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Abstract: Alzheimer’s Disease (AD) is a leading cause of dementia, characterized by progressive cognitive
decline driven in part by amyloid-3 (Ap) accumulation. The (3-site amyloid precursor protein cleaving enzyme
1 (BACE-1) is responsible for initiating Af generation, making it a central therapeutic target. Yet, developing
effective BACE-1 inhibitors has proven difficult due to structural complexity and pharmacological limitation.
This study aimed to construct and validate a structure-based virtual screening (SBVS) workflow combining
Vina and PyPLIF HIPPOS to facilitate the identification of promising BACE-1 ligands. The protocol was
validated through 100 independent redocking experiments of the native ligand (PDB ID: 3L5F), all reproducing
the crystallographic pose with RMSD < 2.0 A. Large-scale screening of the DUDE dataset (283 active ligands;
18,100 decoys) generated interaction fingerprint, which were subsequently analyzed using Recursive
Partitioning and Regression Trees (RPART) under varying prior probabilities. At the optimal prior ratio of
0.82:0.18, the model achieved an enrichment factor (EF) of 10.03, surpassing the DUDE benchmark (EF = 8.1).
analysis consistently highlighted ionic interactions with Asp289 and hydrophobic contacts with Trp137 as key
determinants of ligand activity. From 283 active ligands, 32 were classified as true positives, narrowing the
pool of candidates and interpretable SBVS protocol and proposing a dual anchoring strategy involving Asp289
and Trp137 as a rational design principle for novel BACE-1 inhibitors in AD therapy.
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1. INTRODUCTION

Alzheimer’s Disease (AD) is a chronic neurodegenerative disorder that progresses gradually and
irreversibly, making it the most prevalent cause of dementia in older adults [1]. Patients with AD
typically experience progressive deterioration of memory, reasoning and other cognitive domains,
which eventually disrupts daily life [2-3]. Globally, the incidence of dementia continues to increase,
with epidemiological reports estimating that a new case arises every three seconds [3]. In 2019, the
number of individuals living with AD reached approximately 55 million, and this figure is projected
to escalate around 139 million by 2050 [2-4].

A central hallmark of AD is the deposition of amyloid-$ (A{) plaques in brain tissue [5]. The
production of AP begins with cleavage of the amyloid precursor protein (APP) by (-site cleaving
enzyme 1 (BACE-1) [6]. Because this enzymatic step triggers the amyloidogenic pathway, BACE-1
has been widely investigated as a therapeutic target [5,7]. Despite extensive efforts, however,
developing inhibitors that combine potency, selectivity and favorable pharmacokinetics remain a
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formidable challenge [8]. Traditional drug discovery approaches are limited by high costs, lengthy
development cycles and low success rates, creating demand for more efficient alternatives [9-11].

Structure-based virtual screening (SBVS) [10,12] provides a computational route for exploring
large chemical libraries against the three-dimensional (3D) structure of target proteins [12]. By
integrating molecular docking with scoring functions, SBVS helps identify molecules likely to bind
with high affinity [10]. Recent advances further enhance this process by incorporating artificial
intelligence approaches such as machine learning and deep learning [13].

Among widely used docking platform, Vina [14] is notable for its balance of speed, open
accessibility and reasonable accuracy [15]. Its scoring function estimates the affinity of candidate
ligands, thereby assisting researchers in prioritizing molecules for further investigation. This ease of
use, open-source availability and speed make Vina a go-to choice for drug discovery and academic
research around the world [14-15].

However, docking scores alone are insufficient for fully understanding ligand-protein
recognition. PyPLIF HIPPOS [16] complements docking by generating ligand-protein interaction
fingerprints, which encode residue-level contacts into digital representations for comparison or
integration into classification models [16-18]. PyPLIF HIPPOS builds upon its predecessor, PyPLIF,
but it is noticeably faster, more flexible and better suited to modern docking software like Vina,
making it highly useful for SBVS projects [13].

The reliability of any SBVS workflow requires retrospective validation. The Directory of Useful
Decoys Enhanced (DUDE) dataset is frequently used for this purpose, as it provides matched sets of
active and inactive molecules with similar physicochemical profiles [19]. In this study, Vina and
PyPLIF HIPPOS were combined to construct an SBVS workflow targeting BACE-1. Interaction
fingerprints were subsequently analyzed using Recursive Partitioning and Regression Trees
(RPART) [20], and model performance was assessed with enrichment factor (EF), Fl-score and
balanced accuracy (BA) [21]. The goal was to establish a validated, reproducible and interpretable
computational pipeline that also offers insights to guide rational BACE-1 inhibitor design for AD
treatment.

2. MATERIALS AND METHODS

2.1. Materials
2.1.1. Equipment

The computational experiments were carried out on two main instruments: (i) PC-Client: an
Asus Vivo Book X415]JA laptop equipped with an Intel® CoreTM i3-1005G1 CPU (1.20 GHz), 12 GB
RAM, running both Windows 11 Home Single Language 64-bit and Ubuntu 24.04 LTS operating
systems. The main software employed in this machine included PyPLIF HIPPOS version 0.2.0, Vina
version 1.2.7, Yasara-Structure version 24.4.10, ADFR Suite version 1.0, R software version 4.3.3 with
the RPART package, and (ii) Cloud Protein Simulator (CPS): A Google Cloud Platform (Instance ID:
3272493868356570273) with 96 vCPU and 48 GB RAM with Ubuntu 24.04 LTS operating systems. The
main software employed in this machine included PyPLIF HIPPOS version 0.2.0 and Vina version
1.2.7. The CPS was provided by MOLMOD ID (https://molmod.id/; accessed August 12-26, 2025).

2.1.2. Datasets

The ligand dataset was obtained from DUDE repository (accessed on July 24, 2025) [19]. For
BACE-1 target, DUDE provides a curated collection of 283 active ligands along with 18.100 pre-
generated decoys. All active ligands included in DUDE have undergone internal curation involving
structure standardization, removal of duplicates, verification of valency and confirmation of
physicochemical consistency. Decoys in DUDE are automatically generated to match the
physicochemical properties of active ligands (such as molecular weight and number of rotatable
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bonds) while maintaining topological dissimilarity. No additional filtering criteria were applied in
this study beyond DUDE’s curation pipeline, and the ligand sets were used as provided. All ligands
were initially available in SMILES (.smi) format and were subsequently converted into 3D structures
using Yasara-Structure before preparation into pdbqt format for docking simulations.

2.1.3. DProtein Target

The crystallographic structure of human BACE-1 in complex with its native ligand (PDB ID:
3L5F) was retrieved from the RCSB Protein Data Bank (https://www.rcsb.org; accessed on March
15th, 2025). The main native ligand of the 3L5F complex is a compound that identified as (2E,5R)-5-
(2-cyclohexylethyl)-5-(cyclohexylmethyl)-2-imino-3-methylimidazolidin-4-one (BDX), which was
used as reference for molecular docking validation. The selection of PDB ID 3L5F was driven by
methodological consistency with the DUDE dataset and by the need for reliable receptor validation.
Although DUDE lists PDB ID 3L5D (native ligand BDV) as the reference structure for BACE-1,
preliminary redocking validation using 3L5D failed to reproduce the crystallographic pose, with all
100 redocking attempts yielding RMSD values above 2 A. Because accurate pose reproduction is
essential for ensuring a valid docking protocol, an alternative structure with the same residue
composition and binding-site arrangement was required. PDB ID 3L5F fulfills these criteria and
contains a closely related native ligand (BDX). Redocking of BDX into 3L5F successfully reproduced
the experimental binding pose in all 100 iterations, with RMSD values consistently below 2 A.
Therefore, 3L5F was selected as the protein target, as it aligns with DUDE’s structural framework
while ensuring valid docking reproducibility.

2.2. Methods
2.2.1. Target Preparation and Validation

Target preparation was carried out using Yasara-Structure, where monomer A from the crystal
complex was retained as the working model. Missing amino acid residues were reconstructed, water
molecules were eliminated, and the system was adjusted to pH 7.4 before energy minimization.
Finally, both the protein and its native ligand BDX were converted into pdbqt files through ADFR
Suite macros available in Yasara-Structure.

Validation of the docking setup was performed through 100 independent redocking runs of the
native ligand against the BACE-1 structure (PDB ID: 3L5F) using Vina 1.2.7 implemented in Yasara-
Structure. The resulting poses were exported in pdbqt format and their RMSD values obtained from
“rmsd_bestpose_all.txt”. The protocol was considered acceptable when over 95% of the redocked
conformations reproduced the crystallographic binding mode with RMSD values below 2.0 A [19].

2.2.2. Ligand Preparation

Ligand preparation followed a standardized protocol. The DUDE ligands were converted from
SMILES into 3D pdb format with Yasara-Structure macros, followed by energy minimization. They
were subsequently converted to pdbqt files using ADFR Suite tools to ensure compatibility with Vina.
As DUDE ligands had previously undergone internal filtering and structural validation, no further
manual screening was performed in this study. All ligands were used exactly as curated by the DUDE
repository.

2.2.3.  Molecular Docking Simulations

Docking simulations of both active ligands and decoys were performed using Vina 1.2.7 with a
protocol adapted from Istyastono (2024) [13] and further optimized specifically for the BACE-1
binding pocket. The grid box was centered on the crystallographic pose of the native ligand BDX in
the 3L5F structure, with coordinates set at x =-7.614, y = 6.039, and z = -5.641, and grid dimensions
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of 26.194 x 26.194 x 26.194 A to fully cover the catalytic dyad. In contrast to the 100 redocking
repetitions used solely for receptor validation, each ligand in the SBVS dataset (283 active ligands
and 18,100 decoys) underwent five independent docking runs to minimize stochastic variation
inherent to Vina. For each ligand, the best-scoring pose (lowest binding free energy) among the five
runs was selected for subsequent processing. All docking jobs were executed automatically using the
Cloud Protein Simulator (CPS) platform to ensure consistent parameterization and full
reproducibility across the dataset. The resulting docking poses were then analyzed using PyPLIF
HIPPQOS to generate interaction fingerprints for retrospective model development and validation.

2.2.4. Interaction Fingerprinting

Top-ranked docking poses obtained from Vina were analyzed with PyPLIF HIPPOS to identify
protein-ligand interactions. Each contact was mapped to BACE-1 residues and translated into binary
fingerprints vectors. The compiled interaction dataset, combining fingerprints with affinity values,
served as input for classification analysis.

2.2.5. C(lassification and Validation

Interaction fingerprints and binding affinities were used as predictors in a decision tree
classification model constructed with the RPART package in R version 4.3.3 [20]. Several prior
probability ratios were tested to optimize model performance [13,21]. The classification was
evaluated using three metrics: enrichment factor (EF) to measure early enrichment of active ligands
[19], F1-Score to balance precision and recall and balanced accuracy (BA) to account for dataset
imbalance. The decision tree model that yielded the highest EF was selected as the optimal

classification scheme.

3. RESULTS AND DISCUSSION
3.1. Results

The docking protocol against BACE-1 (PDB ID: 3L5F) was first validated through redocking
simulations of the native ligand BDX. Out of 100 independent trials, all reproduced the
crystallographic binding pose with RMSD values below 2.0 A, surpassing the comon validation
threshold of 95% reproducibility [14,22]. This outcome confirmed the robustness of the docking setup
and provided a reliable foundation for large-scale virtual screening.

Following validation, the DUDE dataset consisting of 283 actives and 18,100 decoys was
screened. Interaction profiles were subsequently analyzed using PyPLIF HIPPOS. Active ligands
displayed consistent molecular fingerprints, most notably ionic interactions with Asp289 and
hydrophobic contacts with Trp137 (Figure 1). The identification of Asp289 and Trp137 as key residues
was not derived from experimental mutagenesis data but emerged directly from the interaction
fingerprint analysis incorporated into the RPART decision-tree model. During classification, RPART
evaluates which interaction features represented as binary contact vectors for each residue, most
effectively separate active ligands from decoys. Across multiple splits, interactions involving Asp289
(ionic contacts) and Trp137 (hydrophobic contacts) consistently contributed to branches enriched
with active ligands, indicating that these residues carry strong discriminative power within the
dataset. Therefore, their importance in this study reflects the statistical learning process embedded
in RPART rather than prior experimental knowledge. These interactions were rarely observed among
decoys, suggesting their importance as structural determinants of activity (Table 1).



J.Food Pharm.Sci. 2025, 13(4), 460-469 464

Table 1. Key Residues, Interaction Types, and Potential Structural Motifs for Ligand Optimization

Residue Type of Interaction Potential Enhancing Moieties of Molecular Design
Asp289  Ionic as the anion Positively charged groups such as amines or guanidines
Trp137 Hydrophobic Aromatic fragments, hydrophobic ring systems

Notes: This table summarizes the amino acid residues that play a critical role in ligand binding, the type of
molecular interactions involved, and the potential molecular fragments that could enhance inhibitor design. The
results were derived from molecular interaction analysis based on docking simulations.

Figure 1. Visualization of the interaction of native ligand BDX in 3D

Notes: The color differences in this figure are used to distinguish the crystallographic pose from the redocked
pose and to visualize the surrounding binding-site residues. The native BDX ligand from the crystal structure is
shown using the default element-based coloring scheme (carbon = cyan, nitrogen = blue, oxygen = red), whereas
the redocked BDX pose is displayed in solid purple to clearly differentiate it from the original crystallographic
orientation. All amino-acid residues lining the binding pocket are rendered in solid green for uniformity and to
highlight the ligand-protein interface without introducing additional color complexity.

Importantly, from the initial pool of 283 active ligands, the workflow successfully prioritized 32
compounds as active hits. These ligands, detailed in Supplementary Material 1, represent a refined
subset with the most promising interaction profiles against BACE-1. By narrowing down the
chemical space, this dataset provides a valuable foundation for subsequent in vitro and in vivo
investigations. Moreover, these compounds offer strategic starting points for the rational design of
next-generation BACE-1 inhibitors.

Classification analysis with the RPART algorithm yielded optimal performance when the prior
probability ratio was set at 0.82:0.18. In the context of RPART classification, the prior probability ratio
represents the assumed baseline likelihood of a ligand belonging to each class before the model
evaluates the interaction features. Because the DUDE dataset for BACE-1 is highly imbalanced (283
active ligands vs. 18.100 decoys), assigning a prior of 0.82 for actives and 0.18 for decoys counteracts
the natural dominance of the decoy class. This adjustment forces the decision tree to give greater
weight to interaction patterns associated with actives, thereby improving sensitivity toward true
actives and preventing the model from being biased toward predicting the majority class [18]. Under
this condition, EF reached 10.03, exceeding the DUDE benchmark EF value of 8.1 [19]. At this optimal
setting, the model successfully identified 32 true positives (TP), while misclassifying 251 actives as
false negatives (FN), 17.896 decoys as true negatives (TN) and 204 as false positives (Table 3).
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Table 2. Performance Metrics of the Classification Model under Different Prior Ratios

Prior Data (Unit)
. F1-Score EF BA
Ratio TP FN TN FP
0.1:0.9 283 0 5.985 12.115 0.044634 1.494016 0.665331
0.2:0.8 279 4 7.631 10.469 0.050585 1.704477 0.703734
0.3:0.7 275 8 7.593 10.507 0.049706 1.673964 0.695617
0.4:0.6 231 52 11.725 6.375 0.067063 2.317522 0.732022
0.5:0.5 227 56 11.843 6.257 0.06709 2.320341 0.728215
0.6:0.4 179 104 14.501 3,599 0.088156 3.180997 0.716835
0.7:0.3 82 201 17.165 935 0.126154 5.609115 0.619048
0.8:0.2 76 207 17.489 611 0.156701 7.955446 0.617397
0.81:0.19 76 207 17.532 568 0.16397 8.557707 0.618585
0.82:0.18 32 251 17.896 204 0.123314 10.03256 0.550902

Notes: This table displays the performance of the classification model under different prior ratio settings,
indicated by the values of True Positive (TP), False Negative (FN), True Negative (TN), False Positive (FP), F1-
score, Enrichment Factor (EF), and Balanced Accuracy (BA). These results were used to determine the most
reliable prior ratio for predicting ligand activity toward the target protein. The best performance of the
classification model was marked with bold.
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Figure 2. The DUDE optimized decision tree for the SBVS protocol targeting BACE-1

The decision tree (Figure 2) placed the affinity cutoff at AG = -9.893 kcal/mol as the first split.
Node distributions were represented as active/decoy counts, such as 15,480/159 (decoy dominated),
2,299/88 (higher active proportion), 101/4 (almost exclusively decoys) and 204/32 (an enriched branch
of actives). The secondary splits of the decision tree involved interaction fingerprints such as V133 <
0.5 and V64 < 0.5, which indicated the absence of ligand contacts with critical residues. This
observation is consistent with the interaction analysis summarized in Table 1, where Asp289 and
Trp137 were identified as essential anchoring points for ligand recognition. In other words, when
these key contacts were missing, the classification model strongly favored a decoy outcome,
reinforcing the central role of ionic interactions with Asp289 and hydrophobic stabilization via
Trp137 in driving ligand activity.

3.2. Discussion

The validation step confirmed that the proposed docking protocol was technically sound, as
demonstrated by its consistent ability to reproduce the crystallographic pose of BDX with RMSD
values below 2.0 A [14,22]. Beyond validation, the improved EF compared to DUDE benchmark
indicates the superior performance of this protocol in prioritizing active compounds at early stages
of screening (Table 2) [19]. Such improvement is critical in practical applications, where reducing the
number of false leads can significantly lower experimental costs and accelerate drug discovery.

Analysis of the interaction fingerprints revealed key residues responsible for ligand recognition.
Among them, Asp289 consistently engaged in ionic contacts with basic groups such as amines,
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amidines and guanidinium, functioning as a principal electrostatic anchor [23]. Simultaneously,
Trp137 contributed hydrophobic stabilization, often through interactions with aromatic or
halogenated substituents (-F, -Cl, -CFs, -OCFs) (Table 1). These noncovalent forces are well established
as central to protein-ligand recognition [24]. Together, the Asp289-Trp137 dual anchoring motif
explained the preferential binding of active ligands compared to decoys. In this study, the
prominence of Asp289 and Trp137 arose from the retrospective learning behavior of the RPART
classifier. Each residue-ligand interaction detected by PyPLIF HIPPOS serves as an input feature to
the decision tree, which then selects the most informative features to split active ligands and decoy
populations. Asp289 and Trpl137 appeared repeatedly as high-information-gain features, meaning
that the presence of interactions with these residues statistically increased the probability of a ligand
belonging to the active class. This data-driven emergence highlights that the dual anchoring role of
Asp289 and Trpl37 is an outcome of model-based interpretation, rather than assumptions derived
from experimental mutagenesis studies [18].

From a screening perspective, the selection of 32 active hits out of 283 initial actives effectively
narrowed the chemical search space to a more manageable subset (Supplementary Material 1). These
compounds constitute promising candidates for further in vitro and in vivo studies, thereby
enhancing the efficiency of the drug discovery process. The RPART-based classification model,
particularly under the 0.82:0.18 prior probability, provided a clear and interpretable decision tree
capable of distinguishing actives from decoys (Table 2, Figure 2). Such interpretability is
advantageous for prospective applications, as it not only supports retrospective validation but also
highlights practical thresholds for ligand prioritization.

Supplementary Material 1. Active Hits of BACE-1 Obtained from the DUDE Dataset after Virtual Screening

No Active Ligand ID  Affinity (kcal/mol) Active Ligand in SMILES Format
C[C@@H](NC(=0)c2cc(COC(=0)C(C)(N)Cclcccce
1 HEMBL108254 -9.
CHEMBL1082548 989 1)cc(N(C)S(C)(=0)=0)c2)c3ccc(F)cc3
5 CHEMBL1092788 10,468 CN4C(N)=N[C@](clcc)nccziéCBcccc(c2cc(F)ccc2F)c3
C[C@@H](NC(=O)c3cc(N(C)S(C)(=0)=0O)cc(c2nee([
H L1 -10.354
3 CHEMBL1096683 035 C@](C)(N)Cclcceecl)o2)c3)cdcec(F)ecs
CC(=O)N[Ce@@H](Cclcc(F)cc(F)cl)[C@H](O)CNC
4 HEMBL1209222 -9.97
c 09 9:979 4(c3ccecc(N2CCCCC2=0)c3)CCCCC4
C[C@@H](NC(=0)c3cc(N(C)S(C)(=0)=0)cc(c2nnc(
HEMBL219601 -10.434
> c 960 043 [C@](C)(N)Cclcceecl)o2)c3)cdcec(F)ecs
CC(=0)cdccc(Oc3cec(c2scc(clececcc1Cl)c2CC(=0O)N
HEMBL 1 -10.1
6 CHEMBL23685 0.199 ~C(N)N)ec3)ccd
CN(C1CCCCCT)C(=0)c5ecec(CN4Cce3cc(Oc2cccec
7 CHEMBL244346 10.032 2)ccc3BN=CAN)C5
8 CHEMBL252189 10427 NC(=N)NC(=0)Cn2¢(clcccecl)ccc2cdcec(NC(=0)c
3ccec(Br)c3)ccd
CC(=0)cdccc(Oc3cec(c2ecc(clececec1Cln2CC(=0)N
HEMBL253237 -10.341
? c 5323 03 C(N)=N)cc3)cc4
Cconnc(CNC(\N)=N/C(=0)Cn2c(clcccecl)cec2C4
10 CHEMBL272766 -10.672 5CC3CC(CC(C3)CA)CE)06
C[C@@H](NC(=0)c2cc(N(C)S(C)(=0)=0)cc(C(=0)
11 HEMBL375217 -10.122
c 375 0 OCC(N)(CO)Cclcececl)c2)c3cec(F)ec3
12 CHEMBL392662 9963 COc3ccce(c2ecec(C1(C)CC(=O)N(C)C(N)=N1)c2)c

3
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O[Ce@H]([CeH]2C[C@@H](OCclcccccl)CN2)[C@

13 CHEMBL404682 -10.001 H](Cc3cc(F)ce(F)e3)NC(=0)[C@@H]5CN(Ccdcccod
)C(=0)C5
O[CeeH]([C@H](Cclcc(F)cc(F)c1)NC(=O)C3CN(
14  CHEMBL491659 -10.026 CC2CC2)C(=0)C3)[C@@H]5NCCN(Cc4cccecd)Ch=
(@)
5w oms CNSONCICC O
16  CHEMBL565790 11.391 COC4CCC(C3(Czccéj(ciicé;gggééNzc(N)N(C)C3=
17 CHEMBL565914 10576 NC4=NC(C1ccc(;ggi)l(\f()zlgécg\(s;cccc(chccncZF)c
18 CHEMBL566112 1059 NC4=NC(C1CCC(O?)C)(C]?;(zlj\)llgccclil)ig?acccc(c2ccch2F)C
19  CHEMBL566414 1037 CN5C(N)=NC(c2cccc(§éc5c=cgcl)cZ)(c4ccc3OCCc3€4
20 CHEMBLS566603 -10.447 ch(;;l(\i[zii@fg ((g;g%l;g;g()jc\lé[ (Sff\l(])(g\)rg?[c
4 2 1 1)c2)N= =
21  CHEMBL566638 11.132 COcdeee(C3(e C(C)C)Z(CZ (;CCC; é C)é c):15\] COON©O)C3
2 CHEMBL566968 10317 NC5=NC(c2cccc(cé g:gégéﬁé(gélcccBOCCOchll)
23 CHEMBL567430 1074 NC4=NC(C1CCC(O3)CC(§)=(§)£)CCéll\)I(ZS3CCCC(CZCCCHC2F)C
94 CHEMBL567477 10264 COC4CCC([C@@]3(c(2cc)c(c:(3F=)(c)()cClCc:énclF)CZ)N=C(N)N
25 CHEMBL568960 10988 NC4=NC(C1Cccé?gféiﬁgéggigccc(C2ccch2F)C
2%  CHEMBLS582045 -9.966 NC4=N[C@](c1 c)ccc3()OCC5(=I;\)I(£§é(;\CIZ)5(C3CCCC(C2cncncZ
27 CHEMBL582982 -10.247 COC4=C(F)C3CCE\(I§:21)(£§((§=(EL(F)F)CC1)(CZCH(C)C
28  CHEMBL583034 -10.155 Ccé;?;zjz[fc@ciggggi Zﬁ?féz@[ﬁi%?&g{c
29 CHEMBL583608 1016 NC5=NC(C2CCCC(C1:(;2(2?;25)6(C4CCCBOCOC3c4)C6
= 1 1 = 4
30 CHEMBL589891 -10.085 NE3=NC(C CCC&E (();)szé‘;céa) CEONSCCACC
I T v PN C ook (o v
3 CHEMBL598290 10159 CCc4cc([C@]3(c2ccee(clecenclF)c2)N=C(N)N(C)C

3=0)cc(CC)n4

To ensure the stability of docking outcomes within the large-scale SBVS workflow, each ligand
was docked five times, and the best-scoring pose was selected for analysis. This multi-run strategy
reduces the stochastic variability inherent to Vina while maintaining computational feasibility when
processing thousands of ligands. Such an approach is commonly employed in high-throughput
screening studies and contributes to the consistency and robustness of the retrospective enrichment
results obtained in this work.

Collectively, the findings suggest a rational design strategy for future BACE-1 inhibitors.
Specifically, compounds may benefit from a dual anchoring approach: (i) incorporating positively
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charged groups to strengthen electrostatic interactions with Asp289, and (ii) embedding aromatic or
hydrophobic scaffolds, potentially halogenated to enhance binding through Trp137. This strategy
aligns with established pharmacophoric principles, emphasizing the synergy between electrostatic
and hydrophobic interactions. Accordingly, the present protocol not only validates a computational
screening workflow but also provides a structural framework for the rational design of next-
generation BACE-1 inhibitors with potential therapeutic relevance to AD.

4. CONCLUSION

This study successfully established and validated a SBVS protocol that integrates Vina with
PyPLIF HIPPOS. The workflow consistently reproduced the crystallographic pose of the native
ligand, confirming its reliability for large-scale docking studies. Interaction fingerprinting revealed
Asp289 and Trp137 as key residues that differentiate actives from decoys, thereby providing a clear
mechanistic explanation for ligand recognition. By adjusting prior probabilities in the RPART model,
the protocol achieved an EF superior to the DUDE benchmark, demonstrating improved efficiency
in early identification of active compounds. Taken together, these findings highlight the dual
anchoring role of Asp289 and Trpl37 as a rational framework for the design of novel BACE-1
inhibitors. Beyond offering a validated computational pipeline, the study provides structural insights
that may accelerate the discovery of next-generation therapeutic candidates for AD.
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