
Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Dwi Ilham Maulana: Data Duplication Detection in …

© Jurnal Nasional Teknik Elektro dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Translation of 10.22146/jnteti.v14i2.16272

Data Duplication Detection in IoT-based Air Quality
Monitoring System
Dwi Ilham Maulana1, Asep Andang1, Ifkar Usrah1, Agus Purnomo2

1 Electrical Engineering Department, Faculty of Engineering, Siliwangi University, Tasikmalaya, Jawa Barat 46115, Indonesia
2 Jurusan Teknologi Laboratorium Medis, Poltekkes Kemenkes Tanjungkarang, Bandar Lampung, Lampung 35145, Indonesia

[Submitted: 19 September 2024, Revised: 14 December 2024, Accepted: 16 April 2025]

Corresponding Author: Asep Andang (andhangs@unsil.ac.id)

ABSTRACT — The increasing volume of data on the Internet of things (IoT)-based systems has driven the need for efficiency

in data management, particularly in air quality monitoring systems. One approach to address this challenge is data duplication

detection, which works to eliminate redundant data to reduce storage requirements and power consumption. This study aims

to develop an IoT-based air quality monitoring system incorporating a data duplication detection method as part of an effort

to support the green IoT concept. The methodology involved a comparative analysis between systems with and without the

implementation of data duplication detection, accompanied by a comprehensive evaluation of system performance. The data

tested included the size of transmitted data and device power consumption during the transmission process. Testing was

conducted under real operational conditions over a 24-hour period. The results indicate that the implementation of data

duplication detection successfully reduced the size of transmitted data from 56 bytes to 11–44 bytes, depending on the level

of data redundancy. Power consumption was reduced by 1.59% to 3.84% compared to the system without data duplication

detection. This method was also proven not to affect the accuracy of the displayed data, thereby maintaining the system’s

functional requirements. In conclusion, the implementation of the data duplication detection method in an IoT-based air

quality monitoring system not only optimizes data transmission processes but also supports energy efficiency in line with

the principles of green IoT. This research provides a significant contribution to the development of more sustainable and

energy-efficient IoT systems.

KEYWORDS — Duplicate Data Detection, Inline Duplicate Data Detection, IoT, Green IoT, Air Quality Monitoring System.

I. INTRODUCTION

An air quality monitoring system is an electronic device

designed to detect air quality in both indoor and outdoor

environments. For outdoor air quality monitoring, device

placement must take into account the surrounding

meteorological conditions, as these significantly influence the

rate of air pollution dispersion [1]. Given such meteorological

factors, it is possible to have two or more air quality monitoring

devices operating within the same area. Concurrently, the

increasing deployment of monitoring devices, particularly

those based on the Internet of things (IoT), has drawn global

attention, especially concerning the electrical energy

consumption of each IoT device. As IoT technology continues

to advance, it is projected that by 2025, the total electricity

consumption of IoT devices will reach the annual electricity

consumption level of Portugal, which is approximately 46 TWh

[2]. Even though the information and communication

technologies (ICT) sector is not among the largest contributors

to carbon emissions and greenhouse gases, it accounts for more

than 2.5% of the total global toxic emissions [3]. This has led

to the emergence of the green IoT concept [4], [5].

Green IoT aims to improve energy efficiency in IoT devices

through modifications to both hardware and software

components [6]. On the software side, optimization can be

achieved by altering the data transmission flow from sensor

readings to the server, primarily by reducing the size of the data

being transmitted.

Previous studies have shown that techniques such as

dynamic subsampling, data fusion, and data scaling can reduce

data size from 96 bytes to 50 bytes [7]. However, these methods

compromise data accuracy. This highlights an urgent need for

alternative approaches that can reduce data size without

sacrificing accuracy.

Data duplication detection is a promising method to address

this challenge. Unlike previous techniques, data duplication

detection manipulates only identical segments of data, thereby

preserving the integrity of the information [8]. This method can

be applied either before or after data storage. When applied

prior to storage, it enables the reduction of data transmitted by

the sensor, whereas post-storage approaches only affect the

server-side database.

Based on this research gap, the present study aims to

develop an IoT-based air quality monitoring system that

incorporates data duplication detection to minimize the

continuous transmission of redundant data. This method is

expected to reduce electricity consumption, thereby supporting

the principles of green IoT [9]. The contribution of this study

lies in offering an air quality monitoring solution that integrates

the green IoT concept, with a particular emphasis on optimizing

data transmission processes through the application of data

duplication detection without compromising accuracy.

Through this research, a green IoT-compliant air quality

monitoring system is expected to be realized, with its primary

focus on enhancing data transmission efficiency via duplication

detection while maintaining data accuracy.

II. AIR QUALITY MONITORING SYSTEM

A. AIR POLLUTION

Air pollution refers to the entry or introduction of

substances, energy, and/or other components into ambient air,

EN-138

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

Dwi Ilham Maulana: Data Duplication Detection in … p-ISSN 2301–4156 | e-ISSN 2460–5719

rendering it incapable of performing its intended functions

effectively. Ambient air is the free air in the Earth’s troposphere,

which is essential for and affects human health, living

organisms, and other environmental elements. Pollution is

primarily caused by emissions resulting from human activities.

Accordingly, emission standards have been established to

regulate the amount of emissions that may be released into

ambient air [10].

To prevent air pollution, the government has established

ambient air quality standards. These standards are divided into

national and regional ambient air quality standards. Regional

standards are determined based on the national standards and

specific local environmental conditions. In cases where a

regional government has not established its own standards, the

national standards shall apply.

The Government of Indonesia, through its ambient air

quality monitoring stations, operates a national air monitoring

system. Monitoring results are presented in the air quality index

(AQI). The AQI utilizes a color-coded status to indicate the air

quality condition in a given location. This classification is

based on its impact on human health, aesthetics, and other

living organisms. The status color is derived from the AQI

numerical range. AQI parameters include PM10 and PM2.5

particulate matter, carbon monoxide (CO), nitrogen dioxide

(NO₂), sulfur oxides (SO₂), ozone (O₃), and hydrocarbons (HC)

[11].

B. DATA DUPLICATION DETECTION

Data deduplication is a method for detecting and

eliminating redundant data to improve storage efficiency [8],

[12], as illustrated in Figure 1. This method is crucial in large-

scale storage systems as it reduces data duplication, increases

available storage capacity, and lowers operational costs [13].

Generally, data deduplication can be categorized based on

its placement, timing, and deduplication algorithm [14]. Based

on placement, deduplication is divided into client-based

deduplication, in which the deduplication process is entirely

performed on the client side; deduplication appliance, in which

the process is handled by a third-party device; and storage

arrays, where deduplication occurs on the server or storage

location of the client’s data. Based on timing, deduplication is

categorized into synchronous/in-band deduplication, which is

performed before data are written to storage, and

asynchronous/out-of-band deduplication, which occurs

periodically. In terms of algorithms, deduplication techniques

include whole-file hashing, sub-file hashing, and delta

encoding.

The data deduplication process generally consists of

chunking, fingerprinting, mega chunk formation, duplication

detection, index updating, and storing unique data [15].

Chunking refers to dividing data into segments of specific sizes.

Fingerprinting is the process of generating hash values or hash

signatures [14] from data chunks. Mega chunk formation

involves aggregating data chunks that have undergone

fingerprinting. The hash signatures of data chunks are then

compared with the metadata index that stores unique data

entries to detect duplication. If no duplication is found, the data

chunk is considered unique. The unique data are stored and the

index is updated as a reference for future duplication detection.

Metadata is “data within data” that describes specific

information [16].

Data deduplication is a vital aspect of modern storage

technologies and is regarded as an efficient method for

optimizing data storage capacity [14]. However, the

development of deduplication techniques faces several

challenges, such as the rationality of chunk segmentation,

performance optimization, the necessity to ensure data

reliability, system scalability, and the placement of

deduplicated data [8]. Compared to other storage optimization

methods, data deduplication entails relatively high overhead in

both computation and storage processes. Therefore, continuous

development of deduplication methods is essential.

Low-overhead inline data deduplication is an in-band or

inline deduplication technique [17]. This technique employs

two levels of fingerprinting: a weak fingerprint for fast

duplication detection, and a strong fingerprint for more

accurate analysis. According to a prior study [17], low-

overhead inline data deduplication demonstrates superior

performance and satisfactory data write times compared to

conventional data deduplication techniques. The performance

improvement of the low-overhead inline data deduplication is

supported by the implementation of adaptive sampling

deduplication detection. Adaptive sampling deduplication

detection is a constraint mechanism used during duplicate data

detection. If no duplication is found within the initial D% of

data blocks, the system may skip the remaining blocks.

However, if duplication is detected before reaching the D%

threshold, a full duplication detection process is executed. This

approach accelerates deduplication by reducing the system’s

workload.

C. GREEN IOT

The term “green” in green IoT refers to environmentally

friendly and energy-efficient characteristics, applied to both

hardware and software components. In simple terms, green IoT

is a low-power version of the Internet of Things (IoT), proposed

to reduce energy consumption by IoT devices amid the growing

global adoption of IoT technology [9].

IoT is a network connecting various devices through

distinct identification elements, sensors, embedded intelligence,

and ubiquitous internet connectivity [18]. The main idea of IoT

is to interconnect physical objects and process their data

through the internet for control or monitoring purposes. With

the advancement of network technologies, IoT continues to

gain attention for enabling seamless communication,

connectivity, and controllability of objects anytime and

anywhere.

Figure 2 illustrates a general architecture of green IoT. An

IoT system—from planning to implementation—must adhere

to “green” principles [19], which can be applied at both the

hardware and software levels. A typical green IoT architecture

incorporates technologies such as green cloud computing,

green radio frequency identification (RFID), green wireless

sensor networks (WSN), green machine-to-machine

Figure 1. Data duplication detection process.

EN-139

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Dwi Ilham Maulana: Data Duplication Detection in …

communication, and green data centers. However, there is

currently no universally accepted architecture for green IoT,

which makes it difficult to focus development efforts on

fundamental aspects [6]. As a result, dedicated standardization

efforts are required, and a committee has been formed to

establish such standards. Presently, this committee is focusing

on determining protocols to interconnect various types of

networks and heterogeneous devices.

III. METHODOLOGY

The system operates by implementing a data duplication

detection method applied to data to be transmitted by the node.

The process began by dividing the data into several segments,

each consisting of 32 characters. After segmentation, each part

was processed in two fingerprinting steps: the first

fingerprinting and the second fingerprinting.

The result of the first fingerprinting was compared with

previously stored data. If a match was found, the comparison

proceeded with the result of the second fingerprinting. If

another match was found during the second comparison, the

system retrieved the index corresponding to that segment. This

comparison process continued until a match was found, as long

as the previous data remained available.

Once the comparison process was completed, the next step

was to recombine the segments using a semicolon (“;”)

delimiter. Segments that matched previously existing data were

represented by the index of the matching data. After

reassembling all segments, the resulting data was transmitted

to the server.

On the server side, the data received from the node was

separated using the delimiter character. These segments were

then examined to determine whether they represented server

indexes or original data. If a segment was identified as a server

index, the system retrieved the corresponding original data

from the database, replacing the server index with the original

data. If a segment contained original data, it was stored in the

database and assigned a server index. After all segments were

processed, they were reassembled without the delimiter,

reconstructing the original data from the node. The server

indexes corresponding to the original data segments were then

sent back to the node. When the node received the server index

data, it stored this information along with the segments that did

not match any previously stored data.

The system functioned by applying a data duplication

detection method. Figure 3 illustrates the workflow of the data

duplication detection system in the IoT-based air quality

monitoring system. The duplication detection process was

conducted after the sensor performed its reading. The readings

from each sensor were combined into a single JavaScript

Object Notation (JSON)-formatted data object, including the

node ID, which had been registered in the server database.

JSON was used as an alternative data format to Extensible

Markup Language (XML) for data exchange and storage. It

consisted of key-value pairs, enabling efficient data

communication.

Once the sensor reading data and node ID were combined

into JSON format, the data underwent the duplication detection

process. The result of this process was then transmitted to the

server for storage in the server database.

Figure 3 illustrates the workflow of the data duplication

detection system in the IoT-based air quality monitoring system.

The detection mechanism operates on both the node and the

server. Therefore, synchronization between the node and the

server was crucial to ensure consistency between the sensor

readings and the data displayed in the application or stored on

the server.

Duplication detection on the JSON data was performed by

dividing the JSON data into several segments referred to as

chunks. Each chunk contained a maximum of 32 bytes. These

chunks were then subjected to two fingerprinting processes: the

first was applied to half of the chunk’s data, and the second to

the entire chunk. The fingerprinting was performed using the

MurmurHash3 hashing algorithm. MurmurHash is a non-

cryptographic hash function designed for general-purpose

hash-based lookups, developed by Austin Appleby in 2008,

with MurmurHash3 being its latest version [20]. The

fingerprinting results were used as reference data to identify

duplicates. The use of MurmurHash3 accelerated the

fingerprinting process, as it was the fastest hashing algorithm

[20] compared to other widely used algorithms, such as SHA-

256 and SHA-512.

The comparison data refers to the data utilized by the

duplicate detection method to determine whether a particular

piece of data is a duplicate. In this case, the data being detected

are data chunks.

The processed data chunks were then converted into

fingerprint one and fingerprint two. These two fingerprints

were compared with the previously processed fingerprint data.

If there was a matching fingerprint, the corresponding data

chunk was identified as a duplicate. Conversely, if there was no

match, the data chunk was considered unique. If, during the

process, two identical data chunks existed but only one was

included in the comparison set, the system did not recognize

the chunk as a duplicate. After the comparison process, data

chunks identified as duplicates were replaced with server index

data, whereas nonduplicate data chunks remained unchanged.

All compared data chunks were then compiled into a single list,

separated by the “;” character, and transmitted to the server.

The server index data refers to numeric values obtained

after a data chunk is stored in the database. These numerical

values represent the position of the chunk within the database

Figure 2. Green IoT architecture.

EN-140

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

Dwi Ilham Maulana: Data Duplication Detection in … p-ISSN 2301–4156 | e-ISSN 2460–5719

so that when the chunk is needed, it can be retrieved based on

its position. In the list generated at the node, if any of the list

elements was a data chunk, the server first stored that chunk

into the database, and then the resulting server index was stored

and sent back to the node. If th e element was already identified

as a server index, this step was skipped.

The determination of whether an element in the list is a data

chunk or a server index is based on its data type. If the data type

is string, the element is a data chunk; if the data type is integer,

the element is a server index. After all detected data chunks

were stored in the database, the server index values were

replaced with their corresponding data chunks, resulting in a

list composed entirely of data chunks.

This complete list of data chunks was then combined to

form the latest sensor reading data. The latest sensor reading

data here referred to the JSON data previously generated by the

node before undergoing the duplicate detection process.

After the latest sensor reading data was stored, the newly

generated server index data was sent back to the node in the

form of a list, separated by commas (“,”) and ending with a

semicolon (“;”). These server index data were stored at the node

as new comparison data and were merged with the

corresponding fingerprint one and fingerprint two data.

When data are transmitted from the node to the server and

vice versa, a gateway serves as an intermediary to facilitate

communication between the node and the server. This is

necessary because the node only supports LoRa

communication. LoRa communication cannot directly connect

to the internet and requires an intermediary device, namely a

gateway. The gateway in the system transmits data to the server

using the message queuing telemetry transport (MQTT)

protocol.

On the Android application, the latest sensor reading data

are obtained by periodically sending Hypertext Transfer

Protocol (HTTP) requests to the server. The received data are

then parsed into individual sensor readings: PM 1.0, PM 2.5,

PM 10, temperature, humidity, and wind speed. The latest

sensor reading data received by the Android application

corresponds to the device ID of the IoT device, from which the

latest sensor data is retrieved.

The latest sensor reading data consisted of the IoT device

ID and the sensor reading data. The sensor reading data were

composed of two parts, separated by the “|” character. The first

part contained labels representing the combined sensor data.

These labels included the characters “h,” “t,” “1,” “2,” “0,” and

“v.” Label “h” represented humidity data, “t” represented

temperature, “1” represented PM 1.0, “2” represented PM 2.5,

“0” represented PM 10, and “v” represented wind speed. The

second part contained the actual sensor readings, with values

separated by commas (“,”). The sequence of the readings

followed the label order in the first part. If a sensor did not

transmit any data, that sensor’s label was not included, and the

number of values in the second part was reduced accordingly.

For example, if the wind speed sensor did not provide any

reading, the label “v” would be absent in the first part, and the

second part would contain one fewer value.

IV. RESULTS AND DISCUSSION

A. SOFTWARE TESTING WITHOUT DATA DUPLICATION
DETECTION

Software testing without data duplication detection was

conducted over a duration of three hours. The data collected

included the data transmitted by the node along with its

transmission time, the data received by the server along with its

reception time, and the power consumption data of the node.

The data transmitted during the test consisted of PM 1.0, PM

2.5, PM 10, temperature, humidity, and wind speed, with each

data type generated as random values.

To monitor the power consumption during data

transmission, the LoRa module on the node side was connected

in series with the INA219 sensor, as illustrated in Figure 3. The

INA219 sensor readings were obtained from the Serial Monitor

of the Arduino IDE.

Figure 4 presents the power consumption graph of the node

during the three-hour test. The average power consumption of

the node over the three-hour period was 962.93 mW, and each

data transmission required an average power of 2,266.04 mW.

B. SOFTWARE TESTING WITH DATA DUPLICATION
DETECTION

Software testing with data duplication detection was

performed following the configuration illustrated in Figure 4.

This test evaluates the updated system software which

incorporates a data duplication detection method. The purpose

of the test was to assess the accuracy of the data and the

electrical power required for data transmission by the LoRa

module, resulting from the application of data duplication

detection in the air quality monitoring system. The test was

conducted under three different scenarios. In the first scenario,

identical or static data were used throughout the three-hour test

duration. The second scenario involved the use of random

data—sensor readings generated as random values by Arduino

Mega. The third scenario utilized server index data transmitted

by the server in large sizes. Each scenario was executed over a

three-hour period, resulting in a total of nine hours of combined

testing.

Figure 5 shows the results of the software testing with data

duplication detection where the sensor data transmitted was

consistently identical in each reading period. Consequently, the

data transmitted remained the same across each transmission

interval. The results indicate that during the three-hour test, the

node consumed an average power of 950.211 mW, with an

average power consumption of 2,230.51 mW during each data

transmission. This represents a 35.49 mW or 1.59% reduction

compared to data transmission without the use of the data

duplication detection method.

Figure 3. Software testing schematic.

EN-141

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Dwi Ilham Maulana: Data Duplication Detection in …

Figure 6 presents the power consumption data from the test

where the software incorporated data duplication detection and

the sensor readings were randomly generated. As a result, the

data transmitted by the node varied in each transmission period.

The results show that during the three-hour test, the node

consumed an average power of 937.039 mW, and the average

power required for data transmission was 2,195.026 mW. This

represents a reduction of 71.01 mW or 3.24% compared to the

power consumption during software testing without data

duplication detection.

 Figure 7 displays the node’s power consumption data over

a three-hour test using server index data, which was transmitted

in large sizes. The results indicate that the average power

consumption of the node during the test was 807.30 mW, and

the average power used during data transmission was 2,182.038

mW. This value is 3.85% lower than the power consumption

without the use of data duplication detection.

Based on the results presented in Figure 4 through Figure 7,

it can be concluded that the data duplication detection method

effectively reduces power consumption. This reduction occurs

because the method minimizes the amount of data received by

the LoRa module, leading to a lighter processing load. With

fewer data to process, the power consumption of the LoRa

module decreases accordingly.

C. SYSTEM TESTING

System testing was conducted to determine whether the

developed system functions as intended. This was verified by

the successful display of sensor readings—including PM 1.0,

PM 2.5, PM 10, temperature, humidity, and wind speed—on

the Android application. The test involved comparing the

readings obtained from the node with the data displayed in the

Android application over a 24-hour testing period. If the

displayed data are consistent between the two, it indicates that

the system is functioning properly.

Table I shows the first ten and last ten data records from the

24-hour system testing. The table demonstrates that the sensor

readings from the node and the data received by the Android

application are identical. This confirms that the data

duplication detection system operates correctly, as evidenced

by the consistency between the sensor data and the data

displayed in the Android application.

The system testing demonstrates that, even when data

manipulation occurs prior to transmission from the node, the

IoT system is still capable of delivering the latest sensor

readings accurately and without error. Errors in this context

may arise if the server index used is incorrect, leading to a

mismatch between the transmitted server index and the

intended chunk position within the database. Additional errors

may result from an improper sequence of data during the

duplication detection process. Such misalignment can cause the

reconstruction of data chunks in an incorrect order, rendering

the data received by the Android application incoherent. For

instance, a data chunk that should appear at the beginning may

be positioned at the end, or a chunk intended for the middle

may appear at the front. Consequently, the Android application

is unable to process the data due to its invalid structure,

preventing it from displaying the corresponding sensor

readings.

V. ANALYSIS

Based on Figure 8, it can be observed that the use of data

duplication detection with a server index data result in a larger

Figure 4. Power reading graph of software testing without data duplication
detection.

Figure 5. Graph of power consumption test results using data duplication.

.

Figure 6. Graph of power consumption test results using data duplication

Figure 7. Graph of power consumption test results using data duplication
detection with large-sized server index data.

EN-142

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

Dwi Ilham Maulana: Data Duplication Detection in … p-ISSN 2301–4156 | e-ISSN 2460–5719

data size but records the lowest average power consumption

compared to the other test scenarios. This is attributed to lower

power consumption during the node’s idle process, which only

consumes approximately 800 mW, compared to around 900

mW in the other tests.

Figure 9 presents a comparison of the average power

consumption by the node in each test during data transmission,

measured in mW. The test employing data duplication

detection using the large index data server scenario shows a

reduction in power consumption by 3.85% compared to the test

without data duplication detection. Other tests involving data

duplication detection with random sensor values and constant

sensor values demonstrate power consumption reductions of

3.24% and 1.59%, respectively. These results confirm that data

duplication detection can reduce power consumption by

decreasing the amount of data transmitted from the node to the

server, with power reductions ranging from 1.59% to 3.84%.

 Figure 10 illustrates a comparison of the data size

transmitted by the node for systems implementing data

duplication detection and those without, measured in bytes. It

is evident that the implementation of data duplication detection

reduces the data size to between 11 and 44 bytes, compared to

56 bytes in systems without duplication detection. When the

index data approaches its maximum capacity, the size of the

index data is 19 bytes. Therefore, it can be concluded that the

use of data duplication detection reduces the data size from 58

bytes to approximately 40–45 bytes.

System testing further confirms that the data duplication

detection method functions correctly when the node is

connected to the sensors. This is evidenced by the consistency

of sensor reading values between the node and the Android

application. These values include readings of PM 1.0, PM 2.5,

PM 10, temperature, humidity, and wind speed.

VI. CONCLUSION

The data duplication detection system has been successfully

implemented in the air quality monitoring system, as evidenced

by the identical values of PM 1.0, PM 2.5, PM 10, temperature,

humidity, and wind speed recorded by both the Android

application and the node. Furthermore, the data duplication

detection mechanism effectively reduces the size of transmitted

data, from 56 bytes to a range between 11 and 44 bytes. This

reduction occurs when the transmitted data contains segments

that are similar to previously sent data chunks. In such cases,

the existing data chunks are replaced by their corresponding

indices from the server, rather than retransmitting the original

data, resulting in more efficient data transmission. If the

detected data are new, it is transmitted in full and processed by

the server. Once more than ten unique data entries are identified

during the initial transmission, subsequent data are consistently

treated as unique, even if duplicates are present. Under ideal

conditions with no communication errors, the implementation

TABLE I

SYSTEM TESTING RESULTS

PM 1,0 PM 2,5 PM 10 Temperature Air Humidity Wind Speed

Node Android Node Android Node Android Node Android Node Android Node Android

25 25 34 34 41 41 26 26 77 77 0 0

28 28 36 36 45 45 26 26 77 77 20 20

28 28 36 36 45 45 26 26 78 78 0 0

25 25 34 34 43 43 26 26 78 78 0 0

22 22 30 30 38 38 26 26 79 79 0 0

… … … … … … … … … … … …

26 26 34 34 39 39 35 35 55 55 0 0

26 26 34 34 39 39 35 35 55 55 0 0

23 23 31 31 35 35 35 35 55 55 0 0

23 23 31 31 35 35 35 35 56 56 0 0

23 23 32 32 35 35 35 35 54 54 0 0

Figure 8. Comparison of overall power consumption between systems without
and with data duplication detection.

Figure 9. Comparison of power consumption during transmission for systems
without data duplication detection and systems using duplication detection.

Figure 10. Comparison of data sizes sent by software without duplicate data
detection and software with duplicate data detection.

EN-143

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 2 May 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Dwi Ilham Maulana: Data Duplication Detection in …

of data duplication detection can reduce data usage by 11 to 44

bytes and save power consumption by 1.59% to 3.84%

compared to systems without data duplication detection.

AUTHORS’ CONTRIBUTIONS

Conceptualization, Dwi Ilham Maulana, Agus Purnomo,

and Asep Andang; methodology, Asep Andang; software, Dwi

Ilham Maulana; validation, Dwi Ilham Maulana, Asep Andang,

and Agus Purnomo; formal analysis, Agus Purnomo;

investigation, Dwi Ilham Maulana, and Asep Andang;

resources, Ifkar Usrah; data curation, Asep Andang, and Agus

Purnomo; writing-original drafting, Dwi Ilham Maulana;

writing-reviewing and editing, Dwi Ilham Maulana and Asep

Andang; visualization, Dwi Ilham Maulana; supervision, Ifkar

Usrah; project administration, Ifkar Usrah; funding acquisition,

Agus Purnomo.

ACKNOWLEDGMENT

The authors would like to express their gratitude to the

Ministry of Health of the Republic of Indonesia for funding this

research through the 2024 SIMLITABKES grant administered

by the Health Polytechnic of the Ministry of Health, Tanjung

Karang, Bandar Lampung. Appreciation is also extended to the

Department of Electrical Engineering, Siliwangi University,

for their collaboration in this research.

REFERENCES

[1] J. Wang and S. Ogawa, “Effects of meteorological conditions on PM2.5

concentrations in Nagasaki, Japan,” Int. J. Environ. Res. Public Health,

vol. 12, no. 8, pp. 9089–9101, Aug. 2015, doi: 10.3390/ijerph120809089.

[2] R. Kyburz, “Energy efficiency of the Internet of things,” 2016. [Online].

Available: https://www.iea-4e.org/wp-

content/uploads/publications/2016/08/160704_EE-IoT-Policy-
Options_v1.8_-_FINAL_with_cover.pdf

[3] A.S.H. Abdul-Qawy and T. Srinivasulu, “Greening trends in energy-

efficiency of IoT-based heterogeneous wireless nodes,” in Int. Conf.

Electr. Electron. Comput. Commun. Mech. Comput. (EECCMC), 2018,

pp. 1–10.

[4] R. Raut et al., Green Internet of Things and Machine Learning. Hoboken,

NJ, USA: John Wiley & Sons, 2022.

[5] B. Mahapatra and A. Nayyar, Green Internet of Things. Boca Raton, FL,

USA: CRC Press, 2022.

[6] F.K. Shaikh, S. Zeadally, and E. Exposito, “Enabling technologies for

green Internet of things,” IEEE Syst. J., vol. 11, no. 2, pp. 983–994, Jun.
2017, doi: 10.1109/JSYST.2015.2415194.

[7] J. Botero-Valencia, L. Castano-Londono, D. Marquez-Viloria, and M.

Rico-Garcia, “Data reduction in a low-cost environmental monitoring

system based on LoRa for WSN,” IEEE Internet Things J., vol. 6, no. 2,

pp. 3024–3030, Apr. 2019, doi: 10.1109/JIOT.2018.2878528.

[8] X. Zhang and M. Deng, “An overview on data deduplication techniques,”

in Inf. Technol. Intell. Transp. Syst., 2016, pp. 359–369, doi:
10.1007/978-3-319-38771-0_35.

[9] X. Liu and N. Ansari, “Toward green IoT: Energy solutions and key

challenges,” IEEE Commun. Mag., vol. 57, no. 3, pp. 104–110, Mar. 2019,

doi: 10.1109/MCOM.2019.1800175.

[10] “Pengendalian Pencemaran Udara,” Regulation of Government of the

Republic Indonesia, No. 41, 1999.

[11] “Pengendalian Pencemaran Udara,” Regulation of the Minister of

Environment and Forestry of the Republic of Indonesia, No 14, 2020.

[12] P. Abbareddy, S. Bhukya, C. Narsingoju, and B. Narsimhulu, “A novel

methodology for secure deduplication of image data in cloud computing

using compressive sensing and random pixel exchanging,” J. Theor. Appl.
Inf. Technol., vol. 102, no. 4, pp. 1608–1618, Feb. 2024.

[13] R. Kaur, I. Chana, and J. Bhattacharya, “Data deduplication techniques

for efficient cloud storage management: A systematic review,” J.

Supercomput., vol. 74, pp. 2035–2085, May 2018, doi: 10.1007/s11227-

017-2210-8.

[14] S. Michiels, Ed. Companion '08: Proceedings of the ACM/IFIP/USENIX
Middleware '08 Conference Companion. New York, NY, USA:

Association for Computing Machinery, 2008.

[15] J. Malhotra and J. Bakal, “A survey and comparative study of data

deduplication techniques,” in 2015 Int. Conf. Pervasive Comput. (ICPC),

2015, pp. 1–5, doi: 10.1109/PERVASIVE.2015.7087116.

[16] J. Riley, Understanding Metadata. Baltimore, MD, USA: National

Information Standards Organization, 2017.

[17] W. Chen et al., “Low‐overhead inline deduplication for persistent

memory,” Trans. Emerg. Telecommun. Technol., vol. 32, no. 8, pp. 1–13,
Aug. 2021, doi: 10.1002/ett.4079.

[18] A. Rayes and S. Salam, “Internet of things (IoT) overview,” in Internet

of Things from Hype to Reality. Cham, Switzerland: Springer, 2019, pp.

1–35.

[19] R. Arshad et al., “Green IoT: An investigation on energy saving practices

for 2020 and beyond,” IEEE Access, vol. 5, pp. 15667–15681, Jul. 2017,

doi: 10.1109/ACCESS.2017.2686092.

[20] B. Pan et al., “Study on image encryption method in clinical data

exchange,” in 2015 7th Int. Conf. Inf. Technol. Med. Educ. (ITME), 2015,
pp. 252–255, doi: 10.1109/ITME.2015.98.

EN-144

