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ABSTRACT — The increasing volume of data on the Internet of things (IoT)-based systems has driven the need for efficiency 

in data management, particularly in air quality monitoring systems. One approach to address this challenge is data duplication 

detection, which works to eliminate redundant data to reduce storage requirements and power consumption. This study aims 

to develop an IoT-based air quality monitoring system incorporating a data duplication detection method as part of an effort 

to support the green IoT concept. The methodology involved a comparative analysis between systems with and without the 

implementation of data duplication detection, accompanied by a comprehensive evaluation of system performance. The data 

tested included the size of transmitted data and device power consumption during the transmission process. Testing was 

conducted under real operational conditions over a 24-hour period. The results indicate that the implementation of data 

duplication detection successfully reduced the size of transmitted data from 56 bytes to 11–44 bytes, depending on the level 

of data redundancy. Power consumption was reduced by 1.59% to 3.84% compared to the system without data duplication 

detection. This method was also proven not to affect the accuracy of the displayed data, thereby maintaining the system’s 

functional requirements. In conclusion, the implementation of the data duplication detection method in an IoT-based air 

quality monitoring system not only optimizes data transmission processes but also supports energy efficiency in line with 

the principles of green IoT. This research provides a significant contribution to the development of more sustainable and 

energy-efficient IoT systems. 
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I. INTRODUCTION 

An air quality monitoring system is an electronic device 

designed to detect air quality in both indoor and outdoor 

environments. For outdoor air quality monitoring, device 

placement must take into account the surrounding 

meteorological conditions, as these significantly influence the 

rate of air pollution dispersion [1]. Given such meteorological 

factors, it is possible to have two or more air quality monitoring 

devices operating within the same area. Concurrently, the 

increasing deployment of monitoring devices, particularly 

those based on the Internet of things (IoT), has drawn global 

attention, especially concerning the electrical energy 

consumption of each IoT device. As IoT technology continues 

to advance, it is projected that by 2025, the total electricity 

consumption of IoT devices will reach the annual electricity 

consumption level of Portugal, which is approximately 46 TWh 

[2]. Even though the information and communication 

technologies (ICT) sector is not among the largest contributors 

to carbon emissions and greenhouse gases, it accounts for more 

than 2.5% of the total global toxic emissions [3]. This has led 

to the emergence of the green IoT concept [4], [5]. 

Green IoT aims to improve energy efficiency in IoT devices 

through modifications to both hardware and software 

components [6]. On the software side, optimization can be 

achieved by altering the data transmission flow from sensor 

readings to the server, primarily by reducing the size of the data 

being transmitted. 

Previous studies have shown that techniques such as 

dynamic subsampling, data fusion, and data scaling can reduce 

data size from 96 bytes to 50 bytes [7]. However, these methods 

compromise data accuracy. This highlights an urgent need for 

alternative approaches that can reduce data size without 

sacrificing accuracy. 

Data duplication detection is a promising method to address 

this challenge. Unlike previous techniques, data duplication 

detection manipulates only identical segments of data, thereby 

preserving the integrity of the information [8]. This method can 

be applied either before or after data storage. When applied 

prior to storage, it enables the reduction of data transmitted by 

the sensor, whereas post-storage approaches only affect the 

server-side database. 

Based on this research gap, the present study aims to 

develop an IoT-based air quality monitoring system that 

incorporates data duplication detection to minimize the 

continuous transmission of redundant data. This method is 

expected to reduce electricity consumption, thereby supporting 

the principles of green IoT [9]. The contribution of this study 

lies in offering an air quality monitoring solution that integrates 

the green IoT concept, with a particular emphasis on optimizing 

data transmission processes through the application of data 

duplication detection without compromising accuracy. 

Through this research, a green IoT-compliant air quality 

monitoring system is expected to be realized, with its primary 

focus on enhancing data transmission efficiency via duplication 

detection while maintaining data accuracy. 

II.  AIR QUALITY MONITORING SYSTEM 

A. AIR POLLUTION 

Air pollution refers to the entry or introduction of 

substances, energy, and/or other components into ambient air, 
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rendering it incapable of performing its intended functions 

effectively. Ambient air is the free air in the Earth’s troposphere, 

which is essential for and affects human health, living 

organisms, and other environmental elements. Pollution is 

primarily caused by emissions resulting from human activities. 

Accordingly, emission standards have been established to 

regulate the amount of emissions that may be released into 

ambient air [10]. 

To prevent air pollution, the government has established 

ambient air quality standards. These standards are divided into 

national and regional ambient air quality standards. Regional 

standards are determined based on the national standards and 

specific local environmental conditions. In cases where a 

regional government has not established its own standards, the 

national standards shall apply. 

The Government of Indonesia, through its ambient air 

quality monitoring stations, operates a national air monitoring 

system. Monitoring results are presented in the air quality index 

(AQI). The AQI utilizes a color-coded status to indicate the air 

quality condition in a given location. This classification is 

based on its impact on human health, aesthetics, and other 

living organisms. The status color is derived from the AQI 

numerical range. AQI parameters include PM10 and PM2.5 

particulate matter, carbon monoxide (CO), nitrogen dioxide 

(NO₂), sulfur oxides (SO₂), ozone (O₃), and hydrocarbons (HC) 

[11]. 

B. DATA DUPLICATION DETECTION 

Data deduplication is a method for detecting and 

eliminating redundant data to improve storage efficiency [8], 

[12], as illustrated in Figure 1. This method is crucial in large-

scale storage systems as it reduces data duplication, increases 

available storage capacity, and lowers operational costs [13].  

Generally, data deduplication can be categorized based on 

its placement, timing, and deduplication algorithm [14]. Based 

on placement, deduplication is divided into client-based 

deduplication, in which the deduplication process is entirely 

performed on the client side; deduplication appliance, in which 

the process is handled by a third-party device; and storage 

arrays, where deduplication occurs on the server or storage 

location of the client’s data. Based on timing, deduplication is 

categorized into synchronous/in-band deduplication, which is 

performed before data are written to storage, and 

asynchronous/out-of-band deduplication, which occurs 

periodically. In terms of algorithms, deduplication techniques 

include whole-file hashing, sub-file hashing, and delta 

encoding. 

The data deduplication process generally consists of 

chunking, fingerprinting, mega chunk formation, duplication 

detection, index updating, and storing unique data [15]. 

Chunking refers to dividing data into segments of specific sizes. 

Fingerprinting is the process of generating hash values or hash 

signatures [14] from data chunks. Mega chunk formation 

involves aggregating data chunks that have undergone 

fingerprinting. The hash signatures of data chunks are then 

compared with the metadata index that stores unique data 

entries to detect duplication. If no duplication is found, the data 

chunk is considered unique. The unique data are stored and the 

index is updated as a reference for future duplication detection. 

Metadata is “data within data” that describes specific 

information [16]. 

Data deduplication is a vital aspect of modern storage 

technologies and is regarded as an efficient method for 

optimizing data storage capacity [14]. However, the 

development of deduplication techniques faces several 

challenges, such as the rationality of chunk segmentation, 

performance optimization, the necessity to ensure data 

reliability, system scalability, and the placement of 

deduplicated data [8]. Compared to other storage optimization 

methods, data deduplication entails relatively high overhead in 

both computation and storage processes. Therefore, continuous 

development of deduplication methods is essential. 

Low-overhead inline data deduplication is an in-band or 

inline deduplication technique [17]. This technique employs 

two levels of fingerprinting: a weak fingerprint for fast 

duplication detection, and a strong fingerprint for more 

accurate analysis. According to a prior study [17], low-

overhead inline data deduplication demonstrates superior 

performance and satisfactory data write times compared to 

conventional data deduplication techniques. The performance 

improvement of the low-overhead inline data deduplication is 

supported by the implementation of adaptive sampling 

deduplication detection. Adaptive sampling deduplication 

detection is a constraint mechanism used during duplicate data 

detection. If no duplication is found within the initial D% of 

data blocks, the system may skip the remaining blocks. 

However, if duplication is detected before reaching the D% 

threshold, a full duplication detection process is executed. This 

approach accelerates deduplication by reducing the system’s 

workload. 

C. GREEN IOT 

The term “green” in green IoT refers to environmentally 

friendly and energy-efficient characteristics, applied to both 

hardware and software components. In simple terms, green IoT 

is a low-power version of the Internet of Things (IoT), proposed 

to reduce energy consumption by IoT devices amid the growing 

global adoption of IoT technology [9].  

IoT is a network connecting various devices through 

distinct identification elements, sensors, embedded intelligence, 

and ubiquitous internet connectivity [18]. The main idea of IoT 

is to interconnect physical objects and process their data 

through the internet for control or monitoring purposes. With 

the advancement of network technologies, IoT continues to 

gain attention for enabling seamless communication, 

connectivity, and controllability of objects anytime and 

anywhere. 

Figure 2 illustrates a general architecture of green IoT. An 

IoT system—from planning to implementation—must adhere 

to “green” principles [19], which can be applied at both the 

hardware and software levels. A typical green IoT architecture 

incorporates technologies such as green cloud computing, 

green radio frequency identification (RFID), green wireless 

sensor networks (WSN), green machine-to-machine 

 
Figure 1. Data duplication detection process. 
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communication, and green data centers. However, there is 

currently no universally accepted architecture for green IoT, 

which makes it difficult to focus development efforts on 

fundamental aspects [6]. As a result, dedicated standardization 

efforts are required, and a committee has been formed to 

establish such standards. Presently, this committee is focusing 

on determining protocols to interconnect various types of 

networks and heterogeneous devices. 

III. METHODOLOGY  

The system operates by implementing a data duplication 

detection method applied to data to be transmitted by the node. 

The process began by dividing the data into several segments, 

each consisting of 32 characters. After segmentation, each part 

was processed in two fingerprinting steps: the first 

fingerprinting and the second fingerprinting. 

The result of the first fingerprinting was compared with 

previously stored data. If a match was found, the comparison 

proceeded with the result of the second fingerprinting. If 

another match was found during the second comparison, the 

system retrieved the index corresponding to that segment. This 

comparison process continued until a match was found, as long 

as the previous data remained available.  

Once the comparison process was completed, the next step 

was to recombine the segments using a semicolon (“;”) 

delimiter. Segments that matched previously existing data were 

represented by the index of the matching data. After 

reassembling all segments, the resulting data was transmitted 

to the server. 

On the server side, the data received from the node was 

separated using the delimiter character. These segments were 

then examined to determine whether they represented server 

indexes or original data. If a segment was identified as a server 

index, the system retrieved the corresponding original data 

from the database, replacing the server index with the original 

data. If a segment contained original data, it was stored in the 

database and assigned a server index. After all segments were 

processed, they were reassembled without the delimiter, 

reconstructing the original data from the node. The server 

indexes corresponding to the original data segments were then 

sent back to the node. When the node received the server index 

data, it stored this information along with the segments that did 

not match any previously stored data. 

The system functioned by applying a data duplication 

detection method. Figure 3 illustrates the workflow of the data 

duplication detection system in the IoT-based air quality 

monitoring system. The duplication detection process was 

conducted after the sensor performed its reading. The readings 

from each sensor were combined into a single JavaScript 

Object Notation (JSON)-formatted data object, including the 

node ID, which had been registered in the server database. 

JSON was used as an alternative data format to Extensible 

Markup Language (XML) for data exchange and storage. It 

consisted of key-value pairs, enabling efficient data 

communication. 

Once the sensor reading data and node ID were combined 

into JSON format, the data underwent the duplication detection 

process. The result of this process was then transmitted to the 

server for storage in the server database.  

Figure 3 illustrates the workflow of the data duplication 

detection system in the IoT-based air quality monitoring system. 

The detection mechanism operates on both the node and the 

server. Therefore, synchronization between the node and the 

server was crucial to ensure consistency between the sensor 

readings and the data displayed in the application or stored on 

the server.  

Duplication detection on the JSON data was performed by 

dividing the JSON data into several segments referred to as 

chunks. Each chunk contained a maximum of 32 bytes. These 

chunks were then subjected to two fingerprinting processes: the 

first was applied to half of the chunk’s data, and the second to 

the entire chunk. The fingerprinting was performed using the 

MurmurHash3 hashing algorithm. MurmurHash is a non-

cryptographic hash function designed for general-purpose 

hash-based lookups, developed by Austin Appleby in 2008, 

with MurmurHash3 being its latest version [20]. The 

fingerprinting results were used as reference data to identify 

duplicates. The use of MurmurHash3 accelerated the 

fingerprinting process, as it was the fastest hashing algorithm 

[20] compared to other widely used algorithms, such as SHA-

256 and SHA-512. 

The comparison data refers to the data utilized by the 

duplicate detection method to determine whether a particular 

piece of data is a duplicate. In this case, the data being detected 

are data chunks. 

The processed data chunks were then converted into 

fingerprint one and fingerprint two. These two fingerprints 

were compared with the previously processed fingerprint data. 

If there was a matching fingerprint, the corresponding data 

chunk was identified as a duplicate. Conversely, if there was no 

match, the data chunk was considered unique. If, during the 

process, two identical data chunks existed but only one was 

included in the comparison set, the system did not recognize 

the chunk as a duplicate. After the comparison process, data 

chunks identified as duplicates were replaced with server index 

data, whereas nonduplicate data chunks remained unchanged. 

All compared data chunks were then compiled into a single list, 

separated by the “;” character, and transmitted to the server. 

The server index data refers to numeric values obtained 

after a data chunk is stored in the database. These numerical 

values represent the position of the chunk within the database 

 

Figure 2. Green IoT architecture. 
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so that when the chunk is needed, it can be retrieved based on 

its position. In the list generated at the node, if any of the list 

elements was a data chunk, the server first stored that chunk 

into the database, and then the resulting server index was stored 

and sent back to the node. If th e element was already identified 

as a server index, this step was skipped. 

The determination of whether an element in the list is a data 

chunk or a server index is based on its data type. If the data type 

is string, the element is a data chunk; if the data type is integer, 

the element is a server index. After all detected data chunks 

were stored in the database, the server index values were 

replaced with their corresponding data chunks, resulting in a 

list composed entirely of data chunks. 

This complete list of data chunks was then combined to 

form the latest sensor reading data. The latest sensor reading 

data here referred to the JSON data previously generated by the 

node before undergoing the duplicate detection process. 

After the latest sensor reading data was stored, the newly 

generated server index data was sent back to the node in the 

form of a list, separated by commas (“,”) and ending with a 

semicolon (“;”). These server index data were stored at the node 

as new comparison data and were merged with the 

corresponding fingerprint one and fingerprint two data. 

When data are transmitted from the node to the server and 

vice versa, a gateway serves as an intermediary to facilitate 

communication between the node and the server. This is 

necessary because the node only supports LoRa 

communication. LoRa communication cannot directly connect 

to the internet and requires an intermediary device, namely a 

gateway. The gateway in the system transmits data to the server 

using the message queuing telemetry transport (MQTT) 

protocol. 

On the Android application, the latest sensor reading data 

are obtained by periodically sending Hypertext Transfer 

Protocol (HTTP) requests to the server. The received data are 

then parsed into individual sensor readings: PM 1.0, PM 2.5, 

PM 10, temperature, humidity, and wind speed. The latest 

sensor reading data received by the Android application 

corresponds to the device ID of the IoT device, from which the 

latest sensor data is retrieved. 

The latest sensor reading data consisted of the IoT device 

ID and the sensor reading data. The sensor reading data were 

composed of two parts, separated by the “|” character. The first 

part contained labels representing the combined sensor data. 

These labels included the characters “h,” “t,” “1,” “2,” “0,” and 

“v.” Label “h” represented humidity data, “t” represented 

temperature, “1” represented PM 1.0, “2” represented PM 2.5, 

“0” represented PM 10, and “v” represented wind speed. The 

second part contained the actual sensor readings, with values 

separated by commas (“,”). The sequence of the readings 

followed the label order in the first part. If a sensor did not 

transmit any data, that sensor’s label was not included, and the 

number of values in the second part was reduced accordingly. 

For example, if the wind speed sensor did not provide any 

reading, the label “v” would be absent in the first part, and the 

second part would contain one fewer value. 

IV. RESULTS AND DISCUSSION 

A. SOFTWARE TESTING WITHOUT DATA DUPLICATION 
DETECTION 

Software testing without data duplication detection was 

conducted over a duration of three hours. The data collected 

included the data transmitted by the node along with its 

transmission time, the data received by the server along with its 

reception time, and the power consumption data of the node. 

The data transmitted during the test consisted of PM 1.0, PM 

2.5, PM 10, temperature, humidity, and wind speed, with each 

data type generated as random values.  

To monitor the power consumption during data 

transmission, the LoRa module on the node side was connected 

in series with the INA219 sensor, as illustrated in Figure 3. The 

INA219 sensor readings were obtained from the Serial Monitor 

of the Arduino IDE. 

Figure 4 presents the power consumption graph of the node 

during the three-hour test. The average power consumption of 

the node over the three-hour period was 962.93 mW, and each 

data transmission required an average power of 2,266.04 mW. 

B. SOFTWARE TESTING WITH DATA DUPLICATION 
DETECTION 

Software testing with data duplication detection was 

performed following the configuration illustrated in Figure 4. 

This test evaluates the updated system software which 

incorporates a data duplication detection method. The purpose 

of the test was to assess the accuracy of the data and the 

electrical power required for data transmission by the LoRa 

module, resulting from the application of data duplication 

detection in the air quality monitoring system. The test was 

conducted under three different scenarios. In the first scenario, 

identical or static data were used throughout the three-hour test 

duration. The second scenario involved the use of random 

data—sensor readings generated as random values by Arduino 

Mega. The third scenario utilized server index data transmitted 

by the server in large sizes. Each scenario was executed over a 

three-hour period, resulting in a total of nine hours of combined 

testing. 

Figure 5 shows the results of the software testing with data 

duplication detection where the sensor data transmitted was 

consistently identical in each reading period. Consequently, the 

data transmitted remained the same across each transmission 

interval. The results indicate that during the three-hour test, the 

node consumed an average power of 950.211 mW, with an 

average power consumption of 2,230.51 mW during each data 

transmission. This represents a 35.49 mW or 1.59% reduction 

compared to data transmission without the use of the data 

duplication detection method. 

 

Figure 3. Software testing schematic. 
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Figure 6 presents the power consumption data from the test 

where the software incorporated data duplication detection and 

the sensor readings were randomly generated. As a result, the 

data transmitted by the node varied in each transmission period. 

The results show that during the three-hour test, the node 

consumed an average power of 937.039 mW, and the average 

power required for data transmission was 2,195.026 mW. This 

represents a reduction of 71.01 mW or 3.24% compared to the 

power consumption during software testing without data 

duplication detection.  

 Figure 7 displays the node’s power consumption data over 

a three-hour test using server index data, which was transmitted 

in large sizes. The results indicate that the average power 

consumption of the node during the test was 807.30 mW, and 

the average power used during data transmission was 2,182.038 

mW. This value is 3.85% lower than the power consumption 

without the use of data duplication detection. 

Based on the results presented in Figure 4 through Figure 7, 

it can be concluded that the data duplication detection method 

effectively reduces power consumption. This reduction occurs 

because the method minimizes the amount of data received by 

the LoRa module, leading to a lighter processing load. With 

fewer data to process, the power consumption of the LoRa 

module decreases accordingly. 

C. SYSTEM TESTING 

System testing was conducted to determine whether the 

developed system functions as intended. This was verified by 

the successful display of sensor readings—including PM 1.0, 

PM 2.5, PM 10, temperature, humidity, and wind speed—on 

the Android application. The test involved comparing the 

readings obtained from the node with the data displayed in the 

Android application over a 24-hour testing period. If the 

displayed data are consistent between the two, it indicates that 

the system is functioning properly. 

Table I shows the first ten and last ten data records from the 

24-hour system testing. The table demonstrates that the sensor 

readings from the node and the data received by the Android 

application are identical. This confirms that the data 

duplication detection system operates correctly, as evidenced 

by the consistency between the sensor data and the data 

displayed in the Android application. 

The system testing demonstrates that, even when data 

manipulation occurs prior to transmission from the node, the 

IoT system is still capable of delivering the latest sensor 

readings accurately and without error. Errors in this context 

may arise if the server index used is incorrect, leading to a 

mismatch between the transmitted server index and the 

intended chunk position within the database. Additional errors 

may result from an improper sequence of data during the 

duplication detection process. Such misalignment can cause the 

reconstruction of data chunks in an incorrect order, rendering 

the data received by the Android application incoherent. For 

instance, a data chunk that should appear at the beginning may 

be positioned at the end, or a chunk intended for the middle 

may appear at the front. Consequently, the Android application 

is unable to process the data due to its invalid structure, 

preventing it from displaying the corresponding sensor 

readings. 

V. ANALYSIS 

Based on Figure 8, it can be observed that the use of data 

duplication detection with a server index data result in a larger 

 

Figure 4. Power reading graph of software testing without data duplication 
detection. 

 

Figure 5. Graph of power consumption test results using data duplication. 

. 

 

Figure 6. Graph of power consumption test results using data duplication 

  

Figure 7. Graph of power consumption test results using data duplication 
detection with large-sized server index data. 

 

 

EN-142



Jurnal Nasional Teknik Elektro dan Teknologi Informasi 
Volume 14 Number 2 May 2025 

 

 

Dwi Ilham Maulana: Data Duplication Detection in …  p-ISSN 2301–4156 | e-ISSN 2460–5719 

data size but records the lowest average power consumption 

compared to the other test scenarios. This is attributed to lower 

power consumption during the node’s idle process, which only 

consumes approximately 800 mW, compared to around 900 

mW in the other tests.  

Figure 9 presents a comparison of the average power 

consumption by the node in each test during data transmission, 

measured in mW. The test employing data duplication 

detection using the large index data server scenario shows a 

reduction in power consumption by 3.85% compared to the test 

without data duplication detection. Other tests involving data 

duplication detection with random sensor values and constant 

sensor values demonstrate power consumption reductions of 

3.24% and 1.59%, respectively. These results confirm that data 

duplication detection can reduce power consumption by 

decreasing the amount of data transmitted from the node to the 

server, with power reductions ranging from 1.59% to 3.84%.  

 Figure 10 illustrates a comparison of the data size 

transmitted by the node for systems implementing data 

duplication detection and those without, measured in bytes. It 

is evident that the implementation of data duplication detection 

reduces the data size to between 11 and 44 bytes, compared to 

56 bytes in systems without duplication detection. When the 

index data approaches its maximum capacity, the size of the 

index data is 19 bytes. Therefore, it can be concluded that the 

use of data duplication detection reduces the data size from 58 

bytes to approximately 40–45 bytes. 

System testing further confirms that the data duplication 

detection method functions correctly when the node is 

connected to the sensors. This is evidenced by the consistency 

of sensor reading values between the node and the Android 

application. These values include readings of PM 1.0, PM 2.5, 

PM 10, temperature, humidity, and wind speed. 

VI. CONCLUSION  

The data duplication detection system has been successfully 

implemented in the air quality monitoring system, as evidenced 

by the identical values of PM 1.0, PM 2.5, PM 10, temperature, 

humidity, and wind speed recorded by both the Android 

application and the node. Furthermore, the data duplication 

detection mechanism effectively reduces the size of transmitted 

data, from 56 bytes to a range between 11 and 44 bytes. This 

reduction occurs when the transmitted data contains segments 

that are similar to previously sent data chunks. In such cases, 

the existing data chunks are replaced by their corresponding 

indices from the server, rather than retransmitting the original 

data, resulting in more efficient data transmission. If the 

detected data are new, it is transmitted in full and processed by 

the server. Once more than ten unique data entries are identified 

during the initial transmission, subsequent data are consistently 

treated as unique, even if duplicates are present. Under ideal 

conditions with no communication errors, the implementation 

TABLE I 

SYSTEM TESTING RESULTS 

PM 1,0 PM 2,5 PM 10 Temperature Air Humidity Wind Speed 

Node Android Node Android Node Android Node Android Node Android Node Android 

25 25 34 34 41 41 26 26 77 77 0 0 

28 28 36 36 45 45 26 26 77 77 20 20 

28 28 36 36 45 45 26 26 78 78 0 0 

25 25 34 34 43 43 26 26 78 78 0 0 

22 22 30 30 38 38 26 26 79 79 0 0 

… … … … … … … … … … … … 

26 26 34 34 39 39 35 35 55 55 0 0 

26 26 34 34 39 39 35 35 55 55 0 0 

23 23 31 31 35 35 35 35 55 55 0 0 

23 23 31 31 35 35 35 35 56 56 0 0 

23 23 32 32 35 35 35 35 54 54 0 0 

 

 

Figure 8. Comparison of overall power consumption between systems without 
and with data duplication detection. 

 

 

Figure 9. Comparison of power consumption during transmission for systems 
without data duplication detection and systems using duplication detection. 

 

Figure 10. Comparison of data sizes sent by software without duplicate data 
detection and software with duplicate data detection. 
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of data duplication detection can reduce data usage by 11 to 44 

bytes and save power consumption by 1.59% to 3.84% 

compared to systems without data duplication detection. 
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