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ABSTRACT The 2D shallow water equations are a common tool for the simulation of free surface fluid dynamics in civil engineering.
However, the nonlinear structures of the equations’ straightforward implementations lead to numerical problems, such as spurious
oscillations and unphysical diffusion. Therefore, this research compared several strategies to overcome these problems, using various
finite element formulations and combinations of stabilization methods and mesh options. The accuracy and performance of numerous
approaches are examined on models of dam-break in one and two space dimensions. The analytical solution checks the numerical,
derived shock wave heights and velocities for the 1D classical benchmark. The result showed that streamlined diffusion and shock
capturing stabilization deal with the classical problems of spurious oscillations and numerical diffusion but still indicate similar problems
locally in the vicinity of steep fronts and shock waves when used on fixed meshes. As adaptive meshing is the most promising method
to deal with such situations, several concerned options are examined in detail. It is important to fine-tune the method to the model’s
needs, i.e. to adapt the maximum number of mesh refinements, the indicator functions, and the starting mesh. The use of adaptive
meshing techniques leads to accurate solutions for the usual parameter range in 1D and 2D, requiring less computational resources than
simulations on fixed meshes. Meanwhile, meshing reduces the model size of the 2D dam-break model adaptive by almost one order of
magnitude and the execution time by a factor of 20.
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1 INTRODUCTION
The shallow water equations (SWE), also known
as Saint-Venant equations, are fundamental for
modeling fluid flow in shallow open fluid systems.
The SWE has been applied for a wide field of ap-
plications, such as open channels (Chaudhry et al.,
2008), floods (Bermúdez et al., 1991), coastal cur-
rents (Brocchini and Dodd, 2008), tsunamis (Liu
et al., 2009; Takase et al., 2011) and estuaries (Li
and O’Donnell, 1997).

The major reason for its application is that the di-
mensionality is reduced from three to two or one.
In the real world, hydraulics could be described by
the 3DNavier-Stokes equations. Formost applica-
tions, which include turbulence, these equations
have to be extended to deal with the complexity
of fluid flow. Even for simple geometrical set-ups,
the general equations require large computational
resources, storage, and execution time. Therefore,

from the viewpoint of the modeler, the reduction
of the dimensionality is a crucial step. The SWE
can be written as follows:

∂η

∂t
+∇ · (Hu) = 0 (1)

∂u

∂t
+ (u · ∇)u+ g∇H = 0 (2)

with total water depth, water height above refer-
ence height, velocity vector, and acceleration due
to gravity denoted byH, η, u, and g (Takase et al.,
2011). The equations are derived from the vol-
ume and momentum conservation principles for-
mulated on depth-averaged variables. The deriva-
tion is based on several assumptions, such as fluid
incompressibility, hydrostatic pressure distribu-
tion in the vertical direction, depth-averaged val-
ues for all properties and variables, small bottom
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slopes, and no density effects from variable fluid
density or viscosity. Furthermore, the eddy vis-
cosity is much larger than the molecular, and the
atmospheric pressure gradient can be ignored.

Generally, the solution of the nonlinear SWEs
(1) and (2) may suffer from severe instabilities
because straightforward modeling without stabi-
lization, using finite differences or finite element
techniques, leads to spurious oscillations. This led
to the proposal of various stabilization schemes,
such as the introduction of an artificial viscosity,
which appears in an additional term on the left
side of equation (Chen et al., 2013).

∂u

∂t
+ (u · ∇)u+ g∇HZ − v∇2u = 0 (3)

where artificial viscosity is denoted by v. This
equation is determined in analogy with stabiliza-
tion methods for the advection-diffusion process,
where similar numerical problems arise simulat-
ing almost sharp chemical and thermal fronts. The
artificial viscosity method prevents oscillatory er-
rors but introduces a numerical diffusion, which
is not presented in the original equations and real
systems. The originally proposed method was in-
consistent with a grid-dependent artificial viscos-
itymodified using finite volumes byGinting (2017)
to obtain second-order accuracy.

There is a vast literature on consistent stabiliza-
tion methods for finite elements, differences, and
volumes approaches, which all have advantages,
disadvantages, and limitations. The stream-
line diffusion method (Donea and Huerta, 2003),
also termed ‘Streamline Upwind Petrov Galerkin’
(SUPD) (Hughes, 1979), is popular in general finite
element discretization. It modifies the diffusivity
and effectively smoothens the solution while in-
creasing errors near the sharp fronts.

Therefore, combining streamlined diffusion with
spurious oscillations is convenient for correct-
ing errors near the front using diminishing lay-
ers (SOLD) methods, such as shock-capturing dif-
fusion (Augustin et al., 2011). According to John
and Knobloch (2007), the combination of SUPG
and SOLD is consistent. The following formulas
describe the weak formulation for the 1D case.∫

H(Ht + uHx +Hux) + δstream

∫
τSUPG

(−uHHx)(Ht + uHx +Hux) (4)

∫
u(ut + uux + g(Hx − dx) + vuxux) + δstream∫

τSUPG(−uux+gHx)(ut+uux+g(Hx−dx)−vuxx)

(5)

H̃ and ũ denote the test functions for water height
and velocity. δstream serves as a switch to include
or dismiss streamlined diffusion and τSUPG is a
tuning parameter. The formulation for two veloc-
ity components for the 2D case has to be specified
analogously.

However, there are still problems with the tran-
sition of sharp fronts independent of the stabi-
lization method. This is because the general step
function cannot be represented by solutions that
are only defined in a discrete space. When the
front is located between mesh points, the numeri-
cal solution cannot match the analytical solution.
Such an error cannot be reduced by a better repre-
sentation of physical processes but only by mesh
refinement.

Solutions are therefore needed with inconsistent
and consistent stabilization by analyzing the fi-
nite element functions of a different order. This
study demonstrates that local or global mesh re-
finement effectively provides solutions to practi-
cal problems that are too large to handle. Adap-
tive meshing is the method that yields the high-
est accuracy in relation to the use of computer re-
sources.

2 METHODS

The various approaches are examined for 1D and
2D dam-break scenarios, which are convenient
test problems for the SWE. The use of dam-break
models for benchmarking software for the solu-
tion of the SWE equations dates back to ancient
times (Biscarini et al., 2010; Erpicum et al., 2010;
Baghlani, 2011; Peng, 2012; Duran, 2015; Ginting,
2017; Buttinger-Kreuzhuber et al., 2019; Vichi-
antong et al., 2019; Putri et al., 2020). A rough
examination of the literature reveals that several
set-ups of dam-break models have been used for
benchmarking with differences in dimension in
the conceptual model and values.

The dam-break models used for benchmarking are
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Figure 1. Dam-break initial state in 1D

based on a highly simplified concept that excludes
the appearance of the breaking wall in a simple
setting. The simulation starts at time t=0 with
the steep step of the water table at the interface
between the reservoir and the backwater region.
Based on the highly idealized step situation, the
SWE simulates the development of the water ta-
ble for t>0. The simple set-up includes two water
heights, including one higher value for the reser-
voir (h1) and a lower (h0) for the backwater. In a
1D model, the interface between the reservoir and
backwater is at the position x0, where the dam and
the initial water table jump are located as shown in
Figure 1.

The existence of an analytical solution, first de-
rived by Stoker in 1957 using the characteristics
method, makes the dam-break problem attractive.
It consists mainly of two waves of a different kind,
namely a simple wave moving into the reservoir
and a shock wave in the backwater region. The
sketch in Figure 2 shows the characteristic shape
of the water table at a time instant.

The water depth of the shock wave h2 can be cal-
culated as a function of the initial heights h1 and
h0, as shown in Equation 4 (Wu et al., 1999).

Y 2− 9Y 2+16X1/2Y 1/2− (1+8X)Y +1 = 0 (6)

wherebyX = h0/h1 and Y = h2/h1

Note that equation differs from the formula given
by Wu et al. (1999) but delivers the same solutions
ifX and Y are taken asX = h0/h1 and Y = h2/h1.
The nonlinear equations are solved numerically to
compute the celerity of the shock wave in a second
step. The water table in the simple wave region is
given by the quadratic function in equation:

h(x, t) = (2c1 − (x− x0)/t)62/9g (7)

Figure 2. 1D Dam-break, analytical solution

In 2D, the dam-break models used for benchmark-
ing differ in the geometry of the model regions
and the initial conditions. A quadratic model re-
gion with a 200 m side length and 75 m long par-
tial break of a straight dam was used in several
benchmark studies (Biscarini et al., 2010; Bagh-
lani, 2011; Vosoughifar et al., 2013; Jalalpour and
Tabandeh, 2014). Pilotti et al. (2010) focused on
the appearance of the reservoir waves after a par-
tial break of a straight dam in several other ge-
ometries. Erpicum et al. (2010) constructed L-
shaped model regions while conducting a dam-
break study.

The radial dam-break model is simpler due to an
unrealistic circular dam, which surrounds the ori-
gin of the coordinate system. The mathematical
analysis can reduce this problem to 1D using a
cylindrical coordinate system. Despite the unre-
alistic features, a convenient test case for the nu-
merical models in 2D was used to quantify errors
induced by meshes in Cartesian coordinates (Er-
picum et al., 2010; Baghlani, 2011; Remacle et al.,
2006; Pilotti et al., 2010; Jalalpour and Tabandeh,
2014).

In the sequel, one 1D and two 2D models were ex-
amined. The interval xϵ[0, 1], and x0 = 0.5 were
chosen as the region and position of the dam in the
1D model with a physical unit and model region
extension of 1 m. The models can be conceived
as valid for other physical dimensions if all length
values are non-dimensionalized by their length as
a reference value. Furthermore, when not men-
tioned otherwise, the reference models in 1D and
2D have a flood height and backwater height of
1(h1 = 2, h0 = 1) at a time interval of 0.1 s. As the
set-up becomes more challenging if the backwa-
ter height is small, the errors in a parameter study
are explored with amodified ratio h0/h1. In the 2D
set-up, the unit square is chosen as the model re-
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Figure 3. Comparison of numerical and analytical results
for shock wave heights and velocities for (1) fixed initial
step height and varying backwater depth and for (2) fixed
backwater depth and varying initial step height

gion, and locate the interface at the circle around
the origin of radius r = 0.5. This makes the dam
geometry a quarter of a circle.

The 1D reference model in the numerical solution
has 100 linear elements and a regular mesh size of
0.01. In the refined 1D model, 400 elements and
a mesh size of 0.0025 were used, while in the 2D
model, it was 0.02, which correspondents to 2500
linear rectangular elements (mapped mesh). The
refined 2D model has a mesh size of 0.01, corre-
sponding with 10000 rectangular elements, while
the double refined mesh consists of 40000 ele-
ments. Furthermore, adaptive meshing was uti-
lized for triangular meshes.

These simulations deal with a time interval in
which the waves do not reach the boundaries be-
cause when it does, additional numerical errors
are expected. The additional errors depend on
the type of condition, which is dissimilar to the
wall boundary conditions used in all model runs
in this study. All simulations were run us COM-
SOL Multiphysics (2021), a software operated us-
ing pre-defined physics modes and by specifying
the partial differential equations in a finite ele-
ment formulation (pde mode). The software is ap-
plied in many application fields, mostly in engi-
neering. The model for the SWE was set-up using
the weak formulation in the pde mode. Only the
most recent version of COMSOL contains a pre-
definedmode for the shallow water equations that
were not used in this study.

Figure 4. Relative error of numerical result for shock
wave heights and velocities for small ratios of backwater
depth/reservoir depth

Figure 5. Height output of the 1D dam-break model at
three different time instants: (a) no stabilization, (b) com-
parison of consistent (color with markers) and inconsis-
tent (gray) stabilization, (b) comparison of results using lin-
ear (color with markers) or quadratic (gray) elements

3 RESULT

3.1 1D Dam-Break

The dam-break model was simulated with vari-
ous values for initial step height h1 and backwa-
ter depth h0 at reference values of 1 m, using the
refined mesh model (400 elements) with consis-
tent stabilization. Figure 3 shows the shock wave
height and velocity results in dependence of h0
and h1. Both plots show two graphs for constant
h1 and h0, which changed between 0.05 and 1 m,
as noted on the x-axes.

Both plots depict the numerical results compared
with the analytical solutions, with the latter ob-
tained using Equations 5 and 6. These variations
are not problems for the numerical solver to pro-
duce the correct values of the analytical solutions.
A closer look shows deviances for low ratios h0/h1.

The model was run with lower ratios to further ex-
plore the numerical method’s limitations. Figure
4 depicts the relative errors for depth ratios down
to 0.01 and shows that the error increases strongly
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when the ratio h0/h1 is lower than 0.05. At that
threshold, the relative error lies at approximately
1% and increases to more than 5% and 8% for the
shock wave velocity and height when the ratio de-
creases to 0.01. Low backwater depths represent a
challenge for the numerical approach.

In the sequel, the front development is presented
in plots of water height at different time in-
stances. Figure 5 depicts simulated water tables
obtained using different numerical approaches,
demonstrating some previouslymentioned known
issues. The upper plot illustrates the problem of
oscillations appearing without applying stabiliza-
tion to produce an unacceptable solution. The
middle plot compares the results ofmodel runs us-
ing consistent and inconsistent stabilization. The
grey graphs depict solutions obtained using an ar-
tificial viscosity, while the colored graphs are de-
termined by combining streamlined diffusion and
shock-capturing stabilization. The inconsistent
stabilization results in a numerical diffusion that
smoothens all gradients. This numerical method
makes sharp slopes less steep, which is also unac-
ceptable.

The bottom plot of Figure 5 illustrates the effect of
using different element orders, whereby the grey
and colored graphs result from using linear and
quadratic elements. The figure indicates that the
quadratic elements better resolve the steep front
because the spatial resolution of the numerical ap-
proach is finer than those of linear elements. How-
ever, a more detailed analysis reveals that at the
front quadratic elements are more prone to oscil-
lations and instabilities than their linear counter-
part. Therefore, linear elements are preferable be-
cause a better suppression of numerical diffusion
is paid for by a higher number of degrees of free-
dom (DOFs).

Figure 6 demonstrates the effect of different
meshing strategies at two selected time instants
to produce four model outcomes. These include
(a) coarse reference mesh, (b) refined equidistant
mesh, (c) adaptive meshing with default settings,
and (d) fine-tuned adaptive meshing. The refer-
ence model has 202 DOFs, in comparison to 402
DOFs of the refined model, at execution times of 9
and 19 s, respectively.

A comparison of the results on the two equidistant
meshes, (a) and (b), shows that the finer mesh suf-

Figure 6. Height output for the 1D dam-break model; de-
tailed view near the shock wave front at times t=0.09 and
0.1, detailed view of shock wave front: (a=grey) reference
mesh, (b=black) refined mesh, (c=blue) adaptive meshing,
(d=red) fine-tuned adaptive meshing

fers less from numerical diffusion, while the sharp
front is better resolved. However, mesh refine-
ment seems to have almost no effect concerning
over- and undershooting errors in the backwater
and along the shock wave. This is because the am-
plitude of the oscillations is almost the same.

Additional runs were performed using the adap-
tive mesh refinement process to explore the role
of mesh refinement in more detail. The results
were reported using default settings (c) and run
with adjusted, fine-tuned parameters (d). The el-
ement growth rate was increased from 1.7 to 3,
with a rise in the maximum number of mesh re-
finements from2 to 6. The adaptivemesh runs had
DOFs mean values of 346 and 705, with execution
times of 2:12 and 7:29 (min:s).

The spatial resolution plays the most important
role, whilemesh refinement reduces thenumerical
diffusion to reproduce the sharp front movement.
Results obtained with adaptive meshes show the
least numerical diffusion, suppressing oscillations
with an increase in element growth rate andmaxi-
mummesh refinements. However, for better solu-
tions, the number of DOFs needs to be increased
for higher storage and execution time require-
ments. The costs and benefits of adaptive mesh
refinement are explored in detail for the 2D dam-
break benchmark.

3.2 2D Dam-Break

This section thoroughly examines the 2D dam-
break models with a quarter circular dam. Figure
7a shows the initial state and the wave propaga-
tion following the break event on the right. The
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(a)

(b)

Figure 7. Front propagation after 2D dam-break; (a) initial,
(b) at time t=0.1 s

major observed phenomena are very similar to the
1D case, with the presence of a wave that moves
into the reservoir, where the water table is low.
This corresponds with the simple wave region of
the 1D casewith the penetration of a shockwave in
the opposite direction into the backwater region.
In contrast to the 1D analytical solution, the shock
is not a pure step function. The transition from
the simple wave to the shock wave region appears
quite abrupt.

The 2D solutions along the two diagonals of the
square model region were analyzed to determine
the error along themain diagonal of the longitudi-
nal wave movement. However, the results are un-
acceptable when themodel is run without stabiliz-
ing spurious oscillations in the 1D benchmark.

Figure 8a demonstrates that numerical diffusion
induced by inconsistency is more pronounced in
the 2D case than in the 1D simulation. Here the
results with the artificial viscosity approach are
compared to the streamlined diffusion and shock-
capturing stabilization.

(a)

(b)

Figure 8. Front propagation after dam-break (2D) along
the main diagonal at three selected time instances: (a)
comparison of solutions obtained with consistent and in-
consistent stabilization, (b) comparison of results with
consistent stabilization (dash-dotted)with two further grid
refinements (gray and black)

The consistent stabilization technique in Figure
8b shows the effect of mesh refinements on the
front development in the longitudinal direction.
The reference mesh was refined twice using a grid
spacing of 0.01 and 0.005m to produce steepening
fronts, which are effective on the left side at the
transition between simple wave and shock regime.
The higher accuracy, the more expensive the price
of computer resources. The reference mesh has
7803 DOF, and the simulation took 43s execution
time, which indicates that the refinedmodel needs
30603 DOF and 10:23 min execution time. The
double refined mesh has 121203 DOF and needed
1 h 23:41 min for execution. This indicates that
the execution time increases by 14 due to the first
mesh refinement and 8 in the second refinement.

The differences between the solutions and the er-
rors become more obvious when plotted on a cut
line along the transverse diagonal of themodel re-
gion. The results obtained are compared to deter-
mine the inconsistency and consistency of the sta-
bilization, as shown in Figure 9a.

The middle plot shows that the effect of mesh re-
finement is better than in Figure 8. The output
of the first refinement (gray) does not make much
difference, while the second steepened the fronts
substantially. A big jump in accuracy can be ob-
served between the first and second mesh refine-
ment, which comes at extra costs, as outlined in
Figure 9. Severalmodel runs aimed at reducing the
computational costs using adaptive meshing were
also documented.
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(a)

(b)

(c)

Figure 9. Front propagation after dam-break (2D) along
transverse diagonal at three selected time instances: (a)
comparison of inconsistent (gray) and consistent (black)
stabilization; (b) consistent stabilization for reference
(dashed), refined (gray) and double refined mesh (black),
(c) comparison of consistent stabilization for double re-
fined (gray) and adaptive mesh (black) (initial mesh spac-
ing = 0.02, maximum refinements 3, sample points 11, er-
ror indicator based on Equations 8)

The elements are modified locally from the initial
coarsemesh depending on the current solution. In
unsteady models, mesh refinement is also com-
bined with a decrease in time-step. Several op-
tions control adaptive meshing, such as the size of
the initial coarse mesh. There are different ways
to refine an element geometrically, including the
provision of an element growth rate to control the
coarsening of the mesh. Also, maximum refine-
ments are required to prevent the model from be-
coming too large and reduce the execution time.

The criterion of which elements have to be refined
is based on a local error estimate, whose func-
tions are determined by the user. It is usually
based on the change of the dependent variables,
such as H, u, and v. Although the variable can
be used, it is better to utilize derivatives as error
indicator functions (Chellamuthu and Ida, 1995;
Grätsch and Bathe, 2005). Two indicator functions
are used based on the heightH, as shown in 7 and
8:

θ =

√
(
∂H

∂x
)2 + (

∂H

∂y
)2 (8)

The other is based on the velocities u and v and
thus reads (Garcia and Popiolek, 2014):

θ =

√
(
∂u

∂x
)2 + (

∂u

∂y
)2 +

∂v

∂x
)2 + (

∂v

∂y
)2 (9)

The user also specifies the number of sample
points on which the error is estimated, as well as
the options for the combination of different vari-
ables for the local error estimation.

Figure 10 shows the typical sequence of meshes
taken during a run with adaptive meshes. Only
one segment with a refined mesh can be identified
when the two waves are close in the initial phase.
Therefore, with the movement of both fronts, two
segments arise, separated by a zone with coarser
elements.

The bottom plot of Figure 9 compares the results
using the double refinedmeshwith those obtained
by the adaptive type, which was run with an ini-
tial spacing, maximum refinement, sample points,
and error indicators of 0.02, 3 and based on Equa-
tions 8. There are no visible deviances on the front
flanks, but the center contains an adaptive mesh
solution, which is better than the fixed mesh re-
sult, showing some unphysical oscillations.

Table 1 provides the list of model runs with adap-
tive meshing, which lists the parameters of the
grid adjustment in the first four columns. The
6th column represents the mean model size of 10
meshes produced during the simulation in addi-
tion to a measure of the model size of degrees of
freedom (DOFs). The execution time on a common
computer with 2.2 GHz processor is given in the
7th column, while the last measures the error. The
calculation error due to the unavailability of the
analytical solution for the 2D problem was based
on the use of a numerical solution. Therefore, the
L2-Norm was used to calculate the difference be-
tween the numerical solutions in question, which
is the one for the double refinedmesh. It turns out
that
a) the number of sampling points is ofminor im-

portance: for coarser meshes, there are no in-
fluences (4 5), while for finer meshes (runs
14 15), a higher number of starting points in-
creases the accuracy and reduces the run time.

b) the error indicator should be based on the
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Table 1. List of selected adaptive mesh runs for the 2D dam-break model

No Initial
Mesh
spacing)

Max.
refine-
ments

No.
sample
points

Error indicator* based on Mean DOF Execution
time
(min:sec)

Error

1 0.4 3 3 H,H2
x +H2

y 3110 054 3.80e-4
2 0.4 2 11 H,H2

x +H2
y 3081 0:53 3.78e-4

3 0.4 2 11 u+ v 3659 0:55 4.01e-4
4 0.4 2 11 u2

x + u2
y, v

2
x + v2y 3674 0:55 3.01e-4

5 0.4 2 3 u2
x + u2

y, v
2
x + v2y 3657 0:50 3.00e-4

6 0.4 3 3 u2
x + u2

y, v
2
x + v2y 4049 0:58 2.94e-4

7 0.4 2 11 u2
x + u2

y, v
2
x + v2y,H

2
x +H2

y 3661 0:55 3.00e-4
8 0.4 4 11 u2

x + uy2, v2x + v2y 4052 1:03 2.84e-4
9 0.2 3 3 H,H2

x +H2
y 11924 3:30 2.74e-4

10 0.2 2 11 H 10967 2:00 2.72e-4
11 0.2 2 11 H,H2

x +H2
y 11811 3:33 2.59e-4

12 0.2 2 11 u+ v 14077 2:38 2.14e-4
13 0.2 2 11 u2

x + u2
y, v

2
x + v2y,H

2
x +H2

y 13705 4:30 2.00e-4
14 0.2 2 3 u2

x + u2
y, v

2
x + v2y 13883 4:07 1.86e-4

15 0.2 2 11 u2
x + u2

y, v
2
x + v2y 13696 3:50 1.55e-4

16 0.2 3 11 u2
x + u2

y, v
2
x + v2y 15682 4:20 2.51e-5

*Abbreviations: Ux = ∂u/∂x, Uy = ∂u/∂y, vx = ∂v/∂x, vy = ∂v/∂y,Hx = ∂H/∂x,Hy = ∂H/∂y (see Equations 7 &
8)

Figure 10. Development of adaptive mesh, example

derivatives, to increase the accuracy of the re-
sults by comparing run 3 with 4, and 12 with
15.

c) the best error indicator is based on the deriva-
tives of the velocity components

d) increase of the maximum number of refine-
ments by comparing runs 15 and 16, which
may lead to a significant improvement in ac-
curacy. However, such an improvement is not
guaranteed, as indicated by comparing runs 5
and 6.

e) it is important to have an initial mesh of ap-
propriate refinement, as shown by comparing
runs 5 and 15, as well as 6 and 16.

The improvement due to the tuning exercise, doc-

umented in Table 1, indicates that the coarsemesh
results in the upper part of the list consist of a
mesh, which was increased by a factor of 4. Fur-
thermore, the execution time increases by the
roughly same factor, although the gain in accuracy
was by more than one order of magnitude.

The comparison of the finest mesh adjustment
with double refined mesh solution shows that
mesh refinement reduces the DOF by almost a fac-
tor of 8. In terms of execution time, the effect
of adaptive meshing is more striking because the
variable mesh run finished in only a 20th of the
time of the fixed mesh run.
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4 DISCUSSION AND CONCLUSSION

Numerical simulations of the SWEs are likely to
become inaccurate when the solution shows steep
fronts and shockwaves. The behavior of themodel
implementations under these circumstances is
easily studied using 1D and 2D models of dam
break.

The results confirmed that straightforward imple-
mentations and inconsistent stabilization lead to
disturbed solutions and are unacceptable. Several
stabilization methods, like streamlined diffusion
and shock capturing, can be used to deal with the
problems of oscillations and numerical diffusion.

However, implementations with fixed mesh are
unable to generally cope with the positioning of
sharp fronts or shock waves. This is because the
advancement of a shock wave cannot be resolved
in a numerical approach based on a fixed mesh.
The height at the front will turn into a gradient,
which can be conceived as an effect of numerical
diffusion accompanied by spurious oscillations at
the front position. For such situations, the accu-
racy can only be improved by refined meshing.

Global mesh refinement is involved high costs on
computer resources, such as storage and execution
time, which means it has to be performed locally.
The use of 2D makes it easy for the computer stor-
age and execution time to be achieved. The pro-
cess of moving fronts mesh refinement can only
be obtained through adaptive meshing, which is
a convenient technique because it remains within
appropriate limits.

Adaptive meshing was examined using a 2D dam
breakmodel, and the simulations demonstrate the
importance of fine-tuning the method to suit the
model’s needs. The importance of turning is that
it determines the maximum number of mesh re-
finements, the indicator functions, and the start-
ing mesh. It also reduced the adaptive meshing
model size and execution time by 8 and 20 com-
pared to the fixed globally refined mesh.

Adaptive meshing is an economical and efficient
technique used to obtain accurate solutions to
problems containing shock waves. The dam-break
applications showed an increase in errors with
small backwater heights using the numerical ap-
proach, making it difficult to deal withwetting and

drying sub-regions. Relative to the vast literature
on stabilization methods, adaptive meshing as a
topic does not seem to have attracted the atten-
tion it deserves.
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