
Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 13 Number 2 May 2024

Fierda Kurniacahya Ariefputra: Performance Analysis of a ... p-ISSN 2301–4156 | e-ISSN 2460–5719

© Jurnal Nasional Teknik Elektro dan Teknologi Informasi

This work is under a Creative Commons Attribution-ShareAlike 4.0 International License

Translation of article 10.22146/jnteti.v13i2.10185

Performance Analysis of gNMI Streaming Telemetry-
Based Monitoring Systems Using Containerlab
Network Simulation
Fierda Kurniacahya Ariefputra1, Eueung Mulyana1

1 Electrical Engineering Study Program, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Jawa Barat 40132, Indonesia

[Submitted: 24 October 2023, Revised: 27 December 2023, Accepted: 21 March 2024]

Corresponding Author: Fierda Kurniacahya Ariefputra (email: 23221081@mahasiswa.itb.ac.id)

ABSTRACT — The rapid growth of the Internet has impacted the digital service development. This surge in demand has

created opportunities for digital service industry players. Despite its positive impact, the growth of the Internet also poses

technical challenges. In managing the increasing data traffic, resource monitoring plays a vital role. One of the latest methods

for monitoring these resources is the utilization of the Google’s Remote Procedure Call (gRPC) Network Management

Interface (gNMI) streaming telemetry system. While it seems superior to current protocols, there is a need for further

exploration into the implementation of streaming telemetry systems. This paper specifically investigates the trade-offs and

performance of gNMI streaming telemetry. The design and simulation were conducted utilizing containerlab, a Docker-

based networking lab tool. In the Docker-based simulation, integration between the monitoring system and network topology

was implemented. The results from observing each protocol indicate that the monitoring system’s metric retrieval activity

had minimal impact on network conditions. This is evident in the consistently low average network latency and nearly

uniform throughput, except in instances of packet loss and congestion. Simulation observations indicate that the gNMI

monitoring system utilized input/output (I/O) resources more intensively compared to other protocols. The research also

examined the integration of gNMI streaming telemetry and log monitoring, revealing a 70 MB rise in memory usage and a

33% increase in Disk I/O resources. Furthermore, the study uncovered signs of a 50% increase in CPU utilization by the

gNMI monitoring system compared to the average data recorded in the observations.

KEYWORDS — Network Monitoring, Streaming Telemetry, gRPC Network Management Interface, Data Centre Network,

Simulation.

I. INTRODUCTION

The proliferation of the Internet usage has profoundly

impacted numerous sectors, significantly enhancing people’s

quality of life [1], [2]. The interconnected network of data

exchange has revolutionized numerous sectors, including

communication, education, entertainment, and commerce. The

Internet has become an integral part of everyday life, granting

individuals effortless access to information and fostering global

connections.

The rapid expansion of the Internet has profoundly

influenced the evolution of businesses offering digital hosting

and Internet services. With the continual rise in Internet

accessibility, an increasing number of individuals and

businesses seek dependable hosting and Internet solutions for

establishing online platforms. This trend is not limited to large

corporations or multinational enterprises; small and medium-

sized companies operating at a national level are also seizing

this opportunity, experiencing substantial growth [3]. This

surge in demand has opened up significant opportunities for

businesses and industries within the digital services and

Internet services sectors, enabling them to expand their

operations and foster growth.

Despite its many positive impacts in various fields, the

rapid growth of the Internet also presents technical challenges,

especially in managing communication network traffic and

computing resources As the number of connected devices

continues to rise, the demand for network bandwidth and data

storage exponentially increases. This surge in connectivity can

lead to issues like network congestion, slower data transfer

speeds, and limited resources for services and applications on

the hosting service [4].

One of the most modern methods for monitoring

information technology infrastructure resources is by utilizing

a system based on streaming telemetry. This system collects

and analyzes data in real time from various network devices

and computational resources. Such monitoring systems offer

valuable insights into performance, utilization, and the

behavior of information technology infrastructure. Streaming

telemetry empowers operators to monitor network traffic

patterns, identify current data constraints, and take proactive

measures, particularly to optimize and ensure efficient data

flow (with minimal overhead).

In traditional network monitoring approaches, resource

monitoring typically relies on a Simple Network Management

Protocol (SNMP) to periodically collect data [5], [6]. This

method primarily focuses on monitoring network device

metrics.

However, recent advancements in monitoring systems and

network infrastructure, like streaming telemetry, incorporate

protocols such as Google’s Remote Procedure Call (gRPC)

Network Management Interface (gNMI). This framework

facilitates the continuous streaming of metrics, logs, and trace

data from diverse sources within data centers and servers. [7],

[8]. This approach can be integrated with microservice resource

monitoring applications packed in virtualized environments

and can be paired with continuous integration and continuous

delivery/continuous deployment (CI/CD) cycles.

EN-101

 Jurnal Nasional Teknik Elektro dan Teknologi Informasi
 Volume 13 Number 2 May 2024

p-ISSN 2301–4156 | e-ISSN 2460–5719 Fierda Kurniacahya Ariefputra: Performance Analysis of a ...

Although it seems more sophisticated and efficient than

existing protocols, further studies are needed on the

implementation strategy of streaming telemetry systems. This

is particularly important for understanding their performance

under near real-time conditions in a distributed system

environment, such as a cloud computing environment.

Research on the use and implementation of each network

monitoring and telemetry technology has been conducted by

several experienced researchers and industry practitioners. By

reviewing prior research, it is possible to ascertain the research

context’s focus, pinpoint gaps in earlier studies, and formulate

a research design.

Several researchers have conducted research on

implementing gNMI-based telemetry systems in fiber optic

networks and data centers. References [9] and [10] discussed

the the implementation of two technology components for

transceiver management and telemetry monitoring in fiber

optic networks. Telemetry monitoring was conducted using the

gNMI protocol and the OpenConfig device model. The

research showcases the viability of this technological approach

through real-time telemetry measurements and an analysis of

its scalability with varying numbers of transponder nodes.

Additionally, numerous studies have explored the utilization of

streaming telemetry in intricate fiber optic networks and data

centers. This method aids in identifying traffic patterns,

enabling the detection of state changes and soft failures within

fiber optic networks [11]–[17].

In Reference [18], the performance of SNMP-based

network monitoring was compared with streaming network

telemetry using the gRPC framework and Google Protocol

Buffers (GPB). The study results indicate that retrieving

ifTable statistics encoded with Compact-GPB consumes

approximately two and a half times less bandwidth compared

to SNMP polling with GetBulk. Moreover, the measured

round-trip network delay, encompassing packetization,

serialization, and telemetry stream processing, is roughly four

times lower than that of SNMP. Additionally, the

measurements demonstrate that network monitoring with

streaming telemetry is more CPU-efficient than SNMP polling.

Another research was undertaken to compare two network

monitoring solutions: SNMP-based and Protocol Buffers and

gRPC-based [19]. The findings indicated that SNMP

outperformed when retrieving information about objects with a

value of 1 byte. Moreover, SNMP demonstrated superior

performance when retrieving metric objects with larger values,

up to 26 telemetry objects per message. However, beyond this

threshold, the combination of Protocol Buffers and gRPC

proved more efficient, resulting in reduced data transmission

(in bytes) for a given number of objects. Notably, no significant

impact on router memory and CPU utilization was observed.

The research focused on the performance of streaming

telemetry in monitoring network conditions and resources

within a simulated data center virtualization environment. The

performance in question includes the effect of the telemetry

stack on host device resource utilization, the influence of the

interval duration configuration, and the number of metrics

subscribed by streaming telemetry. The research also studied

the behavior of network traffic in relation to the monitored

metric parameters. This research was conducted in a Docker-

based virtualization simulation environment, with a scenario

that involves monitoring resources on network devices

operating in the data center using Border Gateway Protocol

Ethernet Virtual Private Network (BGP EVPN VXLAN)

protocol communication [20].

II. METHODOLOGY

This research aimed to fill the information gap regarding

the performance information and trade-off variables of

streaming telemetry as discussed in existing publications,

articles, and research papers. Specifically, the trade-offs

examined in this research were the duration of the scraping

interval and the number of objects subscribed to by the gNMI

telemetry stream. The research method is illustrated in Figure

1, which outlines the steps and workflow followed in this study.

Observations were conducted by manually recording the

parameter values displayed by the Glances tool throughout the

observation period.

A. gRPC NETWORK MANAGEMENT INTERFACE (gNMI)

gNMI is a gRPC protocol extension developed by

OpenConfig and standardized by the Internet Engineering Task

Force (IETF). It provides a standard method for managing and

monitoring network devices using the remote procedure call

(RPC) mechanism [21]. The protocol operates by initiating a

gRPC connection between the client (typically a monitoring

system or application) and the gNMI server on the network

device. This connection utilizes different transport protocols

like Transmission Control Protocol (TCP), Transport Layer

Security (TLS), or gRPC over HTTP/2. The client authenticates

its identity to the server using credentials or certificates for

secure communication. Upon verification of the client’s

identity, the server grants authorization for the requested

operation based on the client’s privileges [22].

The client sent gNMI requests to the server to perform

various operations, including retrieving configuration data,

modifying settings, subscribing to status updates, and querying

operational information. These requests were specified using

the gNMI Protocol Buffers API, which defined the desired

action and parameters. The server received gNMI requests,

validated them, and processed them accordingly. gNMI

interacted with the underlying network operating system or

network device drivers to execute the requested actions, such

as reading or modifying configuration data. Once the request

was processed, the server sent the gNMI response back to the

client, containing the requested information or indicating the

success/failure status of the operation. This response was

encoded using Protocol Buffers.

In addition to request-response interactions, gNMI supports

subscription-based mechanisms. It means clients can subscribe

to receive updates or asynchronous notifications regarding

Figure 1. Research methodology.

EN-102

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 13 Number 2 May 2024

Fierda Kurniacahya Ariefputra: Performance Analysis of a ... p-ISSN 2301–4156 | e-ISSN 2460–5719

specific data changes or events. The server then pushes these

updates to the client in real-time, enabling seamless monitoring

and event-driven management.

B. MONITORING SYSTEM TOOLS AND SOFTWARE
SPECIFICATIONS

The system design in this study utilized several open-source

software and networking tools. The use of open-source tools

aimed to enhance the transparency of this research, enabling

researchers and industry practitioners to replicate the scenarios

presented. This also facilitated the validation and verification

of the research results, ensuring that the designed system

functioned as intended. Additionally, the flexibility and

customizability provided by open-source tools were significant

considerations in this research. These factors underpinned the

decision to use containerlab for network simulation in this

study.

The tools and software utilized in this research are

presented in Table I, along with the respective versions

employed. The hardware specifications of the computer

included a 2.6 GHz Intel Core i7 CPU with 6 cores and 16 GB

of random access memory (RAM). The Linux Mint virtual

machine was configured with a 4-core processor and 8 GB of

RAM.

C. NETWORK MONITORING STACK CONFIGURATION

This research was conducted to test the performance and

utilization of monitoring systems across various protocols,

focusing on their effectiveness in monitoring resource and

network metrics in simulated data centers. The examined

protocols were SNMP, sFlow, and gNMI.

The protocol in this section is divided into three monitoring

subsystems, which consist of several tools (collectively known

as the monitoring stack) to retrieve, process, and display metric

data from the monitored system.

Each monitoring subsystem had a monitoring tool

component with similar functions. All utilized tools ran in a

separate Docker container environment, except for the sFlow-

RT Docker image. The communication between tools and the

data center simulation network was managed by containerlab.

Each subsystem employed a different way of obtaining metrics

or status from network devices.

 The gNMI subsystem utilized “pull” operations to change

configurations on network devices and “push” operations to

send information from the server to the collecting device

without a request, thereby obtaining status and metrics

information from the device. The gNMI subsystem had to

subscribe to a specific port on the network device to enable

communication. This port is specified in the gNMI client

configuration file, as illustrated in Figure 2.

The SNMP monitoring subsystem polled (periodically

checked or sent requests to the server for updates) a specific IP

address. This process aimed to communicate with network

devices to request status updates and metrics of the network

device. The device responded to the object identifier (OID)

requested by the collector, by polling the information to the

collector.

The sFlow subsystem utilized a different method compared

to the other subsystems. The sFlow collector required only the

Interenet Protocol (IP) address of the destination device for

configuration. Subsequently, the network device transmitted all

data specified in the sFlow management protocol as defined by

the vendor. The employed sFlow collector was directly

integrated with the Prometheus time series database (TSDB)

and InMon dashboard in one Docker image. Some network

configuration, Docker image configuration, and environment

variables are written in the containerlab deployment

configuration file as shown by the gNMI subsystem

architecture in Figure 2.

D. SOCKET BUFFER CONFIGURATION

The design of the network monitoring system and network

topology in this research was implemented using containerlab.

Containerlab employs the Docker bridge, which was the default

Docker network driver. This driver enabled inter-container

communication on the same Docker host. The Docker bridge

created a virtual bridge interface called “Docker0” on the host

system, which acted as a virtual switch to facilitate inter-

container communication. The Docker bridge used a variable

memory network buffer, or socket buffer, from the host. The

memory socket buffer was set with a default and maximum

capacity of 32 MB, allowing it to accept jumbo-sized packets

(9,000 bytes).

III. RESULTS AND DISCUSSION

The data collection for this research was conducted through

direct observation of the computing resources utilized when the

network transmits TCP or User Datagram Protocol (UDP)

packets. The Glances tool was employed to display the

resources on the host responsible for the data center network

simulation and network monitoring.

A. ANALYSIS OF gNMI-BASED MONITORING SYSTEM
PERFORMANCE

The findings from tests conducted using the UDP packet

type are illustrated in Figure 3. The graph depicts a comparative

Figure 2. Architecture of gNMI subsystems in the study.

TABLE I

TOOLS AND VERSIONS IN SYSTEM DESIGN FOR RESEARCH

Tool Name Version

Virtualbox 6.1.40 r154048

Linux Mint OS 20.2

Docker 20.10.21

Containerlab 0.42.0

Nokia SR Linux (Docker container) 23.2.2

Telegraf (Docker container) 1.27.0

influxDB (Docker container) 2.7.1

sFlow-RT (Docker container) 3.0-1676

Prometheus (Docker comtainer) 2.37.8

Grafana (Docker container) 9.5.2

gNMIc (Docker container) 2.3.0

EN-103

 Jurnal Nasional Teknik Elektro dan Teknologi Informasi
 Volume 13 Number 2 May 2024

p-ISSN 2301–4156 | e-ISSN 2460–5719 Fierda Kurniacahya Ariefputra: Performance Analysis of a ...

analysis of three monitoring systems utilizing metric data

obtained from three Nokia Service Router Linux (SR Linux)

nodes operating under the Layer 2 BGP EVPN VXLAN

protocol. Owing to the constraint of the Docker-based SR

Linux Network OS, capable of processing only 1,000 packets

per second, assessments conducted at 50 Mbps and 100 Mbps

data rates encountered packet loss, resulting in diminished

throughput and elevated latency levels. This scenario continued

to fulfill the objective of analyzing network conditions,

transitioning from an elephant flow scenario to one

characterized by lossy channels and congestion.

The observations depicted in Figure 3 regarding throughput

parameters do not indicate any significant alterations in the

utilization of the monitoring tool stack. However, Figure 3

illustrates that the latency parameter reveals heightened latency

in SNMP and gNMI-based monitoring systems under

conditions of network loss and congestion. The CPU utilization

of sFlow and SNMP-based monitoring systems under such

conditions demonstrated an approximate 2% increase

compared to network topology without monitoring systems,

whereas the CPU utilization with gNMI-based monitoring rose

by no more than 1.5% under similar lossy and congested

network conditions.

In the RAM usage observation (5.24 GB without a

monitoring system), it was noted that the sFlow-based stack

monitoring system consumed more resources compared to

alternative monitoring systems, reaching up to 6.24 GB (a 1 GB

increase). Conversely, both SNMP and gNMI-based

monitoring systems utilized approximately 5.37 GB of RAM

resources (a rise of approximately 200 MB). Regarding Disk

I/O usage parameters, it is evident that the gNMI-based

monitoring system exerts greater resource consumption

compared to other protocols. The values depicted in the

observations may exceed twice the Disk I/O of alternative

monitoring systems. Subsequently, the test proceeded with

traffic involving TCP packet types. The outcomes of this test

are illustrated in Figure 4.

The observation of TCP packet latency in Figure 4 reveals

a difference when compared to the latency of UDP packets. The

average TCP latency ranged from 0.4 ms to 0.55 ms, which was

not significantly different from the test results between

monitoring systems and those of the topology without

monitoring systems. The observations on RAM usage and CPU

utilization during the testing of TCP packets did not show

significant differences compared to the testing of UDP packets.

Regarding the Disk I/O usage parameter, the results were

consistent: the gNMI-based monitoring system utilized twice

as many resources as the other monitoring systems. However,

the Disk I/O resource usage value in tests with TCP-type data

packets was relatively lower than in tests with UDP data

packets.

Data collection in this test was conducted manually, and the

recorded value was determined based on the mode value during

the time intervals between the scraping activities of the

monitoring system. The test was carried out with a consistent

scraping interval duration of 15 s. The SNMP monitoring

system was configured to retrieve five OID objects, while

sFlow collected all metric objects provided by network

operating system SR Linux. In contrast, the gNMI-based

monitoring system was configured to retrieve nine telemetry

object directories containing 65 telemetry object values. During

the test, it was observed that CPU utilization could increase by

25% for the sFlow and SNMP-based monitoring systems,

whereas the gNMI-based monitoring system could experience

a 50% increase.

B. ANALYSIS OF DATA PULLING INTERVAL DURATION

In this test scenario, the effect of the pulling interval

duration of the gNMI telemetry subscription on resource

utilization and network conditions during active data

Figure 3. Test result data with UDP data traffic.

EN-104

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 13 Number 2 May 2024

Fierda Kurniacahya Ariefputra: Performance Analysis of a ... p-ISSN 2301–4156 | e-ISSN 2460–5719

transmission was investigated. The Prometheus agent interval

set in the configuration file needed to be synchronized with the

interval duration of the gNMI client to prevent inaccurate

information from being stored in the TSDB.

Table II presents the results of the effect of data pulling

interval duration on gNMI telemetry performance. The interval

duration ranges from 20 s to near real-time. This test employed

the UDP packet type with a data rate of 25 Mbps and a test

duration of 1 min. The number of subscribed gNMI objects was

65. A data rate of 25 Mbps was selected to assess the

characteristics of the gNMI-based monitoring system under

ideal conditions, specifically without packet loss.

The data in Table II indicate that a shorter scraping interval

configured in gNMI telemetry resulted in higher CPU

utilization of the host. Similarly, RAM usage increased as the

scraping interval approaches real-time. Disk I/O usage also

rose significantly, with values increasing up to six times from

the initial scenario with a 20 s scraping interval. This parameter

should be considered when planning to deploy a gNMI

streaming telemetry-based monitoring system in a production

environment. These results may vary when implemented on

different Network OS.

C. ANALYSIS OF THE EFFECT OF NUMBER of THE gNMI
DATA SUBSCRIPTION OBJECT

This test scenario aimed to determine the effect of the

number of data subscription objects on network device

parameters related to the level of usage and traffic within the

communication network. Tests were conducted using a 25

Mbps UDP packet type with a test duration of 1 min. The

scraping interval was configured to 3 s. Table III presents the

test results for this scenario. The subscribed objects in this test

refer to the deepest objects contained in the YANG tree

hierarchical structure found in Network OS SR Linux.

According to the test observation data presented in Table

III, it is evident that as the number of subscribed gNMI objects

increased, both the CPU utilization rate and the RAM usage

rate on the host also increased. Although the RAM usage did

increase, it did not rise as significantly as in the sFlow-based

monitoring system. The observation of the Disk I/O utility

parameter also indicates an increase in value as the number of

subscribed gNMI objects rises. In addition to considering the

scraping interval duration, this test indicates that the number of

objects to be monitored by the system must also be planned in

a production environment to prevent degradation of system and

host performance.

D. PERFORMANCE ANALYSIS OF gNMI INTEGRATION
WITH Syslog

In this scenario, testing was conducted utilizing UDP

packet transmission with a data rate of 25 Mbps over a test

duration of 2 min, while adhering to a gNMI telemetry

sampling interval of 15 s. The tools employed to facilitate the

monitoring stack of the system included syslog-ng (v3.38.1),

promtail (v2.7.4), and Grafana Loki (v2.7.4). This test pertains

TABLE III

OBSERVATION DATA OF SUBSCRIBED OBJECTS

Number of

Subscribed

Objects

CPU

(%)

Memory

(GByte)

Disk I/O

(KB/s)

Latency

(ms)

21 10.0 5.31 4,420 0.420

45 10.7 5.33 5,390 0.483

65 13.6 5.38 6,090 0.474

97 20.4 5.40 10,400 0.590

132 21.9 5.40 19,500 0.578

TABLE IV
OBSERVATION DATA OF GNMI STREAMING TELEMETRY WITH LOG

MONITORING

Metrics gNMI Telemetry

gNMI

Telemetry +

Syslog

Latency (ms) 0.462 0.465

CPU Utilization (%) 8.9 9.5

Memory (GByte) 5.36 5.43

Disk I/O (KB/s) 1,810 2,410

Figure 4. Test result data with TCP data traffic.

TABLE II

OBSERVATION DATA OF GNMI INTERVAL DURATION

Interval

Duration
CPU (%)

Memory

(GByte)

 Disk I/O

(KB/s)

Latency

(ms)

20 sec 8.5 5.31 1,780 0.460

15 sec 8.9 5.36 1,810 0.462

10 sec 11.7 5.36 2,450 0.489

5 sec 12.8 5.36 4,910 0.555

3 sec 13.4 5.38 6,920 0.544

1 sec 15.0 5.40 13,100 0.516

EN-105

 Jurnal Nasional Teknik Elektro dan Teknologi Informasi
 Volume 13 Number 2 May 2024

p-ISSN 2301–4156 | e-ISSN 2460–5719 Fierda Kurniacahya Ariefputra: Performance Analysis of a ...

to the laboratory outlined by Nokia [23]. The test results are

shown in Table IV.

The data presented in Table IV indicates that incorporating

gNMI telemetry streaming with syslog did not significantly

impact network traffic conditions, as evidenced by the

negligible alteration in latency values. RAM usage experienced

a slight increase of 70 MB. Noteworthy, however, is the

escalation in Disk I/O resources by 33% compared to gNMI

telemetry without log monitoring.

This experiment employed three network nodes with a

scraping interval set at 15 s and subscribed to a total of 65

objects. Should adjustments be made to these parameters, such

as reducing the interval duration and increasing the number of

subscribed objects, it is imperative to consider the trade-offs

elucidated in the preceding test. Implementing a monitoring

system, particularly one reliant on gNMI streaming telemetry

in a production environment, necessitated meticulous

consideration and planning of host resources. With a greater

number of nodes, there existed a likelihood of escalation in the

resource utilization of the I/O Disk. In both centralized and

distributed monitoring systems, it was customary for

implementations to operate on a solitary host alongside other

application or microservice implementations. Inadequate

planning of the configuration or trade-off parameters of gNMI

streaming telemetry could lead to a heightened utilization of

Disk I/O resources, thereby impacting the performance of

applications or microservices co-existing on the same host as

the monitoring system.

IV. CONCLUSION

This study demonstrates that monitoring systems using the

gNMI protocol consume 0.5% less CPU compared to other

protocols using UDP packets. However, this trend reverses

when the packet type is TCP; in this case, SNMP and gNMI-

based systems show increasing CPU utilization. Regarding

Disk I/O usage, the gNMI-based monitoring system exhibits

higher resource consumption than other protocols. The study

also examines the integration of gNMI streaming telemetry and

log monitoring, revealing a 70 MB increase in memory usage

and a 33% rise in Disk I/O resource levels.

This study also indicates a 50% increase in CPU utilization

by the gNMI-based system compared to the mode data recorded

in the observation. The trade-off analysis conducted in this

study reveals that reducing the scraping interval to near real-

time and increasing the number of subscribed objects result in

higher Disk I/O and CPU utilization. Future research is likely

to focus on homogeneous node types and more complex node

topologies and these can be tested in real-world scenarios on

hardware that supports the gNMI telemetry streaming protocol.

CONFLICTS OF INTEREST

The authors clearly state that they have no conflicts of

interest that could potentially affect the results or interpretation

of this study. The authors do not possess any pecuniary, or

personal interests that might bias an impartial evaluation of the

research data or findings. Furthermore, the authors have no

affiliations with organizations or companies that could sway

the outcome of this study.

AUTHORS’ CONTRIBUTIONS

Conceptualization, Fierda Kurniacahya Ariefputra;

methodology, Fierda Kurniacahya Ariefputra and Eueung

Mulyana; system design, Fierda Kurniacahya Ariefputra;

simulation implementation, Fierda Kurniacahya Ariefputra;

data collection, Fierda Kurniacahya Ariefputra; writing-

original draft, Fierda Kurniacahya Ariefputra; review, Eueung

Mulyana.

ACKNOWLEDGMENT

Gratitude is extended to Roman Dodin, the founder and

developer of Containerlab and Nokia SR Linux. His invaluable

assistance in resolving bugs during the research has been

instrumental to the successful completion of this work.

REFERENCES

[1] B. Aggarwal, Q. Xiong, and E. Schroeder-Butterfill, “Impact of the use

of the internet on quality of life in older adults: Review of literature,”

Prim. Health Care Res. Develop., vol. 21, pp. 1-6, Dec. 2020, doi:

10.1017/S1463423620000584.

[2] J. Manyika, “Big data: The next frontier for innovation, competition, and

productivity,” 2011. [Online]. Available:
https://personal.utdallas.edu/~muratk/courses/cloud11f_files/MGI-full-

report.pdf

[3] E. Permadi (2020) “Industri cloud dan hosting di Indonesia, begini

kondisi saat pandemi COVID-19,” [Online],

https://sumatra.bisnis.com/read/20200819/534/1280826/industri-cloud-
dan-hosting-di-indonesia-begini-kondisi-saat-pandemi-covid-19, access

date: 25-Feb-2023.

[4] E.B. Nadales (2023) “Impact of traffic growth on networks and

investment needs,” [Online], https://www.telefonica.com/en/

communication-room/blog/impact-of-traffic-growth-on-networks-and-

investment-needs/, access date: 5-Jun-2023.

[5] M.Y.B. Rasyiidin and F.A. Murad, “Monitoring server berbasis SNMP

menggunakan Cacti pada server lokal,” J. Ilm. FIFO, vol. 13, no. 1, pp.

14–23, May 2021, doi: 10.22441/fifo.2021.v13i1.002.

[6] A. Pradana, I.R. Widiasari, and R. Efendi, “Implementasi sistem

monitoring jaringan menggunakan Zabbix berbasis SNMP,” AITI, vol. 19,
no. 2, pp. 248–262, Nov. 2022, doi: 10.24246/aiti.v19i2.248-262.

[7] A. Sgambelluri et al., “Reliable and scalable Kafka-based framework for

optical network telemetry,” J. Opt. Commun. Netw., vol. 13, no. 10, pp.

E42-E52, Oct. 2021, doi: 10.1364/JOCN.424639.

[8] F. Paolucci, A. Sgambelluri, P. Castoldi, and F. Cugini, “Telemetry

solutions in disaggregated optical networks: An experimental view,” Opt.

Fiber Commun. Conf. (OFC) 2021, 2021, pp. 1–3, doi:
10.1364/OFC.2021.W1G.1.

[9] R. Vilalta et al., “Telemetry-enabled cloud-native transport SDN

controller for real-time monitoring of optical transponders using gNMI,”

2020 Eur. Conf. Opt. Commun. (ECOC), 2020, pp. 1-4, doi:

10.1109/ECOC48923.2020.9333143.

[10] A. Sgambelluri et al., “Open source implementation of OpenConfig

telemetry-enabled NETCONF agent,” 2019 21st Int. Conf. Transparent
Opt. Netw. (ICTON), 2019, pp. 1–4, doi: 10.1109/ICTON.2019.8840320.

[11] K.S. Mayer et al., “Machine-learning-based soft-failure localization with

partial software-defined networking telemetry,” J. Opt. Commun. Netw.,

vol. 13, no. 10, pp. E122–131, Oct 2021, doi: 10.1364/JOCN.424654.

[12] J.E. Simsarian et al., “Demonstration of cloud-based streaming telemetry

processing for optical network monitoring,” 2021 Eur. Conf. Opt.
Commun. (ECOC), 2021, pp. 1–4, doi:

10.1109/ECOC52684.2021.9605813.

[13] X. Cheng et al., “IntStream: An intent-driven streaming network

telemetry framework,” 2021 17th Int. Conf. Netw. Service Manag.

(CNSM), 2021, pp. 473–481, doi: 10.23919/CNSM52442.2021.9615520.

[14] R.A.K. Fezeu and Z.-L. Zhang, “Anomalous model-driven-telemetry

network-stream BGP detection,” 2020 IEEE 28th Int. Conf. Netw. Protoc.

(ICNP), 2020, pp. 1–6, doi: 10.1109/ICNP49622.2020.9259411.

[15] A. Sadasivarao et al., “Demonstration of extensible threshold-based

streaming telemetry for open DWDM analytics and verification,” Opt.

Fiber Commun. Conf. (OFC) 2020, 2020, pp. 1–3, doi:

10.1364/OFC.2020.M3Z.5.

[16] R.P. Pinto et al., “Packet-optical differentiated survivability implemented

by P4 slices and gNMI telemetry,” 2023 Opt. Fiber Commun. Conf. Exhib.

(OFC) 2023, 2023, pp. 1–3, doi: 10.1364/OFC.2023.M1G.3.

[17] Ç. Kurt and O.A. Erdem, “Real-time anomaly detection and mitigation

using streaming telemetry in SDN,” Turkish J. Elect. Eng. Comput. Sci.,

vol. 28, no. 5, pp. 2448–2466, Sep. 2020, doi: 10.3906/elk-1909-112.

EN-106

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 13 Number 2 May 2024

Fierda Kurniacahya Ariefputra: Performance Analysis of a ... p-ISSN 2301–4156 | e-ISSN 2460–5719

[18] I. Ivanov, “Comparing the performance of SNMP to network telemetry

streaming with gRPC/GPB,” 53rd Int. Sci. Conf. Inf. Commun. Energy
Syst. Technol., 2018, pp. 175–178.

[19] E. Pettersson, “A comparison of pull-and push-based network monitoring

solutions examining bandwidth and system resource usage,”

Undergraduate thesis, KTH Royal Institute of Technology, Stockholm,

Swedia, 2021.

[20] B. Buresh et al. A Modern, Open, and Scalable Fabric VXLAN EVPN.

(2016). Access date: 7-Mar-2023. [Online]. Available:
https://www.cisco.com/c/dam/en/us/td/docs/switches/datacenter/nexus9

000/sw/vxlan_evpn/VXLAN_EVPN.pdf

[21] H. Song et al. (2022) “Network Telemetry Framework RFC 9232,”

[Online], https://datatracker.ietf.org/doc/html/rfc9232, access date: 10-
Mar-2023.

[22] M. Korshunov. Streaming telemetry: Considerations & challenges

[Online]. Available: https://ripe78.ripe.net/presentations/26-

ripe78_Korshunov_Streaming_Telemetry_consideration_and_challenge

s_final.pdf

[23] R. Dodin, B. Claeys, and M. Vahlenkamp, “Nokia SR Linux Streaming

Telemetry Lab,” [Online], https://github.com/srl-labs/srl-telemetry-lab,
access date: 10-Mar-2023.

EN-107

