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Abstract: Alzheimer’s Disease (AD) is a leading cause of dementia, characterized by progressive cognitive 

decline driven in part by amyloid-β (Aβ) accumulation. The β-site amyloid precursor protein cleaving enzyme 

1 (BACE-1) is responsible for initiating Aβ generation, making it a central therapeutic target. Yet, developing 

effective BACE-1 inhibitors has proven difficult due to structural complexity and pharmacological limitation. 

This study aimed to construct and validate a structure-based virtual screening (SBVS) workflow combining 

Vina and PyPLIF HIPPOS to facilitate the identification of promising BACE-1 ligands. The protocol was 

validated through 100 independent redocking experiments of the native ligand (PDB ID: 3L5F), all reproducing 

the crystallographic pose with RMSD < 2.0 Å. Large-scale screening of the DUDE dataset (283 active ligands; 

18,100 decoys) generated interaction fingerprint, which were subsequently analyzed using Recursive 

Partitioning and Regression Trees (RPART) under varying prior probabilities. At the optimal prior ratio of 

0.82:0.18, the model achieved an enrichment factor (EF) of 10.03, surpassing the DUDE benchmark (EF = 8.1). 

analysis consistently highlighted ionic interactions with Asp289 and hydrophobic contacts with Trp137 as key 

determinants of ligand activity. From 283 active ligands, 32 were classified as true positives, narrowing the 

pool of candidates and interpretable SBVS protocol and proposing a dual anchoring strategy involving Asp289 

and Trp137 as a rational design principle for novel BACE-1 inhibitors in AD therapy.  
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1. INTRODUCTION 

Alzheimer’s Disease (AD) is a chronic neurodegenerative disorder that progresses gradually and 

irreversibly, making it the most prevalent cause of dementia in older adults [1]. Patients with AD 

typically experience progressive deterioration of memory, reasoning and other cognitive domains, 

which eventually disrupts daily life [2-3]. Globally, the incidence of dementia continues to increase, 

with epidemiological reports estimating that a new case arises every three seconds [3]. In 2019, the 

number of individuals living with AD reached approximately 55 million, and this figure is projected 

to escalate around 139 million by 2050 [2-4].  

A central hallmark of AD is the deposition of amyloid-β (Aβ) plaques in brain tissue [5]. The 

production of Aβ begins with cleavage of the amyloid precursor protein (APP) by β-site cleaving 

enzyme 1 (BACE-1) [6]. Because this enzymatic step triggers the amyloidogenic pathway, BACE-1 

has been widely investigated as a therapeutic target [5,7]. Despite extensive efforts, however, 

developing inhibitors that combine potency, selectivity and favorable pharmacokinetics remain a 
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formidable challenge [8]. Traditional drug discovery approaches are limited by high costs, lengthy 

development cycles and low success rates, creating demand for more efficient alternatives [9-11].  

Structure-based virtual screening (SBVS) [10,12] provides a computational route for exploring 

large chemical libraries against the three-dimensional (3D) structure of target proteins [12]. By 

integrating molecular docking with scoring functions, SBVS helps identify molecules likely to bind 

with high affinity [10]. Recent advances further enhance this process by incorporating artificial 

intelligence approaches such as machine learning and deep learning [13].  

Among widely used docking platform, Vina [14] is notable for its balance of speed, open 

accessibility and reasonable accuracy [15]. Its scoring function estimates the affinity of candidate 

ligands, thereby assisting researchers in prioritizing molecules for further investigation. This ease of 

use, open-source availability and speed make Vina a go-to choice for drug discovery and academic 

research around the world [14-15].  

However, docking scores alone are insufficient for fully understanding ligand-protein 

recognition. PyPLIF HIPPOS [16] complements docking by generating ligand-protein interaction 

fingerprints, which encode residue-level contacts into digital representations for comparison or 

integration into classification models [16-18]. PyPLIF HIPPOS builds upon its predecessor, PyPLIF, 

but it is noticeably faster, more flexible and better suited to modern docking software like Vina, 

making it highly useful for SBVS projects [13].  

The reliability of any SBVS workflow requires retrospective validation. The Directory of Useful 

Decoys Enhanced (DUDE) dataset is frequently used for this purpose, as it provides matched sets of 

active and inactive molecules with similar physicochemical profiles [19]. In this study, Vina and 

PyPLIF HIPPOS were combined to construct an SBVS workflow targeting BACE-1. Interaction 

fingerprints were subsequently analyzed using Recursive Partitioning and Regression Trees 

(RPART) [20], and model performance was assessed with enrichment factor (EF), F1-score and 

balanced accuracy (BA) [21]. The goal was to establish a validated, reproducible and interpretable 

computational pipeline that also offers insights to guide rational BACE-1 inhibitor design for AD 

treatment.  

2. MATERIALS AND METHODS 

2.1. Materials 

2.1.1. Equipment 

The computational experiments were carried out on two main instruments: (i) PC-Client: an 

Asus Vivo Book X415JA laptop equipped with an Intel® CoreTM i3-1005G1 CPU (1.20 GHz), 12 GB 

RAM, running both Windows 11 Home Single Language 64-bit and Ubuntu 24.04 LTS operating 

systems. The main software employed in this machine included PyPLIF HIPPOS version 0.2.0, Vina 

version 1.2.7, Yasara-Structure version 24.4.10, ADFR Suite version 1.0, R software version 4.3.3 with 

the RPART package, and (ii) Cloud Protein Simulator (CPS): A Google Cloud Platform (Instance ID: 

3272493868356570273) with 96 vCPU and 48 GB RAM with Ubuntu 24.04 LTS operating systems. The 

main software employed in this machine included PyPLIF HIPPOS version 0.2.0 and Vina version 

1.2.7. The CPS was provided by MOLMOD ID (https://molmod.id/; accessed August 12–26, 2025). 

 

2.1.2. Datasets  

The ligand dataset was obtained from DUDE repository (accessed on July 2nd, 2025) [19]. For 

BACE-1 target, DUDE provides a curated collection of 283 active ligands along with 18.100 pre-

generated decoys. All active ligands included in DUDE have undergone internal curation involving 

structure standardization, removal of duplicates, verification of valency and confirmation of 

physicochemical consistency. Decoys in DUDE are automatically generated to match the 

physicochemical properties of active ligands (such as molecular weight and number of rotatable 
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bonds) while maintaining topological dissimilarity. No additional filtering criteria were applied in 

this study beyond DUDE’s curation pipeline, and the ligand sets were used as provided. All ligands 

were initially available in SMILES (.smi) format and were subsequently converted into 3D structures 

using Yasara-Structure before preparation into pdbqt format for docking simulations.  

 

2.1.3. Protein Target 

The crystallographic structure of human BACE-1 in complex with its native ligand (PDB ID: 

3L5F) was retrieved from the RCSB Protein Data Bank (https://www.rcsb.org; accessed on March 

15th, 2025). The main native ligand of the 3L5F complex is a compound that identified as (2E,5R)-5-

(2-cyclohexylethyl)-5-(cyclohexylmethyl)-2-imino-3-methylimidazolidin-4-one (BDX), which was 

used as reference for molecular docking validation. The selection of PDB ID 3L5F was driven by 

methodological consistency with the DUDE dataset and by the need for reliable receptor validation. 

Although DUDE lists PDB ID 3L5D (native ligand BDV) as the reference structure for BACE-1, 

preliminary redocking validation using 3L5D failed to reproduce the crystallographic pose, with all 

100 redocking attempts yielding RMSD values above 2 Å. Because accurate pose reproduction is 

essential for ensuring a valid docking protocol, an alternative structure with the same residue 

composition and binding-site arrangement was required. PDB ID 3L5F fulfills these criteria and 

contains a closely related native ligand (BDX). Redocking of BDX into 3L5F successfully reproduced 

the experimental binding pose in all 100 iterations, with RMSD values consistently below 2 Å. 

Therefore, 3L5F was selected as the protein target, as it aligns with DUDE’s structural framework 

while ensuring valid docking reproducibility. 

 

2.2. Methods 

2.2.1. Target Preparation and Validation 

Target preparation was carried out using Yasara-Structure, where monomer A from the crystal 

complex was retained as the working model. Missing amino acid residues were reconstructed, water 

molecules were eliminated, and the system was adjusted to pH 7.4 before energy minimization. 

Finally, both the protein and its native ligand BDX were converted into pdbqt files through ADFR 

Suite macros available in Yasara-Structure. 

Validation of the docking setup was performed through 100 independent redocking runs of the 

native ligand against the BACE-1 structure (PDB ID: 3L5F) using Vina 1.2.7 implemented in Yasara-

Structure. The resulting poses were exported in pdbqt format and their RMSD values obtained from 

“rmsd_bestpose_all.txt”. The protocol was considered acceptable when over 95% of the redocked 

conformations reproduced the crystallographic binding mode with RMSD values below 2.0 Å [19]. 

 

2.2.2. Ligand Preparation 

Ligand preparation followed a standardized protocol. The DUDE ligands were converted from 

SMILES into 3D pdb format with Yasara-Structure macros, followed by energy minimization. They 

were subsequently converted to pdbqt files using ADFR Suite tools to ensure compatibility with Vina. 

As DUDE ligands had previously undergone internal filtering and structural validation, no further 

manual screening was performed in this study. All ligands were used exactly as curated by the DUDE 

repository. 

 

2.2.3. Molecular Docking Simulations  

Docking simulations of both active ligands and decoys were performed using Vina 1.2.7 with a 

protocol adapted from Istyastono (2024) [13] and further optimized specifically for the BACE-1 

binding pocket. The grid box was centered on the crystallographic pose of the native ligand BDX in 

the 3L5F structure, with coordinates set at x = −7.614, y = 6.039, and z = −5.641, and grid dimensions 
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of 26.194 × 26.194 × 26.194 Å to fully cover the catalytic dyad. In contrast to the 100 redocking 

repetitions used solely for receptor validation, each ligand in the SBVS dataset (283 active ligands 

and 18,100 decoys) underwent five independent docking runs to minimize stochastic variation 

inherent to Vina. For each ligand, the best-scoring pose (lowest binding free energy) among the five 

runs was selected for subsequent processing. All docking jobs were executed automatically using the 

Cloud Protein Simulator (CPS) platform to ensure consistent parameterization and full 

reproducibility across the dataset. The resulting docking poses were then analyzed using PyPLIF 

HIPPOS to generate interaction fingerprints for retrospective model development and validation. 

 

2.2.4. Interaction Fingerprinting 

Top-ranked docking poses obtained from Vina were analyzed with PyPLIF HIPPOS to identify 

protein-ligand interactions. Each contact was mapped to BACE-1 residues and translated into binary 

fingerprints vectors. The compiled interaction dataset, combining fingerprints with affinity values, 

served as input for classification analysis.  

 

2.2.5. Classification and Validation 

Interaction fingerprints and binding affinities were used as predictors in a decision tree 

classification model constructed with the RPART package in R version 4.3.3 [20]. Several prior 

probability ratios were tested to optimize model performance [13,21]. The classification was 

evaluated using three metrics: enrichment factor (EF) to measure early enrichment of active ligands 

[19], F1-Score to balance precision and recall and balanced accuracy (BA) to account for dataset 

imbalance. The decision tree model that yielded the highest EF was selected as the optimal 

classification scheme.  

3. RESULTS AND DISCUSSION 

3.1. Results 

The docking protocol against BACE-1 (PDB ID: 3L5F) was first validated through redocking 

simulations of the native ligand BDX. Out of 100 independent trials, all reproduced the 

crystallographic binding pose with RMSD values below 2.0 Å, surpassing the comon validation 

threshold of 95% reproducibility [14,22]. This outcome confirmed the robustness of the docking setup 

and provided a reliable foundation for large-scale virtual screening.  

Following validation, the DUDE dataset consisting of 283 actives and 18,100 decoys was 

screened. Interaction profiles were subsequently analyzed using PyPLIF HIPPOS. Active ligands 

displayed consistent molecular fingerprints, most notably ionic interactions with Asp289 and 

hydrophobic contacts with Trp137 (Figure 1). The identification of Asp289 and Trp137 as key residues 

was not derived from experimental mutagenesis data but emerged directly from the interaction 

fingerprint analysis incorporated into the RPART decision-tree model. During classification, RPART 

evaluates which interaction features represented as binary contact vectors for each residue, most 

effectively separate active ligands from decoys. Across multiple splits, interactions involving Asp289 

(ionic contacts) and Trp137 (hydrophobic contacts) consistently contributed to branches enriched 

with active ligands, indicating that these residues carry strong discriminative power within the 

dataset. Therefore, their importance in this study reflects the statistical learning process embedded 

in RPART rather than prior experimental knowledge. These interactions were rarely observed among 

decoys, suggesting their importance as structural determinants of activity (Table 1).  
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Table 1. Key Residues, Interaction Types, and Potential Structural Motifs for Ligand Optimization 

Residue Type of Interaction Potential Enhancing Moieties of Molecular Design 

Asp289 Ionic as the anion Positively charged groups such as amines or guanidines 

Trp137 Hydrophobic Aromatic fragments, hydrophobic ring systems 

Notes: This table summarizes the amino acid residues that play a critical role in ligand binding, the type of 

molecular interactions involved, and the potential molecular fragments that could enhance inhibitor design. The 

results were derived from molecular interaction analysis based on docking simulations. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Visualization of the interaction of native ligand BDX in 3D 

Notes: The color differences in this figure are used to distinguish the crystallographic pose from the redocked 

pose and to visualize the surrounding binding-site residues. The native BDX ligand from the crystal structure is 

shown using the default element-based coloring scheme (carbon = cyan, nitrogen = blue, oxygen = red), whereas 

the redocked BDX pose is displayed in solid purple to clearly differentiate it from the original crystallographic 

orientation. All amino-acid residues lining the binding pocket are rendered in solid green for uniformity and to 

highlight the ligand–protein interface without introducing additional color complexity. 

Importantly, from the initial pool of 283 active ligands, the workflow successfully prioritized 32 

compounds as active hits. These ligands, detailed in Supplementary Material 1, represent a refined 

subset with the most promising interaction profiles against BACE-1. By narrowing down the 

chemical space, this dataset provides a valuable foundation for subsequent in vitro and in vivo 

investigations. Moreover, these compounds offer strategic starting points for the rational design of 

next-generation BACE-1 inhibitors.  

Classification analysis with the RPART algorithm yielded optimal performance when the prior 

probability ratio was set at 0.82:0.18. In the context of RPART classification, the prior probability ratio 

represents the assumed baseline likelihood of a ligand belonging to each class before the model 

evaluates the interaction features. Because the DUDE dataset for BACE-1 is highly imbalanced (283 

active ligands vs. 18.100 decoys), assigning a prior of 0.82 for actives and 0.18 for decoys counteracts 

the natural dominance of the decoy class. This adjustment forces the decision tree to give greater 

weight to interaction patterns associated with actives, thereby improving sensitivity toward true 

actives and preventing the model from being biased toward predicting the majority class [18]. Under 

this condition, EF reached 10.03, exceeding the DUDE benchmark EF value of 8.1 [19]. At this optimal 

setting, the model successfully identified 32 true positives (TP), while misclassifying 251 actives as 

false negatives (FN), 17.896 decoys as true negatives (TN) and 204 as false positives (Table 3).  
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Table 2. Performance Metrics of the Classification Model under Different Prior Ratios 

Prior 

Ratio 

Data (Unit) 
F1-Score EF BA 

TP FN TN FP 

0.1:0.9 283 0 5.985 12.115 0.044634 1.494016 0.665331 

0.2:0.8 279 4 7.631 10.469 0.050585 1.704477 0.703734 

0.3:0.7 275 8 7.593 10.507 0.049706 1.673964 0.695617 

0.4:0.6 231 52 11.725 6.375 0.067063 2.317522 0.732022 

0.5:0.5 227 56 11.843 6.257 0.06709 2.320341 0.728215 

0.6:0.4 179 104 14.501 3,599 0.088156 3.180997 0.716835 

0.7:0.3 82 201 17.165 935 0.126154 5.609115 0.619048 

0.8:0.2 76 207 17.489 611 0.156701 7.955446 0.617397 

0.81:0.19 76 207 17.532 568 0.16397 8.557707 0.618585 

0.82:0.18 32 251 17.896 204 0.123314 10.03256 0.550902 

Notes: This table displays the performance of the classification model under different prior ratio settings, 

indicated by the values of True Positive (TP), False Negative (FN), True Negative (TN), False Positive (FP), F1-

score, Enrichment Factor (EF), and Balanced Accuracy (BA). These results were used to determine the most 

reliable prior ratio for predicting ligand activity toward the target protein. The best performance of the 

classification model was marked with bold. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The DUDE optimized decision tree for the SBVS protocol targeting BACE-1 

 The decision tree (Figure 2) placed the affinity cutoff at ΔG = -9.893 kcal/mol as the first split. 

Node distributions were represented as active/decoy counts, such as 15,480/159 (decoy dominated), 

2,299/88 (higher active proportion), 101/4 (almost exclusively decoys) and 204/32 (an enriched branch 

of actives). The secondary splits of the decision tree involved interaction fingerprints such as V133 < 

0.5 and V64 < 0.5, which indicated the absence of ligand contacts with critical residues. This 

observation is consistent with the interaction analysis summarized in Table 1, where Asp289 and 

Trp137 were identified as essential anchoring points for ligand recognition. In other words, when 

these key contacts were missing, the classification model strongly favored a decoy outcome, 

reinforcing the central role of ionic interactions with Asp289 and hydrophobic stabilization via 

Trp137 in driving ligand activity.  

3.2. Discussion 

The validation step confirmed that the proposed docking protocol was technically sound, as 

demonstrated by its consistent ability to reproduce the crystallographic pose of BDX with RMSD 

values below 2.0 Å [14,22]. Beyond validation, the improved EF compared to DUDE benchmark 

indicates the superior performance of this protocol in prioritizing active compounds at early stages 

of screening (Table 2) [19]. Such improvement is critical in practical applications, where reducing the 

number of false leads can significantly lower experimental costs and accelerate drug discovery.  

Analysis of the interaction fingerprints revealed key residues responsible for ligand recognition. 

Among them, Asp289 consistently engaged in ionic contacts with basic groups such as amines, 



J.Food Pharm.Sci. 2025, 13(4), 460-469  466 

 

amidines and guanidinium, functioning as a principal electrostatic anchor [23]. Simultaneously, 

Trp137 contributed hydrophobic stabilization, often through interactions with aromatic or 

halogenated substituents (-F, -Cl, -CF3, -OCF3) (Table 1). These noncovalent forces are well established 

as central to protein-ligand recognition [24]. Together, the Asp289-Trp137 dual anchoring motif 

explained the preferential binding of active ligands compared to decoys. In this study, the 

prominence of Asp289 and Trp137 arose from the retrospective learning behavior of the RPART 

classifier. Each residue-ligand interaction detected by PyPLIF HIPPOS serves as an input feature to 

the decision tree, which then selects the most informative features to split active ligands and decoy 

populations. Asp289 and Trp137 appeared repeatedly as high-information-gain features, meaning 

that the presence of interactions with these residues statistically increased the probability of a ligand 

belonging to the active class. This data-driven emergence highlights that the dual anchoring role of 

Asp289 and Trp137 is an outcome of model-based interpretation, rather than assumptions derived 

from experimental mutagenesis studies [18]. 

From a screening perspective, the selection of 32 active hits out of 283 initial actives effectively 

narrowed the chemical search space to a more manageable subset (Supplementary Material 1). These 

compounds constitute promising candidates for further in vitro and in vivo studies, thereby 

enhancing the efficiency of the drug discovery process. The RPART-based classification model, 

particularly under the 0.82:0.18 prior probability, provided a clear and interpretable decision tree 

capable of distinguishing actives from decoys (Table 2, Figure 2). Such interpretability is 

advantageous for prospective applications, as it not only supports retrospective validation but also 

highlights practical thresholds for ligand prioritization. 

Supplementary Material 1. Active Hits of BACE-1 Obtained from the DUDE Dataset after Virtual Screening 

No Active Ligand ID Affinity (kcal/mol) Active Ligand in SMILES Format 

1 CHEMBL1082548 -9.895 
C[C@@H](NC(=O)c2cc(COC(=O)C(C)(N)Cc1ccccc

1)cc(N(C)S(C)(=O)=O)c2)c3ccc(F)cc3 

2 CHEMBL1092788 -10.468 
CN4C(N)=N[C@](c1ccncc1)(c3cccc(c2cc(F)ccc2F)c3

)C4=O 

3 CHEMBL1096683 -10.354 
C[C@@H](NC(=O)c3cc(N(C)S(C)(=O)=O)cc(c2ncc([

C@](C)(N)Cc1ccccc1)o2)c3)c4ccc(F)cc4 

4 CHEMBL1209222 -9.979 
CC(=O)N[C@@H](Cc1cc(F)cc(F)c1)[C@H](O)CNC

4(c3cccc(N2CCCCC2=O)c3)CCCCC4 

5 CHEMBL219601 -10.434 
C[C@@H](NC(=O)c3cc(N(C)S(C)(=O)=O)cc(c2nnc(

[C@](C)(N)Cc1ccccc1)o2)c3)c4ccc(F)cc4 

6 CHEMBL236851 -10.199 
CC(=O)c4ccc(Oc3ccc(c2scc(c1ccccc1Cl)c2CC(=O)N

=C(N)N)cc3)cc4 

7 CHEMBL244346 -10.032 
CN(C1CCCCC1)C(=O)c5cccc(CN4Cc3cc(Oc2ccccc

2)ccc3N=C4N)c5 

8 CHEMBL252189 -10.427 
NC(=N)NC(=O)Cn2c(c1ccccc1)ccc2c4ccc(NC(=O)c

3cccc(Br)c3)cc4 

9 CHEMBL253237 -10.341 
CC(=O)c4ccc(Oc3ccc(c2ccc(c1ccccc1Cl)n2CC(=O)N

C(N)=N)cc3)cc4 

10 CHEMBL272766 -10.672 
Cc6nnc(CNC(\N)=N/C(=O)Cn2c(c1ccccc1)ccc2C4

5CC3CC(CC(C3)C4)C5)o6 

11 CHEMBL375217 -10.122 
C[C@@H](NC(=O)c2cc(N(C)S(C)(=O)=O)cc(C(=O)

OCC(N)(CO)Cc1ccccc1)c2)c3ccc(F)cc3 

12 CHEMBL392662 -9.963 
COc3cccc(c2cccc(C1(C)CC(=O)N(C)C(N)=N1)c2)c

3 
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13 CHEMBL404682 -10.001 

O[C@H]([C@H]2C[C@@H](OCc1ccccc1)CN2)[C@

H](Cc3cc(F)cc(F)c3)NC(=O)[C@@H]5CN(Cc4ccco4

)C(=O)C5 

14 CHEMBL491659 -10.026 

O[C@@H]([C@H](Cc1cc(F)cc(F)c1)NC(=O)C3CN(

CC2CC2)C(=O)C3)[C@@H]5NCCN(Cc4ccccc4)C5=

O 

15 CHEMBL562555 -10.015 
CCN3c4cc(C(=O)N[C@H](Cc1ccccc1)[C@@H](O)C

NC2CCOCC2)cc5c(CC)cn(CCS3(=O)=O)c45 

16 CHEMBL565790 -11.391 
COc4ccc(C3(c2cccc(c1cccnc1)c2)N=C(N)N(C)C3=

O)cc4C5CCCC5 

17 CHEMBL565914 -10.576 
NC4=NC(c1ccc(OC(F)(F)F)cc1)(c3cccc(c2cccnc2F)c

3)C5=NCCCCN45 

18 CHEMBL566112 -10.596 
NC4=NC(c1ccc(OC(F)(F)F)cc1)(c3cccc(c2cccnc2F)c

3)C5=NCCN45 

19 CHEMBL566414 -10.37 
CN5C(N)=NC(c2cccc(c1cccnc1)c2)(c4ccc3OCCc3c4

)C5=O 

20 CHEMBL566603 -10.447 
CC(=O)N[C@@H](Cc1cc(F)cc(F)c1)[C@H](O)CN[C

@@]3(c2cccc(C(C)(C)C)c2)CC\C(=N\O)NC3 

21 CHEMBL566638 -11.132 
COc4ccc(C3(c2cccc(c1cccnc1)c2)N=C(N)N(C)C3=

O)cc4OC5CCCC5 

22 CHEMBL566968 -10.317 
NC5=NC(c2cccc(c1cccnc1F)c2)(c4ccc3OCCOc3c4)

C6=NCCCN56 

23 CHEMBL567430 -10.74 
NC4=NC(c1ccc(OC(F)(F)F)cc1)(c3cccc(c2cccnc2F)c

3)C5=NOCCN45 

24 CHEMBL567477 -10.264 
COc4ccc([C@@]3(c2ccc(F)c(c1cccnc1F)c2)N=C(N)N

(C)C3=O)cc4C 

25 CHEMBL568960 -10.988 
NC4=NC(c1ccc(OC(F)(F)F)cc1)(c3cccc(c2cccnc2F)c

3)C5=NCCCCCN45 

26 CHEMBL582045 -9.966 
NC4=N[C@](c1ccc(OC(F)(F)F)cc1)(c3cccc(c2cncnc2

)c3)C5=NCCCN45 

27 CHEMBL582982 -10.247 
COC4=C(F)C3CCC(Cc1ccc(C(F)(F)F)cc1)(c2cn(C)c

(N)n2)C3C=C4 

28 CHEMBL583034 -10.155 
CC(=O)N[C@@H](Cc1cc(F)cc(F)c1)[C@H](O)CN[C

@@]3(c2cccc(C(C)(C)C)c2)CC[C@H](NO)NC3 

29 CHEMBL583608 -10.16 
NC5=NC(c2cccc(c1cccnc1F)c2)(c4ccc3OCOc3c4)C6

=NCCCN56 

30 CHEMBL589891 -10.085 
NC3=NC(C1CCCCC1)(c2ccccc2)C(=O)N3CC4CC

C(C(O)=O)CC4 

31 CHEMBL595066 -10.746 
COCc3cc4NCCCCOc5cccc(C[C@@H]([C@H](O)C

NC2(c1cccc(C(C)C)c1)CC2)NC(=O)c(c3)c4)c5 

32 CHEMBL598290 -10.159 
CCc4cc([C@]3(c2cccc(c1cccnc1F)c2)N=C(N)N(C)C

3=O)cc(CC)n4 

 

To ensure the stability of docking outcomes within the large-scale SBVS workflow, each ligand 

was docked five times, and the best-scoring pose was selected for analysis. This multi-run strategy 

reduces the stochastic variability inherent to Vina while maintaining computational feasibility when 

processing thousands of ligands. Such an approach is commonly employed in high-throughput 

screening studies and contributes to the consistency and robustness of the retrospective enrichment 

results obtained in this work. 

Collectively, the findings suggest a rational design strategy for future BACE-1 inhibitors. 

Specifically, compounds may benefit from a dual anchoring approach: (i) incorporating positively 
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charged groups to strengthen electrostatic interactions with Asp289, and (ii) embedding aromatic or 

hydrophobic scaffolds, potentially halogenated to enhance binding through Trp137. This strategy 

aligns with established pharmacophoric principles, emphasizing the synergy between electrostatic 

and hydrophobic interactions. Accordingly, the present protocol not only validates a computational 

screening workflow but also provides a structural framework for the rational design of next-

generation BACE-1 inhibitors with potential therapeutic relevance to AD.  

4. CONCLUSION 

This study successfully established and validated a SBVS protocol that integrates Vina with 

PyPLIF HIPPOS. The workflow consistently reproduced the crystallographic pose of the native 

ligand, confirming its reliability for large-scale docking studies. Interaction fingerprinting revealed 

Asp289 and Trp137 as key residues that differentiate actives from decoys, thereby providing a clear 

mechanistic explanation for ligand recognition. By adjusting prior probabilities in the RPART model, 

the protocol achieved an EF superior to the DUDE benchmark, demonstrating improved efficiency 

in early identification of active compounds. Taken together, these findings highlight the dual 

anchoring role of Asp289 and Trp137 as a rational framework for the design of novel BACE-1 

inhibitors. Beyond offering a validated computational pipeline, the study provides structural insights 

that may accelerate the discovery of next-generation therapeutic candidates for AD.  
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