevation and velocities are ana-
lytically expressed as:

Figure 4 Case 2: Comparison of the Computed Water
Depth and Measured Data from Brock (1967)

η = asech2
(√

3a
4d3 (x− ct)

)
(60)

u = c
η − d

h
(61)

where a is the amplitude, d is the water depth, and

c =
√
g
(
d+ a

)
. Equation 60 and Equation 61 are

applied as an initial condition with a = 2 m and d =
10 m for Case 3a and a = 4 m and d = 10 m for Case
3b. The length of the channel is set to be 600 m,
while the width is 5 m. The domain is discretized
into 1,200 segments in the x-direction and the to-
tal simulation time is set to 30 s. These results of
the simulation for both cases are seen in Figure 5
and Figure 6, respectively.

From both simulations, it was discovered that the
decrease in water level occurs constantly, and in
case 3a withα = 2m as shown in Figure 5, themax-
imum drop occurs by 45%, while in Case 3b with α
= 4 m represented in Figure 6, the maximum drop
occurs by 75%. These results indicated that when
the amplitude increases, thewater level decreases,
specifically in the second wave, and also showed
that there is a significant difference between the
analytical results and the numerical model due to
the dispersion effect that is not considered in the
SWE.
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Figure 5 Case 3a: Comparison of Numerical and Analytical
Results for Water Level

Figure 6 Case 3b: Comparison of Numerical and Analytical
Results for Water Level

4 DISCUSSION

The simulation of three different types of wave
propagation has demonstrated the capabilities of
the Preissmann scheme. The first case is tidal
wave propagation which shows the Preissmann
scheme is quite accurate for longwave simula-
tion. This was observed in the accurate prediction
of both maximum water elevation and velocity,
where the dispersion effect is insignificant, and
the vertical velocity is uniform, thereby having the
hydrostatic pressure distribution.

The second case is the rolling wave simulation
which indicates the results of the Preissmann
scheme are still consistent with the observed
data for periodically-permanent wave propaga-
tion, although the wave crest is slightly overes-
timated. According to Cao et al. (2015), the dis-
persion’s absence is independent of SWE numeri-
cal model’s failure to capture wave crests because
when this effect was added to the non-uniform
vertical velocity distribution in the SWE, no signif-
icant change was observed in peak’s position. This

leads to the conclusion that dispersion is not a vi-
able approach to improving themodeling accuracy
of the permanent roll waves. However, when the
turbulent term was included, the numerical accu-
racy increased significantly.

The third case, related to the solitary wave simula-
tion shows that the model has significant discrep-
ancies from the analytical solution, as expected.
The dispersion effect for this benchmark case is
considered large, and therefore the vertical-length
scale becomes significant with respect to that
of horizontal-length, to an extent that the non-
hydrostatic effect has to be considered. In these
present findings, neglecting the dispersion term
causes the Peissmann scheme to underestimate
the wave crest along with time. Meanwhile, the
central difference scheme used in (Kang and Jing,
2017), found that the peak wave is overestimated
and the wave occurrence position deviates.

In the research conducted by Ginting and Ginting
(2020), the dispersion and non-dispersion shallow
water models were compared to simulate the third
case and a similar result with this currentworkwas
observed where the non-dispersion model under-
estimated the peak wave, indicating that it plays
an important role. Based on the aforementioned
phenomena, future study needs to investigate the
accuracy of the Preissmann scheme with the tur-
bulence and dispersion terms. This is achieved by
adding such terms into the momentum equations
of the SWE as follows:

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ gA

∂η

∂x
− gAS0 + gA

Q|Q|
K

=
∂(ηTR)

∂x
− ∂D

∂x
(62)

whereTR is the depth-averagedReynold stress and
D is the dispersion momentum transport.

5 CONCLUSIONS

The three different types of propagation that have
been modeled in this framework of the 1D SWE
using Preissmann’s implicit scheme include tidal,
roll, and solitary waves. In the tidal wave simu-
lation with a small dispersion effect, it was found
that the Preissmann scheme accurately predicts
both the water elevation and velocity. Also, in the
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second scope of themodelingwhere the dispersion
plays a considerable role, the scheme was accu-
rate in capturing the wave crest. When consider-
ing the turbulent-dominated case, the Preissmann
scheme overestimated the wave peak but the oc-
currence positions were generally well-predicted.
Moreover, in the solitary wave simulation, it was
observed that the wave peaks and their occurrence
positions were underestimated by the Preissmann
scheme. This further explained that as the wave
amplitude increases, the effect of the dispersion
is more felt, thereby causing the numerical model
to be less accurate. In the future, it would be in-
teresting to investigate the simulation of the SWE
model with the Preissmann scheme including the
dispersion and the turbulence terms.
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