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ABSTRACT Concrete is the most used construction material in the world. Sustainable construction practice demands durable material.
A particular type of concrete that flows and consolidates under its weight is proposed to reduce labor dependency during construction,
called self-compacting concrete. It is installed without vibration due to its excellent deformability and flowability while remaining cohesive
enough to be treated without difficulty. Evaluating its compressive strength is essential as it is used in important construction projects.
An artificial neural network (ANN) is a predicting tool that can predict output in various sectors. This study evaluated the compressive
strength of industrial waste such as fly ash and silica fume incorporated in self-compacting concrete at various ages. A non-linear
relationship was used to develop the model relating mix composition and SCC compressive strength using an Artificial Neural Network
(ANN). The experimental and expected outcomes were compared with the model prediction to evaluate the predictive capacity, generalize
the generated model, and observe suitable matches. The developed ANN network can predict the desired output, i.e., compressive
strength incorporating industrial waste. Furthermore, the influence of individual parameters viz. cement, silica fume, and fly ash,
w/b were also evaluated using parametric analysis, which shows the sensitivity of various materials on the compressive strength of
Self-compacting concrete. As a result, a higher correlation coefficient of 0.9835 with a smaller value of MAPE (0.0347) and RMSE (2.4503)
is obtained. Finally, a process of creating tools for practical engineers and field users is proposed, which would be very handy and fast for
predicting the strength of SCC.
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1 INTRODUCTION
Concrete has been used as a construction mate-
rial for over a century and has been continuously
developed as indicated by the increased usage of
secondary cementitious elements in the binding
phase (Heniegal, 2012; Neville, 2011). Moreover,
self-compacting concrete (SCC) is normally in-
stalled without any outward vibration and has rev-
olutionized concrete technology due to its self-
flow and self-compaction ability (Okamura and
Ouchi, 2003; Raheman and Modani, 2013). It is
different from ordinary concrete in some random
cases based on its properties such as the high
workability as well as higher water and fine con-
tent requirement. It is important to note that
there has been meaningful improvement in the
study related to this concrete since its develop-

ment (Siddique, 2011). Self-compacting concrete
can be produced using industrial wastes such as
fly ash, ladle slag, silica fume, and others. Fly
ash and silica fume are frequently used because
they provide extended durability for construction
projects (Deilami et al., 2017; Joshi and Lohtia,
1997; Mazloom et al., 2018). Moreover, the prop-
erty enhancement of concrete at different cur-
ing states using these industrial by products has
been documented with a special focus on the ben-
efits of long-term water curing (McCarthy et al.,
2013). The effect of SCMs on the properties of
SCC has been studied as observed with fly ash (In-
tezar et al., 2019), silica fume (Turk et al., 2012),
and GGBS (Saini and Vattipalli, 2020). Plastic
fibers (Al-Hadithi and Hilal, 2016; Mohammad-
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hosseini and Yatim, 2017) and steel fibers (Banthia
and Onuaguluchi, 2021; Grünewald andWalraven,
2001) have also been used in SCC production. It
was observed that there is a non-linear relation-
ship between mixing constituents and compres-
sive strength but there is no theoretical or math-
ematical relationship between mixture ratio and
SCC strength (American Concrete Institute, 2019;
Siddique et al., 2008). Thismeans it is necessary to
use appropriate methods to predict SCC strength
based on the mixing ingredients during the design
phase. One of the tools proposed to be useful in
making this prediction is the Artificial Neural Net-
work (ANN) (Taylor, 1992; Yadollahi et al., 2015).
This is a flexible computermethod to create exam-
ples or data based on the neural systemof a human
being. It has become increasingly popular and is
currently being used in several engineering fields
(Ashteyat and Ismeik, 2018; Taylor, 1992; Ye et al.,
2019). Neural network model has the ability to
predict more specific concrete properties while re-
ducing the experimental work required in the lab-
oratory or study center and on-site. The primary
advantage of neural network model is that it does
not need any specific equations because it is based
only on learning and understanding input-output
connections for any complicated problem.

This study aims to develop an ANN model in the
form of optimum BPNN architecture and tools
for practical engineers to reliably predict the SCC
strength at multiple ages. The SCC used was pro-
duced through the application of industrial wastes
such as silica fume and fly ash as a partial substi-
tute for cement. Moreover, the model developed
was used to assess the effect of individual param-
eters such as w/b ratio, cement, superplasticizer,
and others on SCC’s strength.

2 METHODOLOGY

The prediction of the SCC strength using an ANN
required many reliable data or information on
mix design and compressive strength. It is im-
portant to note that more accurate data usually
leads to more reliable prediction and this is the
reason the data used were obtained from avail-
able literature and in-house experimental results
which were subsequently used to develop the net-
work model. Moreover, the development cycle of
the model was separated into three primary seg-
ments and these include the central which fo-

Figure 1. Flow diagram of the ANN development process
cuses on gathering and analyzing SCC data with
attention placed on fly ash and silica fume only.
The second section focuses on determining dif-
ferent training parameters such as execution du-
ration, performance function, learning method,
and appropriate neural network model. The third
and final section involves the approval of the pro-
posed ANNmodels and the determination of their
performances through the comparison with other
available test data. The flow diagram of the overall
process is provided in the following Figure 1.

2.1 Available literature

ANN is a prediction tool widely used in recent
times to predict desired output in different sec-
tors. It has been used very effectively in civil en-
gineering and this is based on its ability to learn
from experimental or analytical/theoretical data.
ANN models have the ability to classify data, pre-
dict values, and assist in decision-making analo-
gous to a response surface technique. Moreover, a
trained ANN can produce more trustworthy find-
ings with far less processing work compared to
traditional numerical analysis processes such as
regression analysis (Asteris et al., 2019a; Hornik
et al., 1989). The functioning of ANN is similar to
the human brain’s organic neural network (Hinton
et al., 2006; Schmidhuber, 2015). Its most funda-
mental component are the artificial neurons that
receive inputs to produce an output after a math-
ematical function processing just like the biolog-
ical neurons. It is pertinent to state that weights
are usually assigned to the input parameters be-
fore the data reaches the neuron to replicate the
biological neuron’s unpredictable nature.
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Table 1. Mix proportions of SCC

W/B C (kg) FA
(kg)

SF
(kg)

FnA
(kg)

CA
(kg)

SP
(kg)

VMA
(kg)

Age
(Days)

fc
(Mpa)

Reference

0.33 500 0 0 984 656 6.5 0 28 65

(Sabet et al., 2013)

0.33 450 0 50 959 656 9.5 0 28 75.5
0.33 400 0 100 935 656 12 0 28 79.5
0.33 450 50 0 966 656 5.5 0 28 67
0.33 400 100 0 948 656 4 0 28 80.5
0.33 450 0 50 959 656 9.5 0 90 73
0.33 450 50 0 966 656 5.5 0 90 73
0.33 400 100 0 948 656 4 0 90 79.5
0.33 450 0 50 959 656 9.5 0 180 79.5
0.33 400 0 100 935 656 12 0 180 87
0.33 450 50 0 966 656 5.5 0 180 79.5
0.33 400 100 0 948 656 4 0 180 87
0.35 467.5 82.5 0 677 677 5.3 0 28 45
0.35 385 165 0 665 665 5.3 0 28 42
0.35 522.5 0 27.5 684 684 6.4 0 28 53
0.35 495 0 55 680 680 6.4 0 28 54
0.35 412.5 82.5 55 669 668 6.2 0 28 47
0.35 357.5 165 27.5 661 661 5.6 0 28 43
0.35 330 165 55 657 657 5.6 0 28 43
0.38 444 0 0 1010 777 4.44 0 28 53.8

(Behfarnia & Farshadfar,
2013)

0.38 421.8 0 22.2 1002 777 5.328 0 28 63
0.38 399.6 0 44.4 994 777 6.66 0 28 63.8
0.38 377.8 0 66.2 986 777 6.66 0 28 72.1
0.38 444 0 0 1010 777 4.44 0 90 57
0.38 421.8 0 22.2 1002 777 5.328 0 90 68
0.38 399.6 0 44.4 994 777 6.66 0 90 67
0.38 377.8 0 66.2 986 777 6.66 0 90 71.5
0.35 500 0 0 967 694 8 0 28 78.5

(Bingöl & Tohumcu,
2013)

0.35 475 0 25 958 687 8 0 28 78.5
0.35 450 0 50 954 685 9 0 28 82.5
0.35 425 0 75 948 681 10 0 28 87
0.35 375 125 0 938 673 7.5 0 28 61.5
0.35 300 200 0 923 663 7.5 0 28 55
0.35 225 275 0 908 652 7.5 0 28 43
0.44 350 0 35 960 920 2.76 0 7 21.1

(Faez et al., 2020)0.44 350 0 35 960 920 2.76 0 28 26.1
0.44 350 0 35 960 920 2.76 0 90 29.3
0.41 465 85 0 910 590 10.73 0 7 29.55

(Siddique, 2011)

0.41 440 110 0 910 590 11.01 0 7 27.99
0.42 415 135 0 910 590 9.91 0 7 25.52
0.43 385 165 0 910 590 9.91 0 7 23.98
0.41 440 110 0 910 590 11.01 0 28 33.15
0.42 415 135 0 910 590 9.91 0 28 31.47
0.43 385 165 0 910 590 9.91 0 28 30.66
0.44 355 195 0 910 590 9.91 0 28 29.62
0.41 465 85 0 910 590 10.73 0 90 58.99
0.42 415 135 0 910 590 9.91 0 90 43.77
0.44 355 195 0 910 590 9.91 0 90 40.88

13



Journal of the Civil Engineering Forum Vol. 9 No. 1 (January 2023)

ANNhas been applied in different aspects of struc-
tural engineering as indicated by its usage in re-
lation to different properties of concrete such
as the creep and shear strength (Asteris et al.,
2019b; Hodhod et al., 2018), cement-based mor-
tar’s strength (Asteris et al., 2019a), SCC’s tensile
strength (Mazloom and Yoosefi, 2013), and also to
monitor the structural health (Ye et al., 2019) and
durability of civil infrastructures.

2.2 Experimental dataset

An extensive and trustworthy dataset is required
for any ANN to function properly. This means a
comprehensive range of experimental data is nec-
essary to determine the connection between the
mixing elements of SCC and its observed charac-
teristics. Meanwhile, it is hard for a single re-
searcher to fully generate enough experimental
data to train ANN. Another difficulty is the accu-
racy of accessible data because the database trains
the optimal developed network, thereby leading
to the failure of the trained network to predict
proper values when inaccurate data or informa-
tion are used. This is mainly due to the fact that a
tiny group of inaccurate data can damage a larger
volume of data. Table 1 shows the dataset uti-
lized in the proposed ANN model with a portion
observed to have been generated from the infor-
mation published earlier in the institution’s lab-
oratory. They were organized based on nine in-
put parameters which include silica fume, fly ash

Table 2. Ranges of input and output variables

Constituents Min. Max. Avg.

Input variables

Water/binder 0.3 0.45 0.37
Cement (kgm-3) 135 600 356.94
Silica fume (kgm-3) 0 150 22.61
Fly ash (kgm-3) 0 420 124.97
Fine agg. (kgm-3) 657 1166 908.46
Coarse agg. (kgm-3) 590 1000 731.27
Superplasticizer (kgm-3) 0.585 13.8 5.31
VMA (kgm-3) 0 4.03 0.1
Age (days) 7 180 40.92

Output variable

Compressive strength (MPa) 17.7 106.6 56.47

and cement content, w/b ratio, coarse aggregates,
fine aggregates, viscosity modifying agent (VMA),
superplasticizer, and age of testing. However, the
single output variable is the compressive strength
of SCC.

A database of 354 mixtures was collected from the
literature with similar physical and chemical char-
acteristics. The requirements for the data iden-
tification were defined by the omission of a few
SCC characteristics in some literature and the un-
certainty of testing procedures and combination
proportions. Moreover, the values acquired ex-
perimentally were earlier compared with the pre-
dicted results produced by the neural network. A
pair of input and output vectors were used to train
the ANN. The input vector contained mixed vari-
ables in the network model while the output vec-
tor had only one element which is the compressive
strength. Most previous studies created databases
based on their experimental results, thereby limit-
ing their findings to their immediate environment.
However, the database for this study was obtained
from different sources including literature from
multiple countries to have a broader range of sit-
uations. The boundary values of variables used to
develop the model are presented in Table 2 while
the range and distribution of the input and output
variables are indicated in Table 3.

Table 3. Distribution of inputs variables in the database

W/B Cement Fly ash

Range (kgm-3) Ferq. Range (kgm-3) Ferq. Range (kgm-3) Ferq.

0.25-0.31 42 100-250 91 0-115 183
0.32-0.38 160 251-400 128 116-230 87
0.39-0.44 120 401-550 119 231-345 69
0.45-0.5 32 551-700 16 346-460 15

Silica fume Fine aggregates Coarse aggregates

0-40 261 650-790 78 550-675 171
41-80 78 791-930 107 676-800 68
81-120 92 931-1070 135 801-925 97
121-160 1 1071-1200 34 926-1050 18

Superplasticizer VMA Ages (days)

0.5-3.87 159 0-1.125 348 7 91
3.88-7.25 64 1.126-2.25 0 28 170
7.26-10.63 104 2.251-3.375 0 90 85
10.64-14 27 3.376-4.5 6 180 8
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Figure 2. Visual representation of the variables in the
model developed

2.3 Development of model

The variables influencing concrete strength were
used to calculate the number of input neurons. It
was difficult to develop the training architecture in
a reasonable amount of time due to the existence
of too many factors which also makes it impracti-
cal from the engineering perspective that permits
a ±10% error margin. Therefore, all conceivable
variables were considered during the early devel-
opment stage and this led to the usage of nine vari-
ables as the fundamental input neurons in the pro-
posed model as indicated in Figure 2.

Concrete strength generally increases with cur-
ing age and this is the reason 28-day compres-
sive strength is a good indicator of design qual-
ity and control. Meanwhile, the initial strength
within 7-days after placing is critical in determin-
ing the ability of concrete to handle disposal and
shoring reduction. This is the reason the concrete
strength was measured at four distinct ages. The
primary number of output neurons was consid-
ered one and utilized for the proposed model be-
cause this study is interested in determining the
compressive strength of SCC as an output. Dif-
ferent optimization methods were investigated to
determine the optimum training algorithm and it
was discovered that Levenberg-Marquardt (imple-
mented by Levmar) offered the best ANN predic-
tion for the output. This technique appears to be
best for training feed-forward back-propagation
neural network with non-linear issues that are
moderately large (up to several hundred neurons
per layer) (Lourakis, 2005). It is also significantly

Table 4. Training parameters of the BPNN model
developed

Training parameters Values

Training algorithm Levenberg-Marquardt
Normalization Min-Max (0.1-0.9)
Input neurons 9
Hidden layers 1
Hidden neurons 25
Output neurons 1
Training error goal 0
Performance function MSE
Transfer function Tansig & Purelin
Time Infinite
Learning cycle 1000
Minimum gradient 1×10-7
Maximum fail 6

MSE: Mean square error
Tansig: Hyperbolic tangent sigmoid transfer function
Purelin: Linear transfer function

different from the other methods due to its ability
to train networks quickly in addition to its effec-
tiveness on non-linear problems. The Levenberg-
Marquardt method was used in the MATLAB soft-
ware and this improved its capabilities because the
MATLAB environment has the built-in function to
solve matrix equations.

Several distinct BPNN models were designed and
deployed in this study with 3 to 30 hidden neurons
selected for the trial. Moreover, for every trialed
model, the input and output neurons were kept at
9 and 1 respectively because the mixture contains
9 mix constituents with the SCC strength to be
determined as earlier mentioned. The developed
models were also expressed as NN 9-Y-1 with the
hidden neuron indicated as Y and ranges from 3 to
30. First, themodelwas trained using 248mix data
out of 354 data pairs (70% of total data points).
The validation and test was later conducted using
the remaining 107 data pairs (30% of the complete
pairs) such that 53 (15%) were used for the vali-
dation and 53 (15%) for the test (Apostolopoulou
et al., 2019; Armaghani et al., 2019; Asteris et al.,
2016; Cavaleri et al., 2017; Nikoo et al., 2017). The
maximum allowable error was also calculated us-
ing the rule described in the previous literature
(Lee et al., 2001; Lee and Han, 2002). All the pa-
rameters employed in the training are presented
in Table 4.
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Table 5. Coefficients of the optimum proposed neural network model

BPNN
Model

9-24-1 9-25-1 9-26-1 9-27-1 9-28-1 9-29-1

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Training 0.9807 3.1352 0.9912 1.7464 0.9823 2.5768 0.9922 1.7233 0.9948 1.4035 0.9851 2.3366
Validation 0.8913 6.3150 0.9629 3.3227 0.9178 5.8728 0.9301 4.7212 0.9351 5.1613 0.9456 4.8445
Testing 0.9514 4.8713 0.9631 3.3211 0.9456 4.3829 0.9432 4.5210 0.9851 4.7371 0.9008 5.5462

Table 6. Coefficients of the optimum proposed neural
network model

ANN model R2 MAPE RMSE

9-25-1 0.9835 0.0347 2.4503

2.4 Performance evaluation

Several statistical indexes are normally applied
to assess the performance of the neural network
model but this study only used three including
the root mean square error (RMSE), mean abso-
lute percentage error (MAPE), and Pearson cor-
relation coefficient (R2) which have been widely
used and accepted (Chugh, 2020; Vandeput, 2019).
The models with smaller RMSE and MAPE values
usually have more exact predictions and thos with
higher R2 values provide more correlated analyti-
cal and projected values. The following formulas
were used to determine these parameters and the
results are presented in Table 5 (Apostolopoulou
et al., 2019).

RMSE =

√√√√ 1

n

n∑
i=1

(actuali − predictedi)
2 (1)

MAPE =
1

n

n∑
i=1

∣∣∣∣actuali − predictedi
actuali

∣∣∣∣ (2)

R2 = 1−

(∑n
i=1 (actuali − predictedi)

2∑n
i=1 (actuali − actual)2

)
(3)

Where, n is the total number of datasets.

3 RESULT AND DISCUSSION

The final goal of this study is to develop an opti-
mum neural network model and design a tool for
practical application. The acceptance of themodel
depends on its ability to predict the output ef-
fectively and this was determined through cross-
validation which is normally applied to determine
the accuracy of a developed model. Moreover, the
input data pair was separated intomultiple groups
and each was used to evaluate amodel that fits the
remaining portion.

Statistical approaches are frequently employed to
create empirical relationships between numerous
interacting elements but the process is usually
complicated and convoluted, specifically when
dealing with non-linear relations. It requires
knowing the critical parameters to create the sta-
tisticalmodel. Meanwhile, back-propagation neu-
ral network have a more straightforward model-
ing procedure because no mathematical equation
is needed for the input and output variables. This
means ANN has the ability to assist study systems
with several variables as well as to identify previ-
ously unknown patterns and features. The neu-
ral network is taught to handle noisy or imprecise
data because they are trained on actual test data.
Moreover, it is easy to update themodel when new
data becomes available by retraining using the lat-
est data patterns.

The prediction of the strength of the SCC with in-
dustrial waste was conducted by developing and
evaluating several BPNN models. A total of 26
distinct ANNarchitectureswere specifically devel-
oped using one hidden layer while the indexes of
the six ANN model cases developed are presented
in Table 5. The optimal BPNN model 9-25-1 was
selected based on its R2 and RMSE values for the
compressive strength prediction.
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Figure 3. Actual vs predicted strength for the test dataset

Table 7. Actual and predicted strength (MPa) for testing data sets of ANN

Input variables Output

W/B
(kgm-3)

Age, days Actual Strength, MPa Predicted Strength, MPa E(%)
Cement Fly Ash Silica fume Fine agg. Coarse agg. SP VMA

0.30 620 0 0 740 775 8.06 4.03 7 47.1 46.33 1.63
0.31 589 0 31 740 775 8.06 4.03 7 56.5 56.52 0.03
0.31 573 0 47 740 775 8.06 4.03 7 60.1 60.27 0.28
0.30 620 0 0 740 775 8.06 4.03 28 60.2 60.72 0.87
0.31 589 0 31 740 775 8.06 4.03 28 73.1 72.63 0.64
0.31 573 0 47 740 775 8.06 4.03 28 76.3 77.46 1.53
0.35 154 309 51 980 621 2.056 0 7 40.5 40.06 1.09
0.32 220 247.5 82.5 685 880 8.89 0 90 68.3 69.32 1.50
0.39 220 180 0 916 900 1.4 0 28 45 46.69 3.76
0.30 540 0 60 1059 595 8.58 0 7 84.5 86.21 2.03
0.40 600 0 0 810 660 13.8 0.9 7 35 37.35 6.70
0.35 206 257 51 1001 621 2.57 0 7 48.2 47.97 0.47
0.35 327 173 0 902 803 4.42 0 28 61.6 61.16 0.71
0.45 371 159 0 768 668 0.86 0.082 28 41.4 40.01 3.35
0.40 510 0 90 810 660 13.8 0.9 28 55.3 55.06 0.44
0.40 428 0 23 1157 640 8.569 0 28 75.3 76.70 1.86

SP: Superplasticizer
VMA: Viscosity Modifying Agent
E (%): Relative percentage error

The model has a neural network architecture with
nine input variables, one output variable, and one
hidden layer with 25 nodes as indicated in Figure 2
while the values of its statistical indexes including
the R2, MAPE, and RMSE are listed in Table 6.

The actual values and those predicted by the best
BPNNmodel were compared using the two graphs
presented in Figure 3 and the suggested optimal
9-25-1 model was observed to have the capacity
to correctly forecast the industrial waste incorpo-
rated SCC’s compressive strength with a small er-

ror margin. It is worth noting that the variation of
almost every sample utilized in the testing proce-
dure is less than ±10% as indicated in Figure 4.

Figure 4 shows the overall performance of theANN
in forecasting the strength in all ageswhile Figures
5 to 8 indicate the performance at 7, 28, 90, and
180-day periods respectively. It was discovered
from the results that most points are within the
±10% lines and this means the networks can accu-
rately predict SCC strength. Moreover, the over-
all correlation coefficient of the model was 0.9835
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which is very high and also has a smaller RMSE
value of 2.4503 compared to other similar studies
(Nguyen et al., 2020; Uysal and Tanyildizi, 2011).

The final trained model recalled the data not used
in the training phase which include 354 mixes in
order to evaluate the accuracy of the ANN model.
A total of 16 unknown combinationswere also pre-
sented to the model developed within the training
data sets range to predict the output in the form of
the SCC strength.

Table 7 shows the proportion of mixtures as well
as the measured and predicted values.

3.1 Parametric analysis of developed ANN model

Parametric analysis of a model is a technique usu-
ally used to identify the influence of alterations

Figure 4. Actual v/s predicted strength for all ages

Figure 5. Actual v/s predicted strength for 7-days

in the input assumptions on the output (Grady,
2014) and this is considered important. This anal-
ysis also makes it possible to understand the level
of sensitivity of the input variables to determine
those that are more important. Furthermore, the
removal of inconsequential variables reduces the
input space, leading to a decrease in the compli-
cation of the network and the necessary time for
training. The analysis was applied to test the sen-
sitivity of the input parameters. It was achieved
by determining the effect of altering one parame-
ter while all others are kept constant. Therefore,
some key input variables were assessed to estab-
lish the functional relationships between the mix-
ture variables and the compressive strength.

3.1.1 Effect of fly ash

Different amounts of fly ash were used to replace
cement content while other parameters are kept

Figure 6. Actual v/s predicted strength for 28-days

Figure 7. Actual v/s predicted strength for 90-days

18
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Figure 8. Actual v/s predicted strength for 180-days

Figure 9. Impact of fly ash on strength

constant to evaluate its sensitivity to the compres-
sive strength. Figure 9 shows that the replacement
level of fly ash has a considerable impact on the
strength. It was discovered that an increase in its
quantity up to the optimum level of replacement
for the cement led to an increment in the compres-
sive strength (28-day) after which the strength re-
duced. This means an increase in the amount of
fly ash after its optimum level as a replacement
material directly correlates with the reduction in
strength. Similar results have also been found in
previously published studies (Ahmad et al., 2020;
Naik et al., 2012). This is associated with the poz-
zolanic reaction of alumino-silicate oxides in fly
ash with calcium hydroxide which generates ad-
ditional cementitious compounds and allows the
concrete containing fly ash to gain strength over
time. However, the total cement and fly ash con-
tent over 550 kgm-3 was generally found to be at
an optimum range of total binder. This was fol-

Figure 10. Silica fume impact on SCC strength

Figure 11. Effect of w/b ratio

lowed by the replacement of the fine aggregates by
the cement content which subsequently interferes
with the water demand and packing of the matrix
(Chandra and Bendapudi, 2015).

3.1.2 Effect of silica fume

Silica fume also has a considerable impact on the
strength of SCC and this was observed by chang-
ing its quantity while other parameters were kept
constant to evaluate its impact. The compressive
strength (28-day) was observed to have increased
with the amount of silica fume as indicated in Fig-
ure 10 from 0 to 130 kg replacement and different
cement content. This has also been confirmed in
previous studies (Turk et al., 2012).

The trend is due to the fact silica fume is a very ac-
tive and very fine mineral additive that enhances
the bond between fine aggregate and the hydrated
cement in concrete mix within a short period.
In addition, the unreacted material fills the very
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fine pores in thematrix (Moghadam and Izadifard,
2019) and all these mechanisms increase the com-
pressive strength of SCC.

3.1.3 Effect of w/b ratio

Water-binder ratio is one of the most important
parameters for any kind of concrete due to its di-
rect relationship with the compressive strength.
This was notably true when making highly work-
able self-compacting concrete with a large amount
of paste which frequently leads to a greater w/b ra-
tio (Neville, 2011). Figure 11 shows the change in
strength due to the w/b ratio for different amounts
of fly ash after 28-days. The combined effects of
the increase in the amount of fly ash and w/b ratio
were observed to have led to the reduction in the
strength after the optimum level of fly ash as been
reached at 28-days. This phenomenon has been
previously discussed by Siddique (2011).

The strength of concrete depends on its poros-
ity and hydration reaction also requires a mini-
mum amount of water. Meanwhile, more water
increases the w/b ratio, dilutes cement paste, and
increases the water-filled pore space between the
particles (Beaudoin and Odler, 2019). This re-
quires the hydrates to grow larger in order to inter-
act and improve strength and fill the gap between
them. This simply means any extra water beyond
the hydration requirement is expected to produce
more capillary pores, thereby reducing the area of
solid hydrates for the same cross-sectional area of
concrete and lowering the strength. Sometimes,
desirable workability can be achieved with a lower

Figure 12. Effect of SP with fly ash

w/b ratio by using a superplasticizer but the appli-
cation of too much superplasticizer can also affect
the ultimate strength (Islam et al., 2019).

3.1.4 Effect of superplasticizer

Superplasticizer is very important to the improve-
ment of the rheological characteristics of SCC and
thismeans it is a necessary component for the pro-
duction process. Figure 12 shows the change in
strength due to varying SP dosages from 4 to 12
kg with different amounts of fly ash from 50 to 150
kg at 28-days.

The increase in the FA and superplasticizer was
observed to have led to the reduction of the
SCC strength at 28-days. For a given flowabil-
ity, the superplasticizer has the ability to enhance
strength by reducingmixedwater or lowering both
water and cement content to reach the desired
flowability and strength (Aïtcin, 1995). Mean-
while, the production of self-compacting concrete
using only Portland cement allows the fly ash to
lower the amount of the superplasticizer required
to achieve equivalent strength (Naik et al., 2012).
It is important to note that the superplasticizer
with cement and with fly ash does not have the
same work mechanism. This is the reason an in-
crease in the superplasticizer content based on
total cementitious binder negatively affected the
strength but a minor difference was noted with a
change in the fly ash content.

The situation was different with silica fume as in-
dicated in Figure 13 where the 28-day compressive

Figure 13. Effect of SP with silica fume
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Table 8. Parameters for spreadsheet calculation

Parameters Description

p1 Input matrix (9x1)
LW1,1 Weight matrix between input and hidden layer (25x9)
b1 Bias matrix of the hidden layer (25x1)
xp1 Normalization of input values (9x1)
a1 Tansig function values (matrix) of n1 (25x1)
LW2,1 Weight matrix between hidden and output layer (1x25)
b2 Bias matrix of the output layer (1x1)
y Output matrix (1x1)

strength changes at different SP dosages from 4 to
12 kg for various silica fume concentrations. This
is due to the fact that silica fume, as the finest
material, generally demands more water (Levy,
2012). This means increasing the superplasticizer
content has the ability to improve the situation
when there is low water content, specifically when
a higher amount of silica fume was used in the
matrix. However, an increase in the concentra-
tion beyond an optimum level can have a negative
influence on the 28-day strength (Neville, 2011)
due to the addition of more water to the concrete.
An increased amount of superplasticizer leads to
bleeding and segregation with a subsequent ef-
fect on the cohesiveness and homogeneity of the
SCC, thereby leading to a decrease in its strength
(Aicha, 2020).

3.2 Practical implication

Practical engineers and users require tools or pro-
grams to predict the strength of concrete rather
than just an ANN architecture. This can be
achieved through the design and production of a
ready-made tool for the calculation.

It is possible to develop a spreadsheet program us-
ing the weights, biases, and other parameters ob-
tained from the trained network using the process
summarized in Figure 15 and the parameters de-
scribed in Table 8. The whole procedure is out-
lined as follows.
1. Normalize the input matrix (p1) value using

the following equation – For every input vari-
able,

xp1 = [(p1 − offset)xgain] + xmin (4)

Where, as listed in Table 9.

Table 9. Parameters for spreadsheet calculation

xoffset xgain xmin

0.3 13.33333333 -1
135 0.004123711 -1
0 0.004761905 -1
0 0.013333333 -1
657 0.003929273 -1
590 0.004878049 -1
0.585 0.151343171 -1
0 0.496277916 -1
7 0.011560694 -1

Figure 14. Spreadsheet for predicting SCC strength

2. Find the multiplication matrix value (n1) of
the normalized input matrix with LW1,1 and
add the multiplied value with b1 using Equa-
tion (5).

n1 =
(
xp1 × LW 1,1

)
+ b1 (5)

3. Calculate hyperbolic tangent sigmoid transfer
function’s (tansig) matrix value using Equa-
tion (6). For each value of n1.

a1 =

[
2

1 + exp (−2× n1)

]
− 1 (6)

4. Using Equation (7), calculate the multiplica-
tion matrix (n2) value of the tansig function
matrix and LW2,1 and add themultiplied value
with b2.

n2 =
(
a1 × LW 2,1

)
+ b2 (7)
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Figure 15. Network diagram

5. Finally, calculate the output value (y) by re-
versing the normalized value using Equation
(8).

y =

(
n2 − ymin

ygain

)
+ yoffset (8)

Where,

ymin = −1

ygain = 0.0224971878515186

yoffset = 17.7

(9)

4 CONCLUSION

The main goal of the paper was to develop an op-
timum BPNNmodel and to develop a procedure to
create a tool or program for practical uses. Follow-
ing the goal, a network architecture is developed
which can reliably predict the strength of SCC. The
proposed neural network architecture can make a
reliable prediction as the trainednetwork obtained
very low RMSE (2.4503) and MAPE (0.0347) val-
ues. Also, the higher R2 (0.9835) value is obtained,
making the predicted values very similar to ac-
tual values. The developed network can also as-
sess the sensitivity or influence of individual pa-
rameters using parametric analysis. The impact of
individual parameters on the compressive of SCC
was significant. The sensitivity result agrees with
the previously published studies. An approach to
creating a spreadsheet program for practical users
is proposed. Moreover, the proposed procedures
of creating a spreadsheet program can be used by
field engineers and users directly, which would be
very handy and fast to predict the strength of self-
compacting concrete. Although the model predic-

tion is limited to its boundary limits (ranges of in-
put parameters), it can be easily retrained with a
broader scope by utilizing the proposed optimum
neural network model.
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