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ABSTRACT — Rice diseases significantly impact agricultural productivity, making classification models essential for 

accurately distinguishing rice leaf diseases. Various classification models have been proposed for image-based rice disease 

classification; however, further performance improvement is still required. This study proposes the use of a convolutional 

neural network (CNN) to classify rice diseases based on leaf images. The dataset used in this study included leaf images 

categorized into four conditions: leaf blight, blast, tungro, and healthy. In the initial stage, data preprocessing was conducted, 

including resizing, augmentation, and normalization. Following preprocessing, a custom CNN architecture was developed, 

consisting of four convolutional layers, four pooling layers, and three fully connected layers. Each convolutional layer 

employed a 3 × 3 kernel with a stride of 1 and ReLU activation, while the pooling layers used max pooling with a 3 × 3 

kernel and a stride of 2. Using a batch size of 32 and the Adam optimizer, the best test performance was achieved with 100 

training epochs and a learning rate of 0.0002, resulting in a training accuracy of 0.9930, a loss of 0.0221, and a test accuracy 

of 0.9647. Model evaluation demonstrated a balanced performance across precision, recall, and F1 score, each achieving 

0.9647, indicating highly effective classification without bias toward any specific class. These findings suggest that the 

simplified CNN model can deliver competitive classification performance without the need for complex architectures or 

additional enhancement techniques. The proposed CNN model outperformed existing CNN architectures, such as Inception-

ResNet-V2, VGG-16, VGG-19, and Xception. 

KEYWORDS — Rice Disease, Custom CNN Architecture, Leaf Image, Adam Optimization, Model Evaluation.

I. INTRODUCTION 

Rice diseases pose a significant threat to agricultural 

productivity, necessitating accurate classification methods to 

distinguish between different types of rice diseases. Several 

major rice diseases that affect crop yields include leaf blight, 

blast, and tungro. Leaf blight is caused by the bacterium 

Xanthomonas oryzae pv. oryzae (Xoo) and is characterized by 

elongated lesions that vary in color from yellow to brown. 

These lesions typically appear on newly developed leaves and 

may merge over time, resulting in a scorched appearance [1]. 

Blast, caused by the fungus Pyricularia grisea, leads to 

shriveled panicles and partially filled or empty rice grains. 

Symptoms of this disease include grayish-white leaf spots with 

slightly orange-brown margins, shaped like diamonds with 

pointed edges [2]. Tungro, transmitted by the green 

planthopper, causes rice plants to turn yellow to orange, exhibit 

stunted growth, and suffer from reduced grain production [3]. 

In contrast, healthy rice plants show no signs of disease. Figure 

1 illustrates the visual characteristics of the various rice disease 

types. 

Several previous studies have employed classification 

methods such as decision tree, artificial neural network (ANN), 

convolutional neural network (CNN), naïve Bayes, k-nearest 

neighbors (KNN), and support vector machine (SVM). 

Although each method has contributed significantly to the field, 

limitations remain, which may stem from various factors such 

as the nature of the data or the superiority of the model, or its 

architecture. Therefore, research on rice disease classification 

still holds potential for further development. Continued 

refinement is necessary to improve the accuracy and 

performance of classification methods in order to ensure more 

reliable disease categorization. 

Previous studies on rice disease classification have mainly 

focused on image data of healthy leaves and brown spots [4]. 

The proposed methods included gray-level co-occurrence 

matrix (GLCM) and intensity-level based multi-fractal 

dimension (ILMFD), followed by classification using SVM, 

ANN, and neuro-genetic algorithm (Neuro-GA) for 

comparison. The results indicated that Neuro-GA 

outperformed ANN; however, SVM proved superior to Neuro-

GA, achieving an accuracy of 96.68% [4]. 

Another study utilized a variation of a dataset available 

from the UCI Machine Learning Repository, consisting of 

bacterial leaf blight, brown spots, and leaf smut [5]. ANN was 

used in the classification process with 100 epochs, achieving an 

accuracy of 83%, precision of 84%, recall of 84%, and an F1 

score of 83% [5]. This study, however, had certain limitations, 

including a relatively small dataset of only 120 samples and the 

absence of data augmentation processes. 

Using the same dataset, another study reported that the 

proposed method—transfer learning using a pretrained 

ResNet101—achieved a validation accuracy of 100% with a 

loss value of 5.61% [6]. This validation performance indicates 

that the model was highly effective in learning patterns from 

the validation dataset. However, since the study was conducted 

only up to the validation stage and did not include testing, it 

cannot yet be confirmed whether the model can generalize 

effectively to unseen data. The testing stage is essential in 

research to properly evaluate a model’s generalization 

capability. 

Another study also focused on classifying rice diseases, 

specifically leaf blight, brown spots, and leaf smut [7]. Using 

GLCM for feature extraction and KNN as the classification 

model, the study reported a testing accuracy of 65.83% [7]. 
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This result demonstrates that the KNN method still lacks the 

capability to achieve high classification performance. 

In addition, several researchers have also conducted studies 

using the decision tree method [8]. In this study, features were 

extracted through segmentation and morphological operations. 

The testing accuracy achieved was 90% [8]. However, the 

dataset used consisted of only 120 samples, and the decision 

tree method is not effective in handling complex data.  

Another study employed the naïve Bayes model to classify 

rice diseases such as bacterial leaf blight, blast, and tungro. The 

model achieved an accuracy of 76% and a confidence level of 

100% for the bacterial leaf blight class [9]. The results showed 

that the model performance was suboptimal and that 

augmentation techniques that were not carried out limited its 

ability in dealing with data diversity. 

Furthermore, another study utilized a dataset consisting of 

tungro, blast, leaf blight, and brown spot classes, employing a 

CNN approach. With a total dataset of 320 images, an accuracy 

of 91.4% was achieved [10]. However, the relatively small 

dataset and the absence of overfitting mitigation techniques 

such as data augmentation or cross-validation presented 

significant limitations in this study. In addition, CNN itself 

offers vast potential for architectural improvements, including 

the number of hidden layers, number of epochs, learning rate, 

batch size, kernel size, loss function, optimization methods, and 

dataset expansion. 

Relevant studies have also demonstrated that increasing 

dataset diversity and size contributes to improved model 

performance [11]. With a training dataset of 4,000 images and 

a testing dataset of 300 images, an accuracy of 95.67% was 

achieved. This study utilized the InceptionResNetV2 

architecture and transfer learning methods [11]. Despite the 

high accuracy, the dataset used exhibited imbalanced 

background characteristics. The blast and bacterial leaf blight 

classes had overlapping backgrounds, while the brown spot and 

healthy classes consisted of single rice leaves with plain white 

backgrounds. This condition may lead to model overfitting, 

where the model focuses more on background features than on 

the actual leaf characteristics. 

In response to these challenges, this study proposes the use 

of CNN to classify rice diseases based on leaf images. Leaf 

imagery was chosen as rice disease symptoms typically 

manifest initially on the leaves in the form of discoloration and 

spots before spreading to other parts, such as the stem or 

panicle. CNN is selected due to its ability to effectively learn 

and extract key features automatically, eliminating the need for 

manual feature extraction, as the convolutional layers 

inherently perform feature extraction. It has also been shown 

that in image classification tasks, CNN outperforms traditional 

machine learning methods such as SVM [12]. 

The proven success of CNN in image-based object 

classification and its superiority over other machine learning 

techniques make it an ideal choice for achieving robust and 

reliable performance in rice disease diagnosis. It is important to 

clarify that this study focuses on classification within the 

domain of intelligent systems, without addressing real-time 

implementation or automation in agricultural environments. 

This research contributes to the fundamental aspects of 

intelligent systems, which can later be applied in broader smart 

agriculture applications. The objective of this study is to 

develop a CNN architecture specifically designed for rice 

disease classification, ensuring that the model achieves 

competitive performance compared to existing classification 

models. 

Although previous studies may have achieved promising 

levels of accuracy, there is always room for improvement. This 

capacity positions CNN as a powerful tool for classifying rice 

leaf diseases based on visual characteristics. 

Based on the above discussion, this study presents several 

key contributions. First, it optimizes a simple CNN architecture 

for rice disease classification, aiming to enhance accuracy and 

performance without increasing model complexity. Second, the 

study provides a detailed evaluation of performance metrics, 

including accuracy, precision, recall, and F1 score to assess the 

model’s ability to distinguish between different rice diseases. 

Third, a comparative performance analysis is conducted 

between the proposed CNN model and other CNN-based 

models, offering insights into the effectiveness of the proposed 

approach. 

II. METHODOLOGY 

A. DATA COLLECTION 

In this study, a rice disease dataset based on leaf images was 

collected from Kaggle. This dataset was selected because the 

data have been verified and validated by Kaggle, making them 

suitable for further analysis, such as classification. The dataset 

comprised 220 images of rice leaves affected by bacterial leaf 

blight, 200 images of blast, 80 images of tungro, and an 

additional 210 images of healthy leaves, resulting in a total of 

710 images. Table I presents several sample images used in this 

study.  

B. DATA TRAINING AND DATA TESTING SCHEME  

The rice disease dataset was divided into two primary 

groups: training data and testing data. A total of 80% of the 

 

(a) 

 

(b) 

 

(c) 

Figure 1. Sample images of rice leaf diseases, (a) leaf blight, (b) blast, and (c) 
tungro. 
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dataset was allocated for model training. This training stage 

enables the model to learn and recognize relevant patterns or 

features in the data. The training process involved resizing, 

augmentation, and normalization. Subsequently, a CNN model 

was constructed to obtain new weights and biases. These 

learned weights and biases were then stored for use during the 

testing stage.  

After the model training was completed, the remaining 20% 

of the dataset was used as testing data. The testing process also 

included resizing and normalization, similar to the training 

stage. The preprocessed testing data were then fed into the 

CNN using the previously learned weights and biases to 

classify the input and produce the final classification results, 

indicating the type of rice condition. 

C. PREPROCESSING 

Image preprocessing is a crucial step in preparing data for 

the CNN model. It involves techniques such as resizing and 

augmentation. Since color features play an important role in 

classification, no color conversion is applied.  

The first step was image resizing to ensure uniformity 

across the dataset. This is necessary because CNNs require 

input images of consistent dimensions. If image sizes vary, the 

CNN model is not able to process them properly. In this study, 

all images were resized to 64 × 64 pixels. This resolution was 

selected because it is relatively small, thereby reducing 

computational burden. 

Next, data augmentation was applied to enhance training 

data diversity and improve model generalization [13]. This was 

done through rotation, enabling the model to learn object 

features from different orientations. Additional augmentation 

techniques such as flipping, shifting, shearing, and zooming 

were also implemented. These augmentations allow the model 

to recognize objects from various perspectives, enrich the data 

representation, and reduce the risk of overfitting. Such 

techniques support the model’s robustness during testing and 

contribute to improved accuracy through the availability of 

abundant data variations. 

 Finally, normalization was applied to both training and 

testing data by scaling pixel values to the range of 0 to 1. This 

step ensures consistency and enhances the efficiency of model 

training. Normalization also helps to prevent large gradients, 

which can slow down the training process. 

D. PROPOSED CNN ARCHITECTURE 

Figure 2 illustrates the proposed CNN architecture for 

classifying rice diseases. This architecture is designed to 

optimize feature detection in 64 × 64-pixel images and consists 

of four hidden layers. The first hidden layer contains a 

convolutional layer (denoted as Ka) utilizing eight 3 × 3 filters, 

with three input channels corresponding to the RGB color 

channels. The output from this convolutional layer has 

dimensions of 62 × 62 × 8, based on a ‘no padding’ convolution 

calculation. Following convolution, the data are processed 

using a rectified linear unit (ReLU) activation function to 

address nonlinearity. Subsequently, a max pooling layer (Mpa) 

with a 2 × 2 filter is applied, resulting in an output size of 31 × 

31 × 8.  

The second hidden layer contains a convolutional layer (Kb) 

that employs sixteen 3 × 3 filters. The input consists of eight 

channels obtained from the output of the previous hidden layer. 

The output dimensions of this convolutional layer are 29 × 29 

× 16, also calculated using ‘no padding’. ReLU is applied for 

activation. A 2 × 2 max pooling layer follows, producing an 

output of 14 × 14 × 16. 

The third hidden layer includes a convolutional layer (Kc) 

with thirty-two 3 × 3 filters, and sixteen input channels derived 

from the previous layer’s output. Using ‘no padding’, the 

convolution output has dimensions of 12 × 12 × 32. ReLU is 

used as the activation function. This is followed by a max 

pooling layer with a 2 × 2 filter, resulting in an output of 6 × 6 

× 32. 

The final hidden layer contains a convolutional layer (Kd) 

with sixty-four 3 × 3 filters and thirty-two input channels from 

the preceding layer. Using the ‘no padding’ rule, the resulting 

output is 4 × 4 × 64. The ReLU activation function is again 

employed. A subsequent max pooling operation with a 2 × 2 

filter yields the final output of 2 × 2 × 64. 

Following the completion of the feature extraction process, 

the resulting multidimensional data are flattened into a one-

dimensional array using a flatten layer. This transformation 

enables the data to be processed by the fully connected layer. 

The output of this stage is in the form of raw data or logits. 

Subsequently, a dropout technique with a rate of 0.5 is applied 

to mitigate overfitting. Finally, the softmax layer converts the 

raw data into classification probabilities, allowing the model to 

determine the type of rice disease by selecting the class with 

the highest probability based on input images of low resolution. 

The details of each step are explained as follows. 

1)  CONVOLUTIONAL LAYER 

 In the proposed architecture, the convolutional layer is 

responsible for extracting features from the input data, which 

consists of images of rice leaves [14]. This layer operates by 

applying a set of filters to the input image to perform feature 

extraction. The extracted features include texture, color, and 

pattern shapes present on the rice leaf images. The computation 

TABLE I 

EXAMPLE IMAGES FROM THE DATASET USED 

No. Rice Leaf Condition Images 

1. Blast 

 
2. Leaf blight 

 
3. Tungro 

 
4. Healthy 
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process in the convolutional layer is mathematically 

represented by (1) [15]. 

 𝑌(𝑝, 𝑞) =  ∑ ∑ 𝑋𝑗𝑖 (𝑝, 𝑞) ∗ 𝐹 (𝑝 −  𝑖, 𝑞 −  𝑗) (1) 

where 𝑌(𝑝, 𝑞) denotes the output of the convolution operation 

at coordinate(𝑝, 𝑞), 𝑋(𝑝, 𝑞) is the input image at coordinate 
(𝑝, 𝑞),  and 𝐹(𝑖, 𝑗)  is the convolutional filter or kernel at 

position (𝑖, 𝑗) . The variables 𝑝 and 𝑞  represent output 

coordinates, while i and j represent the spatial indices of the 

filter. Each filter generates one feature map upon convolving 

with the input. Therefore, if a convolutional layer contains eight 

filters, it will produce eight corresponding feature maps. 

During the convolutional layer operation, stride and 

padding play critical roles in determining the feature extraction 

process from rice leaf images. In this study, a stride value of 1 

was used, ensuring that the convolutional filter shifts by one 

pixel at each step to the next position. Meanwhile, no padding 

was applied, as the purpose is to reduce the input dimensions 

(i.e., height and width). By omitting padding, the model 

decreases computational load while retaining features relevant 

to rice disease classification. Equations (2) and (3) present the 

formulas used to determine the output dimensions of the 

convolution operation without padding, as applied in this study 

according to the standard convolution rule [16]: 

 𝑊2 =  
𝑊1− 𝐹1

𝑆
 +  1 (2) 

 𝐻2  =  
𝐻1− 𝐹2

𝑆
 +  1 (3) 

where 𝑊1 and 𝐻1 are the width and height of the input matrix, 

𝐹1 and 𝐹2 are the width and height of the filter/kernel, and S is 

the stride or kernel steps applied to the input data. 

2)  RECTIFIED LINEAR UNIT (ReLU) 

The ReLU activation function was employed to effectively 

handle the nonlinearity present in rice disease image data. The 

ReLU function transforms negative values into zero and retains 

positive values, as defined in (4) [17]. 

 𝑦𝑎̂(𝑝, 𝑞) = {
0

𝑌(𝑝, 𝑞)
𝑌(𝑝, 𝑞) < 0

𝑌(𝑝, 𝑞) ≥ 0
 (4) 

where 𝑌(𝑝, 𝑞) is the output from the convolutional layer and 

𝑦𝑎̂(𝑝, 𝑞)  is the output from the ReLU layer. By discarding 

negative values, ReLU ensures that the model retains only 

relevant disease features on the rice leaves. This selective 

activation enhances the model’s ability to focus on 

distinguishing features between healthy and diseased leaves. 

3)  POOLING LAYER 

After processing through the ReLU activation, the data 

proceeded to the pooling layer, which reduced the spatial 

dimensions of the feature maps. This step lowers the 

computational burden and decreases the parameter complexity 

of the network [18]. As illustrated in Figure 2, the type of 

pooling used in this study is max pooling, which selects the 

maximum value from each feature map region. This method 

preserves the most significant and dominant features of 

diseased rice leaves while eliminating less informative data. A 

stride value of 2 was applied, meaning the filter moves two 

pixels at a time, effectively reducing the feature map size. The 

output dimensions are computed using (5) and (6) [19]. 

 𝑊2  =  
𝑊1− 𝐹1

𝑆
 (5) 

 𝐻2  =  
𝐻1− 𝐹2

𝑆
. (6) 

4)  FLATTEN LAYER 

Following the pooling operation in the final hidden layer, 

the data were processed by a flatten layer, which reshaped the 

multidimensional data into a one-dimensional vector. This step 

is crucial to ensure that the extracted features can be passed into 

the fully connected layer for further processing. 

5)  FULLY CONNECTED LAYER 

The fully connected layer formed a critical component of 

the model architecture in this study. At this stage, the model 

began to identify specific disease patterns based on the 

extracted features, which were then processed and combined to 

produce raw outputs (logits). After each fully connected layer, 

a ReLU activation and a dropout with a rate of 50% (0.5) were 

applied. The dropout technique serves to prevent overfitting [6] 

by randomly deactivating 50% of neurons during training. This 

regularization method helped avoid dependency on specific 

neurons and enhanced the model’s generalization ability to new 

rice leaf images, ultimately improving classification accuracy. 

6)  SOFTMAX AND NEGATIVE LOG-LIKELIHOOD (NLL) 
LOSS 

At this stage, the softmax function was employed to 

transform the raw data (logits) from the fully connected layer 

into a probability distribution, ensuring that all values are 

nonnegative and the total probability sums to one. Equation (7) 

defines the softmax output [20]. 

 𝑆(𝑦𝑎𝑘̃)  =  
𝑒𝑦𝑎𝑘̃

∑ 𝑒𝑦𝑎𝑘̃𝐾
𝑖=1

 (7) 

where S represents the softmax output for the kth class, 𝑦𝑎𝑘̃ 

denotes the output value from the fully connected layer, e is 

Euler’s number ≅ 2.718, and K is the total number of classes. 

Following the probability distribution computation, the loss 

is calculated using negative log likelihood (NLL) loss. NLL 

loss is conceptually similar to cross-entropy loss, with the key 

difference being that cross-entropy computes the softmax and 

the loss separately, while NLL implicitly includes the softmax 

operation. NLL penalizes incorrect predictions [20], as defined 

in (8). 

 

Figure 2. Proposed CNN architecture. 
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 𝐸 = −𝑦 ̀ log 𝑦𝑎𝑘̃ (8) 

where 𝑦̀ is the ground-truth label (1 for correct, 0 for incorrect), 

and  𝑦𝑎𝑘̃ is the predicted probability for the kth class. A lower 

NLL output indicates a better prediction, signifying that the 

model has effectively learned to identify disease patterns in the 

rice leaf images. 

7)  BACKPROPAGATION AND GRADIENT CALCULATION 

The computed loss was then used in the backpropagation 

process to update the model’s weights and biases. This study 

employed the Adam optimizer for this purpose. Adam 

optimization is a method used for updating weights and biases 

[21]. It is an adaptive learning rate optimization algorithm 

specifically designed for training deep neural networks [22], 

combining the advantages of RMSprop and momentum. The 

formulas for updating the weights are given in (9) to (12) [23]. 

 𝑚𝑤  =  β1 ∗  𝑚𝑤−1  +  (1 −  β1)  ∗  (
𝜕𝐸

𝜕𝑤
) (9) 

 
𝜕𝐸

𝜕𝑤
 = δ . x (10) 

 𝑣𝑤  =  β2 ∗  𝑣𝑤−1  +  (1 −  β2)  ∗  (
𝜕𝐸

𝜕𝑤
)2 (11) 

 𝑤 =  w − (
α ∗ 𝑚𝑤

√( 𝑣𝑤+ 𝜀 )
). (12) 

The bias terms are updated using (13) to (16). 

 𝑚𝑏  =  β1 ∗  𝑚𝑏−1  +  (1 −  β1)  ∗  (
𝜕𝐸

𝜕𝑏
) (13) 

 
𝜕𝐸

𝜕𝑏
 = δ (14) 

 𝑣𝑏  =  β2 ∗  𝑣𝑏−1  +  (1 −  β2)  ∗  (
𝜕𝐸

𝜕𝑏
)2 (15) 

 𝑏 =  b −  (
α ∗ 𝑚𝑏

√( 𝑣𝑏+ 𝜀 )
). (16) 

In these equations, 𝑚𝑤  and 𝑚𝑏  represent the momentum 

terms for the weights and biases, respectively, while 𝑣𝑤 and 𝑣𝑏  

represent the velocity terms. β1 is the parameter for the first 

moment (typically set to 0.9), and β2 is the parameter for the 

second moment (typically set to 0.999). 
∂𝐸

∂w
 and 

∂𝐸

∂b
 denote the 

gradients of the loss function concerning the weights and biases. 

𝑚𝑤−1  and 𝑚𝑏−1  are the previous momentum values, while  

𝑣𝑤−1 and 𝑣𝑏−1 are the previous velocity values. The variables 

w and b refer to the updated weights and biases, respectively. α 

is the learning rate, ϵ is a small constant (typically 10−7) to 

prevent division by zero, 𝛿 is the error signal (loss) at the output 

neuron, and x is the input associated with the corresponding 

weight in the neural network. 

 The backpropagation process continued until the specified 

number of epochs was reached. Upon completion, the updated 

weights and biases were saved and used in the testing phase. 

8)  EVALUATION 

The model’s performance on the test dataset was assessed 

through evaluation metrics. The evaluation included accuracy, 

precision, recall, and F1 score, shown in (17) until (20), 

respectively. The accuracy measures how frequently the model 

correctly predicts the test data as a whole. A value closer to 1 

indicates better performance, while a value closer to 0 suggests 

suboptimal performance. Precision measures the proportion of 

correctly predicted positive samples out of all predicted 

positives. Recall measures the proportion of actual positives 

correctly predicted by the model. F1 score represents the 

harmonic mean of precision and recall.  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (17) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (18) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (19) 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛
. (20) 

To provide a more detailed overview of model performance, 

a confusion matrix is also utilized. Table II summarizes the 

classification performance in terms of true positives (TP), false 

positives (FP), true negatives (TN), and false negatives (FN).  

For example, in the case of leaf blight prediction, a TP 

occurs when the model correctly predicts leaf blight. FN 

includes all entries in the leaf blight row that are not TP. FP 

includes entries in the leaf blight column that are not TP. TN 

consists of all entries outside the leaf blight row and column. 

The same principles apply to predictions in other classes.  

III. RESULTS AND DISCUSSION 

A. TESTING RESULTS 

The initial stage of this study involved a series of 

experimental schemes to identify the most optimal outcome. 

These trials were conducted by varying the number of epochs 

and learning rates. The variation in epochs refers to the number 

of complete passes through the training dataset, while the 

learning rate variation determines the step size in updating the 

weights during the training process. The purpose of these 

variations was to identify the most effective parameter 

combination to enhance model performance. 

The experiments were conducted in stages, from A1 to B4. 

Models A1 to A4 were evaluated using 30 epochs and learning 

rates of 0.001, 0.0001, 0.0002, and 0.0003, respectively. A 

learning rate of 0.001 was chosen for its relatively low value, 

while the others served as comparative benchmarks. Models B1 

to B4 were trained using 100 epochs, with the same range of 

learning rates. The increase in epochs was intended to assess 

the effect of this parameter on model performance. 

Upon completion of these experiments based on the 

designed schemes, the results from trial A1 (30 epochs, 

learning rate 0.001) showed a training accuracy of 0.9018 and 

a relatively low loss of 0.2258. The training duration was 

approximately 112m0.8s. The testing accuracy reached 0.9295, 

which was higher than the training accuracy, indicating 

potential underfitting. This suggests that the model might not 

have captured the complex features in the training data but still 

managed to generalize well on the test data. 

In trial A2 (30 epochs, learning rate 0.0001), the training 

accuracy was 0.8305 with a loss of 0.3880, and a training 

duration of 128m0.8s. The testing accuracy was 0.8802. These 

results indicate that reducing the learning rate leads to a longer 

training time. This is because smaller step sizes cause the model 

to take longer to reach an optimal point. The model’s training 

and testing performance in this experiment were suboptimal 

compared to trial A1. 

Trial A3 (30 epochs, learning rate 0.0002) yielded an 

improved training accuracy of 0.9234, a reduced loss of 0.1921, 

and a training time of 112m6.4s. The testing accuracy also 
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improved to 0.9436. These results indicate that a slightly 

increased learning rate enabled better model performance. The 

findings suggest that the model benefits from a learning rate 

higher than in A2 but lower than in A1, allowing for faster and 

more effective convergence without increasing the loss. 

However, underfitting was still observed in this trial. 

In trial A4 (30 epochs, learning rate 0.0003), overall model 

performance declined. The training accuracy was 0.9179, with 

a loss of 0.2069 and a training duration of 112m3.7s. The testing 

accuracy dropped to 0.9084. Despite the relatively high training 

accuracy, the decreased testing accuracy compared to A1 and 

A3 suggests overfitting. The model performed well during 

training, as shown by the small gap between training and testing 

accuracy. 

Trial B1 (100 epochs, learning rate 0.001) achieved a 

training accuracy of 0.9850 and a loss of 0.0393, which was 

lower than in previous trials. The training duration increased 

significantly to 364m8.7s due to the extended number of epochs. 

The testing accuracy was 0.9154, indicating overfitting, as the 

model may have memorized the training data excessively. This 

trial demonstrates that increasing the number of epochs, which 

results in longer training time, does not necessarily enhance 

model performance. 

In trial B2 (100 epochs, learning rate 0.0001), the training 

accuracy decreased to 0.9421, and the loss increased to 0.1366. 

The training duration remained at 364m8.7s. The testing 

accuracy improved slightly to 0.9225, showing that overfitting 

persisted but was less severe than in B1. The model was better 

able to generalize to the testing data compared to B1.  

Trial B3 (100 epochs, learning rate 0.0002) resulted in the 

highest training accuracy observed, at 0.9930. The loss 

decreased significantly to 0.0221, and the testing accuracy 

increased markedly to 0.9647, indicating excellent 

generalization capability. The training duration was 363m10.8 s, 

shorter than that of B1 and B2. 

Finally, in trial B4 (100 epochs, learning rate 0.0003), the 

model achieved a training accuracy of 0.9910 and a loss of 

0.0246, with a training time of approximately 359m23.2s. The 

testing accuracy was 0.9225, indicating overfitting. This 

parameter combination was found to be suboptimal, as the 

model failed to achieve effective convergence and lacked the 

ability to learn properly from the training data. 

Table III presents the complete results of all experiments 

for easier analysis. As shown in Table III, models trained with 

100 epochs generally produced better accuracy and lower loss 

compared to those trained with 30 epochs. This is because more 

epochs provide the model with extended time to learn from the 

data, allowing it to achieve lower loss.  

Across experiments A1 to A4 and B1 to B4, the highest 

accuracies were consistently achieved with a learning rate of 

0.0002. This indicates that a moderately small learning rate 

supports more stable learning and results in lower loss. 

However, a learning rate lower than 0.0002, such as 0.0001, did 

not lead to better performance. This may be due to the learning 

rate being too small, thereby slowing down the learning process 

and hindering the model’s ability to converge effectively. 

The best performance was achieved in trial B3, which used 

100 epochs and a learning rate of 0.0002. This configuration 

resulted in a training accuracy of 0.9930, a loss value of 0.0221, 

and a testing accuracy of 0.9647. The variations in both epoch 

and learning rate significantly influenced the model’s 

performance, highlighting the importance of parameter tuning 

in optimizing the CNN model for rice disease classification. 

Figure 3(a) illustrates the training accuracy graph for trial 

B3. It can be observed that at the beginning of the training, 

accuracy increased rapidly, indicating that the model was able 

to learn the patterns in the training data effectively. However, 

the model exhibited instability at several points during the 

process. This instability suggests that the model encountered 

difficulties in adapting to complex data, possibly due to the 

emergence of unseen features. Despite these fluctuations, the 

model ultimately achieved its highest accuracy by the final 

epoch. 

Figure 3(b) presents the training loss graph for trial B3. 

Initially, the loss value was close to 1, which can be attributed 

to the random initialization of weights, causing the model to be 

poorly adjusted to the data at the start. As training progressed, 

the loss decreased steadily and approached zero, indicating that 

the model successfully adjusted its weights to fit the training 

data. This suggests that prediction errors were minimized as 

training continued.   

B. DISCUSSION 

In addition to accuracy, several other evaluation metrics 

were used to assess model performance, namely precision, 

recall, and F1 score. Figure 4 presents the evaluation metrics 

corresponding to the best-performing model (B3). 

In the context of this study, recall is considered more critical 

than precision and F1 score, as it measures the proportion of 

actual positive cases that are correctly identified by the model. 

This implies that recall is essential to ensure the model 

successfully detects all diseased rice leaves. 

In agricultural applications, failing to identify infected rice 

leaves poses a greater threat than misclassifying healthy leaves. 

Therefore, recall becomes the primary metric to minimize the 

risk of undetected diseased leaves. 

Figure 4 shows that precision, recall, and F1 score all 

achieved the same value. This indicates that the model is 

capable of classifying data effectively without bias toward any 

particular class. High precision signifies that the model rarely 

misclassifies healthy leaves as diseased. High recall 

demonstrates that the model is largely successful in identifying 

TABLE II 

CONFUSION MATRIX 

Actual 
Prediction Class 

Blight (A) Blast (B) Tungro (C) Healthy (D) 

Blight (A) AA AB AC AD 

Blast (B) BA BB BC BD 

Tungro (C) CA CB CC CD 

Healthy (D) DA DB DC DD 

 

TABLE III 

RESULTS OF OVERALL EXPERIMENTS 

Experiment 
Training 
Accuracy 

Loss 
Training 
Duration 

Testing 
Accuracy 

A1 0.9018 0.2258 112m0.8s 0.9295 

A2 0.8305 0.3880 128m7.8s 0.8802 

A3 0.9234 0.1921 112m6.4s 0.9436 

A4 0.9179 0.2069 112m3.7s 0.9084 

B1 0.9850 0.0393 377m24.3s 0.9154 

B2 0.9421 0.1366 364m8.7s 0.9225 

B3 0.9930 0.0221 363m10.8s 0.9647 

B4 0.9910 0.0246 359m23.2s 0.9225 
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infected leaves. Meanwhile, a high F1 score reflects the 

model’s strong performance in avoiding prediction errors for 

both healthy and diseased leaves. The similarity of accuracy, 

precision, recall, and F1 score values further confirms that the 

model performs optimally across all classes.  

In addition, to obtain a detailed understanding of the 

prediction distribution, a confusion matrix was used, as shown 

in Figure 5. The diagonal values indicate correct classification, 

with 43 leaf blight, 38 blast, 14 tungro, and 42 healthy samples 

correctly predicted. However, some errors occurred, such as 1 

leaf blight sample being classified as blast, 2 blast samples as 

tungro, 1 tungro sample as leaf blight, and 1 tungro sample as 

blast. The color intensity in the matrix visually differentiates 

between high and low values, helping to assess the model’s 

performance in distinguishing between various rice diseases 

and healthy conditions. 

Several previous studies serve as benchmarks for this 

research, utilizing different CNN variants, as summarized in 

Figure 6. The Inception-ResNet-V2 model with a transfer 

learning approach employed a pretrained model with 

adjustments made to the final layers, resulting in a short 

training duration and a test accuracy of 92.68% [24]. VGG-16 

with transfer learning utilizing pretrained weights from 

ImageNet achieved an accuracy of 92.46% [25]. VGG-19, an 

improved version of VGG-16, demonstrated better 

performance with an accuracy of 95.24% [26]. The Xception 

model, utilizing depthwise separable convolution, provided 

efficient computation and good accuracy at 89% [27]. In 

comparison, the proposed method, achieving an accuracy of 

96.47%, offers competitive performance while maintaining 

architectural simplicity. 

Overall, the proposed CNN model exhibits an accuracy 

improvement of approximately 1.23%. One contributing factor 

to this improvement is the alignment between the model 

architecture and the characteristics of the dataset. The custom 

CNN architecture proposed in this study was designed with 

careful consideration of several aspects, including the number 

of hidden layers, the use of padding in convolutional layers, the 

selection of kernel size and quantity, activation function choice, 

pooling layer technique, optimization method, loss function, 

overfitting mitigation strategies, number of epochs, learning 

rate, and batch size. By employing a well-suited architecture, 

the model can more effectively learn complex features from the 

data, overcome overfitting or underfitting issues, and enhance 

accuracy. Additionally, preprocessing played a vital role in 

improving model accuracy, resulting in better performance 

compared to previous CNN-based models that may not have 

been optimally tuned. 

 

(a) 

 

(b) 

Figure 3. Graphs showing the best-performing trial (B3), (a) training accuracy, 
(b) training loss. 

 
Figure 4. Evaluation matrix for the B3. 
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Figure 5. Confusion matrix results for B3. 
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IV. CONCLUSION 

In this study, the implemented CNN model has successfully 

classified infected and noninfected leaves with high accuracy. 

The test accuracy, precision, recall, and F1 score all achieved 

the same value of 0.96. Prediction errors were minimal, with 

only five misclassifications recorded. Notably, all samples in 

the healthy class were correctly predicted. These results 

demonstrate that the CNN architecture employed in this 

approach is capable of achieving improved accuracy and 

competitive performance compared to existing CNN 

classification models, despite its relatively simple structure. 

As this study primarily focused on the fundamental 

construction of a CNN model, several enhancements can be 

explored in future research for further optimization. First, it is 

recommended to investigate the integration of additional 

techniques such as transfer learning, fine-tuning, or other 

methods that may improve model performance. A limitation of 

this study is the exclusive use of a simple CNN architecture 

without the incorporation of such auxiliary techniques. This 

approach was intentionally chosen to evaluate the basic 

capability of CNNs in recognizing visual patterns from rice leaf 

images directly, allowing the results to reflect the intrinsic 

effectiveness of the CNN architecture itself without external 

influence. 

Moreover, the study utilized a limited dataset obtained from 

publicly available sources. Expanding the dataset with more 

diverse and high-quality images could enhance the model’s 

generalization capability. Additionally, exploring hybrid 

approaches that combine CNNs with other classification 

methods may offer improved feature extraction and 

performance outcomes. 
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