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ABSTRACT — The enhancement of electricity distribution is a crucial factor in supporting sustainable development and 

reducing energy access inequality. To ensure the reliability and stability of energy systems, the integration of distributed 

generation (DG) has a significant role. Numerous studies have explored optimal DG placement using metaheuristic methods. 

The study evaluated the performance of both algorithms based on key indicators, including voltage profile improvement and 

power loss reduction, under normal load conditions and under a 10% load increase to simulate future demand growth. The 

methods employed were the sine-cosine algorithm (SCA) and the bat algorithm (BA). By comparing these two methods, this 

study aims to optimize the placement and sizing of DG units, with a case study based on the IEEE 9 bus system configuration. 

Load flow analysis was performed using Electric Transient Analysis Program (ETAP) software to validate the effectiveness 

of optimized DG placement under various scenarios. Key performance indicators, namely losses reduction and improvement 

of voltage profile, were evaluated to determine the relative strengths of each algorithm. The results show that both SCA and 

BA are effective in optimizing DG implementation. Specifically, SCA achieved reductions in active power losses by up to 

85% and reactive power losses by 93%, outperforming BA in certain scenarios. Both algorithms enhance system reliability 

and stability. These findings highlight the potential of metaheuristic algorithms to address the challenges of modern energy 

systems and contribute to the broader goal of developing sustainable power systems. 

KEYWORDS — Sine-Cosine Algorithm, Bat Algorithm, Distributed Generator, IEEE 9 Bus, Metaheuristic Method.

I. INTRODUCTION 

Electricity distribution begins with power generation at the 

power plant, where the energy is produced using various 

sources, such as coal, nuclear, natural gas, hydro, wind, or solar. 

The electricity is generated at high voltage to minimize losses 

during transmission. Throughout the process, grid management 

and control systems monitor and optimize operations to ensure 

stability, reliability, and efficiency, utilizing modern 

technologies like the smart grid and distributed generation (DG) 

to satisfy the expanding demands of contemporary energy 

systems as the population grows. 

The increasing electricity demand and the global transition 

toward cleaner and more sustainable energy systems have 

emphasized the importance of DG in modern power networks. 

DG, which are small-scale electricity generation units typically 

located close to the load center, offer several advantages, 

including reduced transmission losses, enhanced reliability, 

and the integrated renewable energy sources. Usually, in 

medium and low voltage systems an unbalanced voltage. 

Continued operation under these conditions will exacerbate the 

stability of the power system and degrade the quality of the 

electrical energy supplied. 

Therefore, considering sustainable options, such as 

integrated DG into the current power infrastructure, is 

becoming more important [1]. Reliability, security, 

technological advancements, regulatory considerations, and 

emission reduction are the driving forces behind the rising 

levels of renewable energy penetration. Researchers are 

focusing on incorporating renewable energy sources, such as 

wind power and solar, into the optimization process as DG 

technologies develop [2]. 

The sizing and placement of DG units significantly 

influence the overall efficiency, reliability, and stability of the 

power system [3]. Improperly placed or sized DG units can lead 

to adverse effects, such as increased power losses, voltage 

instability, and higher operational costs [4]. To enable its 

interconnection at nearly any point within the power grid, the 

IEEE classified DG facilities as power generation facilities 

with a significantly smaller capacity than centralized power 

plants, often 10 MW or less. Based on [1], developing a 

distributed controller for DC microgrids can, in addition to 

achieving limited voltage regulation, dynamically minimize the 

overall cost of generation. The proposed controller’s 

performance has been verified by extensive switch-level 

simulations, and additional strategies, such as load shedding, in 

the future [5]. 

In low and medium voltage distribution networks, [6] has 

suggested a technique for the best positioning and expansion of 

distributed renewable energy generation and battery energy 

storage systems, minimizing investment and operating costs 

while maximizing distribution system operator profits. Their 

novel decomposition method efficiently determines the optimal 

battery energy storage system (BESS) operating scheme, 

achieving near-global optimal solutions and demonstrating 

effectiveness on a large-scale, real-world distribution system. 

There are several combinations for DG planning in the 

distribution power system: dimension, position, quantity, and 

kind; simply size; only location; both size and location; and 

both size, location, and number [7]. Depending on the type of 

power they provide, DG systems can be classified into three 

categories. In the first category, the systems only inject real 

power. Second, systems only inject reactive power, and the 

third systems capable of injecting both reactive and active 
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power. This categorization highlights the versatility and 

complexity of DG planning, particularly as renewable energy 

integration becomes increasingly critical for sustainable power 

system development [8]. 

II. RELATED WORKS 

There are several methods proposed, both in artificial 

intelligence (AI) and calculus, based on small and large 

systems. Various kinds of AI computational techniques have 

been applied for optimizing the size and location of DGs as 

genetic algorithm (GA) [9]–[13], artificial bee colony (ABC) 

[14], [15], particle swarm optimization (PSO) [2], [16], [17], 

neural network [18], [19] and the hybrid optimization method 

[20], [21], [8] combines two or more AI methods to leverage 

their strengths and overcome individual limitations.  

Reference [22] provides a thorough review of metaheuristic 

optimization techniques for the application of metaheuristic 

algorithms to the optimal integration issue and its dynamic 

implementation to objective function solutions. While various 

optimization algorithms have been proposed to address the 

placement and sizing of DG units, comparative studies 

evaluating advanced metaheuristic approaches remain limited 

[22]. Sine-cosine algorithm (SCA) and bat algorithm (BA) are 

effective metaheuristic algorithms commonly used for solving 

complex optimization problems like DG placement. This 

research aims to bridge this gap by conducting a systematic 

comparison of the SCA and BA for optimizing the DG. 

The novelty of this research is the performance evaluation 

of these algorithms, focusing on key metrics such as power loss 

reduction, voltage, stability, and computational efficiency. 

Moreover, the determination of DG sizing also considers the 

project load growth [23]. To enhance the robustness of the 

analysis, the authors have incorporated load growth forecasting 

based on the Electricity Power Supply Business Plan (Rencana 

Usaha Penyediaan Tenaga Listrik RUPTL) 2021–2030 [24] 

and Decree from the Ministry of Energy and Mineral Resources 

[25], which estimates an annual increase in electricity demand 

of approximately 6.4% in Indonesia, ensuring that the proposed 

optimization solutions remain effective and adaptable under 

future load conditions, complemented by a power quality 

analysis to assess voltage stability and power factor.  

Furthermore, optimization studies focus on integrating, 

such as load flow analysis using Electric Transient Analysis 

Program (ETAP) software to validate computational results 

and ensure real-world applicability. A case study system was 

simulated using the IEEE 9 bus system. Although small, it 

serves as an excellent testbed for exploring optimization 

challenges in power systems under realistic conditions. 

By optimizing DG’s placement, this research has 

significant social implications, such as improving the supply of 

electrical energy more reliably, so that areas located far from 

the generation system is rarely disrupted. Additionally, 

optimizing DG’s placement can raise local communities 

through inclusive home industries, economic growth, public 

services, and education. A power distribution network may 

experience a voltage breakdown due to severe reverse power 

caused by a DG unit’s constant actual power penetration. The 

performance and dependability of a distribution network may 

be impacted by the erratic power supply for DG devices 

powered by renewable energy sources. In order to address these 

problems with the best possible integration of electrical 

equipment, optimization techniques have been created [22]. 

This study aims to explore the application of SCA and BA. 

BA algorithm for optimizing the placement and sizing of DG 

units in electrical networks. Both SCA and BA are population-

based metaheuristic optimization algorithms that iteratively 

improve candidate solutions toward the global optimum. 

Besides that, BA and SCA algorithms rely on stochastic 

processes, using random numbers to guide the search process 

and ensure diversity in candidate solutions, where the best 

solution found so far influences the population’s future 

movement [26]. These algorithms are two popular 

metaheuristic algorithms that have been widely used for 

various optimization problems [27]. The research introduces or 

focuses on novel performance metrics, such as voltage profile 

improvement, power loss minimization, or system reliability; 

and analysis on how effectively each algorithm meets these 

objectives. 

SCA generates candidate solutions by oscillating between 

sine and cosine functions, enabling exploration and 

exploitation of the search space [28]. By leveraging the 

capabilities of the SCA, this research seeks to minimize power 

losses, improve voltage profiles, and enhance the overall 

performance of the system. Since 2020, SCA has gained 

increased attention for its application in power systems, 

particularly for the optimal integration of DG in distribution 

networks. Its ability to handle large-scale optimization 

problems, such as power loss minimization and voltage 

stability improvement, makes it a preferred choice for 

researchers [22]. 

In contrast, the BA mimics the echolocation behavior of 

bats, dynamically adjusting parameters such as frequency, 

loudness, and pulse rate to balance exploration and exploitation 

effectively [29]. This algorithm has been widely applied in 

power systems, particularly for optimizing the placement and 

sizing of DGs and other electrical units in distribution networks. 

Its ability to minimize power losses, improve voltage stability, 

and enhance operational efficiency has made it a valuable tool 

for addressing challenges in renewable energy integration and 

grid reliability. However, challenges such as parameter tuning 

and susceptibility to local optima require further refinement to 

enhance its scalability and effectiveness in real-world 

applications [30]. 

This paper provides a comparative analysis of the SCA and 

BA for optimizing DG placement in the IEEE 9 bus system. 

The primary contribution is showing the effectiveness of both 

algorithms in reducing losses, which also evaluates the 

performance of these algorithms in minimizing power losses 

and ensuring voltage stability while adhering to system 

constraints. By comparing these two methods, the study aims 

to provide insights into their relative strengths and weaknesses, 

offering valuable guidance for researchers and practitioners in 

selecting appropriate optimization tools for power system 

applications. 

The results of this study are expected to contribute valuable 

insights into the strategic deployment of DG units, aligning 

with the broader objectives of achieving sustainable and 

resilient power systems. This dual approach of theoretical and 

practical validation.  

III. SYSTEM   MODEL 

The goal of this system is to optimize the sizing and 

placement of DG within an electrical power system, 

specifically the IEEE 9 bus system, to minimize power losses 

while ensuring the system’s operational constraints. The 
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integration of DG into the system provides several benefits, 

including reduced transmission losses and improved voltage 

stability. However, the optimal placement and sizing of DG 

units is a challenging task due to the nonlinear and complex 

nature of power flow in electrical networks. 

In this study, the optimization problem is formulated with 

the following objectives. First, the total power losses across the 

system could be minimized by determining the optimal 

locations and capacities for DG units. Second, the system must 

adhere to several constraints, including voltage limits at each 

bus, power balance, and operational limits of DG units. The 

problem was solved using two different optimization methods, 

comparing their effectiveness in minimizing power losses and 

maintaining system stability. The authors proposed a 10% load 

increase in the system to evaluate the resilience of the 

optimization algorithm under future load growth scenarios. 

This assumption was made based on the RUPTL 2021–2030 

projection, which estimates an annual load growth of 

approximately 6.4% in Indonesia. By adopting a slightly higher 

load increase, the analysis aims to more rigorously test the 

robustness and adaptability of the proposed optimization 

methods under elevated demand conditions. 

By solving this problem, the optimal configuration for DG 

placement is determined, providing valuable insights into the 

impact of DG integration on overall system performance. The 

following sections elaborate on the mathematical 

representation of the objective function and its integration into 

the optimization framework. 

A. OBJECTIVE FUNCTION 

Reducing the system’s overall power losses is the primary 

objective of DG deployment. Power losses in a power system 

are generally caused by the resistance in transmission lines and 

the load flow in the system. The objective function can be 

expressed in (1).  

 𝑃𝑙𝑜𝑠𝑠 = ∑  𝑁
𝑖=1 ∑ 𝐺𝑖𝑗 

𝑁
𝑗=1 (𝑉𝑖

2 + 𝑉𝑗
2 − 2𝑉𝑖𝑉𝑗  𝑐𝑜𝑠 𝜃𝑖 − 𝜃𝑗) (1) 

where 𝑃𝑙𝑜𝑠𝑠 is total power losses (in Mw), N is total number of 

busses in the system, 𝐺𝑖𝑗 is conductance between busses i and j, 

𝑉𝑖𝑉𝑗 is voltage magnitude at bus i and bus j, and 𝜃𝑖 , 𝜃𝑗 is voltage 

angles at bus i and bus j. 

B. LOAD FLOW 

One of the essential phases in power system research is load 

flow analysis, which enables the calculation of voltage 

magnitudes, phase angles, power flows, and losses in the 

network under steady-state conditions. The software’s load 

flow analysis module is employed to simulate the power flow 

under various operating conditions, including pre- and post-

optimization scenarios. This simulation framework enables a 

comprehensive evaluation of DG placement and sizing, 

ensuring the validity and practicality of the optimization 

outcomes. The integration of ETAP provides high fidelity to 

real-world conditions, enhancing the relevance of the study’s 

results. 

The load flow analysis in this work was conducted using 

the ETAP software, which provides robust simulation tools for 

validating the results obtained from the optimization process. 

ETAP was utilized to calculate voltage level, active power (W) 

and reactive power (VAR) and losses at each bus in the network, 

providing critical insights into the system’s performance. By 

simulating the placement and sizing of DG units, load flow also 

helps identify optimal system efficiency. Load flow analysis 

also assesses the reactive power contributions of DG units, 

ensuring proper reactive power management to maintain 

system reliability and a stable power factor. Furthermore, it 

examines how DG’s integration affects existing infrastructure, 

such as lines and transformers, preventing overloading and 

ensuring compatibility.  

In this load flow system, the adaptive Newton-Raphson 

method was used. This method was employed within ETAP for 

its superior convergence characteristics and computational 

efficiency [31]. In the simulation, the maximum number of 

iterations was set to 99. ETAP is designed such that if the 

solution does not converge within the specified number of 

iterations, the process will automatically stop, and the software 

will notify the user. 

The adaptive Newton-Raphson method was chosen because 

it dynamically adjusts the step size and direction based on the 

system’s nonlinearity, thereby improving the stability of the 

solution process, especially for networks with high penetration 

of distributed generation. This method ensures faster 

convergence compared to traditional Newton-Raphson 

methods and reduces the risk of divergence in systems with 

challenging initial conditions or poorly scaled variables. The 

load flow analysis results, including voltage profiles, line flows, 

and power losses, served as critical inputs for evaluating the 

feasibility and performance of the optimized DG placement. 

C. POWER LOSSES 

Power losses in a transmission system refer to the energy 

lost as electrical power when transmitted from the generation 

source to the end-users through the transmission lines. Power 

losses in an electrical network primarily occur due to the 

resistance in transmission lines. As electric current flows 

through the lines, a portion of the energy is dissipated as heat 

due to the resistance, and this energy cannot be utilized by the 

load. In addition, the magnitude of power losses in the 

transmission networks depends on the type and length of the 

conductor. Loss of electrical energy needs to be predicted and 

anticipated so that it occurs within normal and reasonable limits. 

Power losses in the transmission system are represented in (2). 

 𝑃𝑙𝑜𝑠𝑠 =  𝐼2 . 𝑅 (2) 

where 𝑃𝑙𝑜𝑠𝑠  denotes power losses in the transmission line (W), 

I denotes current (A) that flows in the conductor, and R denotes 

resistance (Ω). 

 The integration of DG can significantly reduce these losses 

by supplying power closer to the load centers. The total power 

loss ( 𝑃𝑙𝑜𝑠𝑠 ) in the system are calculated based on the line 

conductance 𝐺𝑖𝑗  and the voltage and phase angle differences 

between buses. The expression for power losses is directly 

incorporated into the objective function, ensuring that the 

optimization process targets loss minimization [32].  

D. CONSTRAIN  

The optimization process must adhere to several system 

constraints to ensure feasible and practical solutions. These 

constraints include voltage limits, the voltage magnitude at 

each bus must remain within acceptable limits as (3). 

 𝑉𝑚𝑖𝑛  ≤ 𝑉𝑖  ≤ 𝑉𝑚𝑎𝑥  (3) 

Power balance, the total generation, including DG, must 

equal the total load demand plus losses as shown in (4). 

 ∑ 𝑃𝑔𝑒𝑛 =  ∑ 𝑃𝑙𝑜𝑎𝑑 +  𝑃𝑙𝑜𝑠𝑠. (4) 
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DG capacity limit, the power generated by DG units must be 

within their operational limits as shown in (5). 

 𝑃𝐷𝐺,𝑚𝑖𝑛  ≤ 𝑃𝐷𝐺,𝑖  ≤ 𝑃𝐷𝐺,𝑚𝑎𝑥  (5) 

by addressing these constraints, the optimization ensures that 

the DG placement improves system performance without 

violating operational or technical requirements. 

IV.  METHODOLOGY 

This study proposed a systematic approach to analyze and 

optimize the placement and capacity of DGs within the IEEE 9 

bus system configuration. The methodology involves several 

stages to ensure the accuracy and reliability of the result.  

First, the system parameters, including single line diagram 

(SLD), load profile, line impedance, transformer specification, 

and generator data, were modeled using ETAP software. 

Second, the optimization process incorporated two 

metaheuristic algorithms. Each algorithm was initialized with 

parameters, including population size, iteration limits, and 

objective functions, tailored to the problem. Next, the results 

from both methods were compared based on their performance 

indicators. Finally, a comprehensive analysis was performed to 

assess the effectiveness of SCA and BA under various 

scenarios, including different load conditions and DG 

capacities. 

A. DATA COLLECTION AND SYSTEM MODELLING 

The IEEE 9 bus system was used as the test network for this 

study. Standard IEEE datasets were used to get the system 

parameters, such as line data, bus data, and load demand. All 

the impedance values were taken to match the system base, 

which was set at 100 MVA. The network parameters, including 

bus voltages, line impedances, transformer ratings, and load 

demands, were sourced from standard IEEE datasets to ensure 

accuracy and reproducibility.  

Figure 1 shows an SLD representation of an electrical 

system for the IEEE 9 bus system. The system has 9 busses, 

with three generators in bus 1, 2, and 3. The specification of 

each generator is shown in Table I. 

Table II shows the load parameter, while Table III shows 

transformer parameter data. On the IEEE 9 bus system, there 

are three transformers that act as step-up transformers. Table 

IV shows transmission line parameter data. Transmission line 

parameters include lengths, resistances and inductances on this 

conductor.  

B. OPTIMIZATION TECHNIQUES 

The study applied two optimization algorithms, SCA and 

BA, to compare metaheuristic methods and to solve DG 

placement problems. Each proposed algorithm utilized Python 

software and was validated using ETAP software for load flow 

analysis.  

The steps of SCA in which a population of N candidates is 

randomly initialized within the search space are formulated in 

(6). 

 𝑋𝑖(0) =  𝑋𝑚𝑖𝑛 + 𝑟 (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)  (6) 

where 𝑋𝑖(0) is the initial position of the i candidate, 𝑋𝑚𝑖𝑛and 

𝑋𝑚𝑎𝑥  are the bounds of the search space, and r is a random 

number in [0, 1]. 

The position update mechanism in SCA is governed by 

trigonometric sine and cosine functions. The updated position 

of each candidate is determined based on whether a random 

variable 𝑟4 is less than or greater than 0.5. Specifically, the 

position is adjusted using (7).  

𝑋𝑖(𝑡 + 1)

= {
𝑋𝑖(𝑡) + 𝑟𝑖 . sin(𝑟2) . |𝑟3𝑃 − 𝑋𝑖(𝑡)|, 𝑖𝑓 𝑟4 < 0.5  

𝑋𝑖(𝑡) + 𝑟𝑖 . scos(𝑟2) . |𝑟3𝑃 − 𝑋𝑖(𝑡)|, 𝑖𝑓 𝑟4 < 0.5  
  

(7) 

where t is current iteration, 𝑟1, 𝑟2, 𝑟3  are random numbers in 

[0.1], and P is a randomly selected position in the population. 

SCA employed a dynamic control mechanism for the 

exploration-exploitation trade-off to facilitate convergence. 

The parameter 𝑟1 , which dictates the amplitude of updates, 

decreases linearly over iterations, the formula is shown in (8).  

 

Figure 1. Single line diagram of the IEEE 9 bus.  

TABLE I 

GENERATOR’S DATA 

Information Gen 1 Gen 2 Gen 3 

S (MVA) 512 270 125 

V (kV RMS L-L) 24 18 15.5 

Xd (pu) 1.7 1.7 1.22 

X’d (pu) 0.27 0.256 0.174 

X’’ (pu) 0.2 0.185 0.134 

T’do (s) 3.8 4.8 8.97 

T’’do (s) 0.01 0.01 0.033 

Xq (pu) 1.65 1.62 1.16 

Xq’ (pu) 0.47 0.245 0.25 

Xq’’ (pu) 0.2 0.185 0.134 

T’qo (s) 0.48 0.50 0.50 

T’’qo (s) 0.0007 0.0007 0.0007 

H (s) 2.6312 3.1296 4.768 

D (pu) 2 2 2 

TABLE II 

LOAD PARAMETER 

Item Load Bus_5 Load Bus_6 Load Bus_7 

P 125 MW 90 MW 100 MW 

Q 50 MVAR 30 MVAR 35 MVAR 

TABLE III 

TRANSFORMATOR PARAMETER 

Items Trafo 1 Trafo 2 Trafo 3 

Vprimary (kV) 24 18 15.5 

Vsecondary (kV) 230 230 230 

R1 (pu) 1 × 10−10 1 × 10−10 1 × 10−10 

L1 (pu) 2.88 × 10−20 3.13 × 10−2 2.93 × 10−2 

R2 (pu) 1 × 10−10 1 × 10−10 1 × 10−10 

L2 (pu) 2.88 × 10−20 3.13 × 10−2 2.93 × 10−2 

Rm 5.00 × 10+30 5.00 × 10+3 5.00 × 10+3 

Lm 5.00 × 10+30 5.00 × 10+3 5.00 × 10+3 
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 𝑟1 =  𝑟1
𝑚𝑎𝑥 − 

𝑡

𝑇
(𝑟1

𝑚𝑎𝑥 − 𝑟1
𝑚𝑖𝑛) (8) 

allowing 𝑟1 to reduce gradually from its maximum to minimum 

value over the maximum number of iterations T. This gradual 

reduction shifts the algorithm’s focus from broad exploration 

in the early stages to local exploitation in later iterations. 

Finally, the fitness of each solution was evaluated based on the 

objective function. The solution with the best fitness value was 

stored as the optimal solution. SCA iteratively refines the 

population’s positions, leveraging its simplicity and 

effectiveness in solving optimization problems. The SCA and 

BA offer distinct mechanisms for addressing complex 

optimization challenges. 

The BA is inspired by the echolocation behavior of bats and 

begins by initializing a population of candidate solutions, 

referred to as bats. Each bat’s position 𝑋𝑖(0) and velocity 𝑉𝑖(0) 

are randomly initialized within the search space, with the 

position calculated similarly to SCA using (5). This random 

initialization ensures diverse candidate solutions, which is 

critical for effective exploration. 

The BA algorithm introduces a frequency parameter to 

guide the search. At each iteration, the frequency 𝑓𝑖  of each bat 

is updated using (9). 

 𝑓𝑖 =  𝑓𝑚𝑖𝑛 + 𝑟 (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)  (9) 

where 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 define the frequency range. The velocity 

of each bat is subsequently updated using (10). 

 𝑉𝑖(𝑡 + 1) =  𝑉𝑖(𝑡) + (𝑋𝑖(𝑡) − 𝑋∗) 𝑓𝑖 (10) 

where 𝑋∗  is the best global solution. The position update is 

computed as in (11). 

 𝑋𝑖(𝑡 + 1) =  𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1). (11) 

Equation (10) ensures that bats adjust their positions based on 

their current velocities and the influence of the global best 

solution. To enhance exploitation, the BA incorporates a local 

search step. A random walk around the best solution 𝑋∗  is 

performed using 𝑋∗ + €𝐴𝑖, where € is number in [-1,1] and 𝐴𝑖 

represents the loudness of the bat. This local search step ensures 

refinement in the vicinity of promising solutions, enabling the 

algorithm to fine-tune the results effectively. 

Additionally, the BA algorithm dynamically adjusts two 

key parameters: loudness 𝐴𝑖  and pulse rate 𝑟𝑖 . Loudness 

decreases over iterations, as in (12). 

 𝐴(𝑡 + 1) =  𝛼𝐴𝑖(𝑡) (12) 

while the pulse rate increases as (13) 

 𝑟𝑖(𝑡 + 1) =  𝑟𝑖  (0)(1 − 𝑒𝛾𝑡)   (13) 

where 𝛼 and 𝛾 are constants. These adjustments simulate the 

behavior of real bats, with reduced loudness and increased 

pulse rates indicating a transition from exploration to 

exploitation. 

BA algorithm evaluates the fitness of each candidate 

solution using the objective function. The best solution is 

updated iteratively, and the algorithm terminates when the 

maximum number of iterations or a convergence criterion is 

met. BA is particularly effective in handling complex and 

multimodal optimization problems due to its robust global and 

local search mechanisms. 

C. LOAD FLOW ANALYSIS 

Load flow is an essential tool for researching, planning, and 

evaluating power systems. It enables power system engineers 

to assess the safety of the power system’s configuration and 

operation under various loading scenarios. Modelling and 

simulation are required to ascertain the power flow and losses 

in such a system [33]. The ETAP software’s adaptive Newton-

Raphson method approach is used to analyze load flow in order 

to validate the optimization outcomes. This method ensures 

accurate calculation of voltage profiles, line flows, and power 

losses under different DG configurations, due to its high 

accuracy and rapid convergence properties, even for large-scale 

and highly nonlinear power systems. In this study, load flow 

analysis was conducted to validate the placement and sizing of 

DG units determined by the SCA and BA. The validation step 

confirmed the feasibility and performance of the solutions 

proposed by the optimization algorithms. 

Load flow analysis is a fundamental step in assessing the 

performance of an electrical power system under the influence 

of DG. To ensure the system ran within allowable bounds, this 

analysis established the voltage magnitude and phase angle at 

each bus as well as the power flows over transmission lines. 

The inclusion of DG in the IEEE 9 bus system modified the 

power flow by reducing line losses, improving voltage profiles, 

and enhancing overall system stability. To evaluate the 

effectiveness of the SCA and BA, the optimized DG parameters 

were applied, and the corresponding load flow results were 

analyzed. Key performance indicators included active power 

losses, voltage stability indices, and system efficiency. 

By comparing the load flow results for DG placement 

derived from the two optimization techniques, this study 

highlights the practical implications of the SCA and BA in 

achieving optimal power system performance. 

V. RESULTS AND DISCUSSION  

The results of the load flow analysis and optimization 

procedure were obtained under three scenarios: normal 

condition, integration of DG using the BA and SCA with 

normal loads, and use of an increased 10% load using 

optimization SCA and BA. The comparative analysis evaluated 

the performance of each method in terms of system voltage 

profile improvement, power loss reduction, and overall system 

efficiency.  

The results of the DG placement simulation based on the 

algorithm are shown in Table V, which illustrates the voltage 

profile of the IEEE 9 bus system. To ensure consistency in 

analysis and facilitate comparison across various system 

elements, the voltage profile is represented in per unit (pu) units. 

A. THE RESULT OF SCENARIO 1 

Prior to the DG integration, the voltage levels on the lower 

buses ranged from 0.95 pu. Such conditions highlight the 

TABLE IV 

LINE PARAMETER 

Bus Distance 

(km) 

R0 

(Ω/km) 

L0 

(Ω/km) 

R1 

(Ω/km) 

L1 

(Ω/km) From To 

4 5 89.98 0.5881 0.00398 0.00588 0.00133 

4 6 97.336 0.924 0.00398 0.924 0.00133 

5 7 170.338 0.994 0.00398 0.0994 0.00133 

6 9 179.86 1.15 0.00398 0.115 0.00133 

7 8 76.176 0.590 0.00398 0.0590 0.00133 

8 9 106.646 0.590 0.00398 0.0590 0.00133 
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necessity of DG placement to improve system voltage stability 

and ensure compliance with operational standards. The voltage 

deviations were observed on several buses, particularly on bus 

4, 5, and 6, where the voltage dropped as low as to 0.93 pu. 

This indicates a need for voltage support on these buses. In the 

context of DG integration and voltage profile analysis, 

maintaining voltage levels within these limits is critical. If the 

voltage deviates significantly from the nominal range, either 

under or over the acceptable limits, it can lead to a variety of 

operational, safety, and performance issues in the electrical 

system. Both undervoltage and overvoltage conditions 

negatively affect system reliability, equipment longevity, and 

operational efficiency. Ensuring voltage levels remain within 

standards, such as SPLN 1:1995 (+5%, -10%), is crucial for 

safe and effective power system operation. 

The voltage drops occurring on buses 4, 5, and 6 were 

attributed to the excessive length of the transmission line. Long 

transmission lines or poor conductor quality can result in 

significant voltage drops due to high resistance. If this problem 

is not resolved and keeps happening, it can lead to several 

adverse effects, including damage to electrical equipment, 

reduced operational efficiency, and increased power losses. 

Over time, this can cause the systems to become unstable, 

disrupt the consumer power supply, and deteriorate the 

system’s reliability.  

Based on the SCA and BA algorithms for DG’s location, 

DG is located on the same bus, namely bus 6. However, in 

terms of capacity, the SCA and BA methods have different 

results. The SCA method determined the DG capacity to be 250 

kW, while the BA method determined the DG capacity to be 

299 kW. 

B. RESULTS OF SCENARIO 2 

The second scenario is an integrated DG using the normal 

load (Table II). SCA algorithm demonstrates significant 

improvements in the voltage profile across the IEEE 9 bus 

system. One of the notable benefits of the SCA method is its 

ability to address low-voltage issues on critical buses. For 

instance, bus 4 and bus 5, which initially had the lowest voltage 

levels of 0.95 pu, experienced an improvement to 0.99 pu and 

0.98 pu, respectively. These values are close to the nominal 

voltage level of 1.00 pu, indicating a substantial improvement 

in the system’s voltage stability. This improvement reduces the 

risk of undervoltage-related issues, such as motor inefficiencies, 

overheating, or equipment damage, thereby contributing to a 

more reliable operation. 

Moreover, the SCA demonstrates its stability by 

maintaining the voltage levels of several buses at their nominal 

values. Bus 1 and bus 7, for instance, remain at 1.00 pu, 

showing that the optimization process does not disrupt well-

performing nodes. The algorithm’s capability to fine-tune the 

DG placement and capacity ensures that the overall system 

operates within acceptable voltage limits without causing 

overvoltage or undervoltage in any of the buses. 

The BA demonstrated remarkable performance in 

optimizing the voltage profile across the IEEE 9 bus system, 

surpassing the results achieved by the SCA algorithm. One of 

its standout features is the ability to improve voltage levels 

across all buses, bringing them closer to or slightly above the 

nominal value of 1.00 pu. This optimization not only stabilizes 

the system but also enhances its resilience, particularly in areas 

with initially poor voltage performance. For example, bus 4 and 

bus 5, which initially exhibited the lowest voltage levels of 0.9 

pu, saw significant improvements to 1.01 pu each, fully 

recovering from undervoltage conditions and reaching a more 

robust operational range. However, a notable drawback of the 

BA algorithm was the emergence of overvoltage conditions in 

several buses, including bus 2 (1.10 pu), bus 3 (1.07 pu), bus 7 

(1.07 pu), bus 8 (1.07 pu), and bus 9 (1.06 pu). This algorithm 

is better suited for scenarios requiring substantial 

improvements in specific areas of the network. 

A comparative analysis of the two algorithms reveals that 

both SCA and BA effectively improve the voltage profile, but 

their performance characteristics differ. To mitigate this 

problem, the optimization process needs to be refined to 

include tighter voltage constraints to ensure that no bus exceeds 

the allowable voltage range. Additionally, integration of 

voltage control devices, such as on-load tap changers or 

reactive power compensators can help regulate voltage levels 

effectively. 

C. RESULTS OF SCENARIO 3 

In the third scenario, an additional 10% load was applied 

across the system to represent anticipated future load growth. 

This adjustment was made to rigorously assess the capability 

of the SCA and BA algorithms to maintain voltage stability and 

system performance under elevated operation.  

In the voltage profile, SCA exhibited strong resilience 

(Table V). Most buses maintained their voltages close to the 

nominal value, with critical buses, such as bus 4 and bus 5, 

improving to 1.01 pu, and bus 6 stabilizing at 1.00 pu. These 

results indicate that the SCA optimization effectively 

accommodates higher demand without compromising voltage 

stability, enhancing system reliability even under dynamic 

conditions. The ability of SCA to sustain acceptable voltage 

levels across the network demonstrates its robustness against 

load variability and its suitability for future load growth 

scenarios. 

In contrast, the BA algorithm exhibited a decline in voltage 

regulation performance under increased load. Several buses, 

particularly bus 4 and bus 5, experienced voltage drops to 0.93 

pu and 0.94 pu, respectively, indicating a return to undervoltage 

conditions. Although some buses, such as bus 1 and bus 7, 

maintained stable voltage levels, the overall performance of the 

BA algorithm under higher loading conditions was less stable 

compared to SCA. This suggests that while BA is effective 

under normal load conditions, its adaptability under increased 

system stress is limited, making SCA a more reliable option for 

ensuring voltage stability in systems experiencing future load 

growth. 

TABLE V 

VOLTAGE PROFILE 

Bus ID 

Before 

DG 

(pu) 

Normal Load 

With DG 

Load Increase 10% 

With DG 

SCA BA SCA BA 

Bus 1 1.00 1.00 1.00 1.00 1.00 

Bus 2 1.04 1.00 1.10 1.06 1.04 

Bus 3 1.02 1.02 1.07 1.04 1.01 

Bus 4 0.93 0.99 1.01 1.01 0.93 

Bus 5 0.95 0.98 1.01 1.01 0.94 

Bus 6 0.95 1.00 1.00 1.00 0.94 

Bus 7 1.01 1.00 1.07 1.04 1.01 

Bus 8 1.01 1.01 1.07 1.04 1.00 

Bus 9 1.00 1.01 1.06 1.03 1.00 
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The analysis of system losses reinforcing the significance 

of voltage optimization in power systems is shown in Table VI. 

The analysis of losses reduction highlights the effectiveness of 

the SCA and BA in optimizing active and reactive power losses 

within the system. Under normal conditions, active power 

losses were recorded at 34.7 MW, while reactive power losses 

stood at 31.16 MVAR. After optimization using the SCA, 

active power losses dropped significantly to 5.35 MW, 

representing an 85% reduction, and reactive power losses 

decreased to 2.06 MVAR, an impressive 93% reduction. This 

substantial improvement underscores the SCA ability to 

optimize DG placement and capacity effectively, resulting in a 

significant improvement in system efficiency. 

On the other hand, the BA showed a more modest 

improvement. Active power losses were reduced to 30.96 MW, 

translating to an 11% reduction, while reactive power losses 

dropped to 11.98 MVAR, corresponding to a minimal 11% 

reduction. Although the BA improved voltage profiles, as 

discussed previously, it was less effective in minimizing losses 

than the SCA. The discrepancy in performance suggests that 

the BA optimization process prioritizes voltage stability over 

loss reduction, whereas the SCA achieves a more balanced 

approach, addressing both voltage improvement and losses 

reduction comprehensively. When the system load was 

increased by 10%, the performance of both algorithms declined. 

With load growth, the SCA method maintained a relatively 

strong performance, reducing active and reactive power losses 

by 11% and 62%, respectively. 

The connection between voltage improvement and loss 

reduction is evident in this context. The significant reduction in 

losses achieved by the SCA corresponds with its ability to bring 

voltage levels near the nominal value, thereby reducing power 

dissipation across the network. Conversely, while the BA 

enhances voltage stability at specific buses, its relatively lower 

impact on loss reduction indicates that its optimization strategy 

may not fully address areas with high power dissipation. 

Overall, the results demonstrate that the SCA outperforms the 

BA in optimizing both voltage profiles and power losses, 

making it a more effective solution for enhancing system 

performance. These results highlight the effectiveness of both 

optimization methods in adapting to increased load scenarios, 

with the SCA slightly outperforming the BA in overall voltage 

regulation. 

VI. CONCLUSION 

The comparative analysis of the SCA and BA algorithms 

demonstrates that both methods contribute to the improvement 

of voltage profiles and the reduction of system losses following 

DG integration. The SCA algorithm consistently outperforms the 

BA algorithm, achieving substantial reductions in both active 

and reactive power losses, as well as maintaining voltage levels 

closer to the nominal value across all scenarios. Under normal 

load conditions, the SCA method achieved an 85% reduction in 

active power losses and a 93% reduction in reactive power losses, 

while also improving voltage stability without causing 

overvoltage conditions. In contrast, the BA method, although 

effective in mitigating undervoltage, introduced slight 

overvoltage and achieved only modest reductions in system 

losses. When subjected to a 10% load increase, the SCA 

algorithm demonstrated greater robustness by maintaining 

acceptable voltage levels and sustaining notable reductions in 

system losses, whereas the BA method exhibited a decline in 

performance, particularly with voltage drops and minimal loss 

reduction. Overall, the findings highlight that the SCA algorithm 

provides superior performance in enhancing both the efficiency 

and stability of the power system under both normal and elevated 

load conditions, making it a more reliable and adaptable 

optimization strategy for future power system operations. 

The integration of ETAP software for load flow validation 

has ensured the practical relevance of the optimization results. 

Future research can explore hybrid optimization techniques and 

the inclusion of real-world constraints to further enhance system 

performance. 
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