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ABSTRACT — This study aims to develop an automated anthropometric system based on machine vision, integrated into a 

medical cyber-physical system (MCPS), to measure human head circumference. Head circumference is a critical parameter 

in growth monitoring, particularly for detecting abnormalities such as microcephaly and macrocephaly, which can affect 

cognitive development and overall health. To address this challenge, the study proposed an anthropometric system that 

enabled automated, accurate, and contactless measurements, accessible in real-time by healthcare professionals. The system 

was designed using a machine vision approach, incorporating object detection technology and elliptical model-based 

perimeter estimation to determine head circumference noninvasively. A 1,920 × 1,080-pixel (1080p) camera operating at 30 

fps with a 60° field of view was mounted on a three-axis motion mechanism driven by stepper motors to automatically 

capture frontal and side views of the head. The measurement process began with head detection and bounding box adjustment 

to obtain head width parameters. Euclidean distance was used for measurement, followed by elliptical geometry modeling 

to estimate head circumference. Experimental results showed the lowest error rate of 2.29% at a distance of 50 cm under 

300 lux lighting conditions. Performance evaluation using a confusion matrix yielded an accuracy of 92.8%, precision of 

100%, recall of 97.5%, and F score of 98.7%. The proposed system provides an effective solution for healthcare professionals 

to perform growth screening quickly, accurately, and safely. It also supports remote healthcare services, particularly in areas 

with limited access to medical facilities. 

KEYWORDS — Anthropometric System, Head Circumference, Noncontact Measuring Device, Machine Vision, Elliptical 

Perimeter, Medical Cyber-Physical System. 

I. INTRODUCTION 

Anthropometry is the science concerned with measuring 

human body dimensions and proportions. It is used to 

understand body size variation across populations and to detect 

changes that may result from environmental factors, lifestyle, 

or specific medical conditions [1]. Anthropometric 

measurements are typically performed using two main 

approaches: traditional and modern. Traditional methods 

generally rely on simple tools, such as measuring tapes, calipers, 

and other manual instruments. The main advantages of this 

approach lie in its ease of use and relatively low operational 

cost. However, it has notable limitations in terms of accuracy 

and consistency, as the results depend heavily on the skill of 

the examiner and are prone to subjective error. 

In contrast, modern methods offer image-based approaches, 

including two-dimensional (2D) image and video processing 

techniques [2], [3]. In addition, they offer three-dimensional 

(3D) measurement techniques [4], [5] that provide high-

precision morphological representations of the human body. 

These technologies, which utilize 3D scanners, 

photogrammetry, or sensor combinations, are capable of 

capturing structural details objectively and consistently, 

thereby improving the reliability of measurements compared to 

conventional methods. 

With the advancement of technology, the concept of cyber-

physical systems (CPS) has been extended to various sectors, 

including healthcare. A CPS is an integration of computing 

systems and physical entities via digital communication 

networks, enabling the development of intelligent, adaptive, 

and interconnected environments. 

This study focuses specifically on the implementation of a 

medical CPS (MCPS) [6], which applies CPS principles in the 

medical domain. By adopting digital anthropometric 

technologies, human body measurements can be performed 

more rapidly, accurately, and efficiently. This approach is 

relevant to various medical applications, ranging from 

diagnostics to patient monitoring and rehabilitation, while also 

supporting the development of personalized and automated 

precision healthcare services. 

The main focus of this study is the 2D measurement of head 

circumference. Head circumference serves as an important 

indicator for regularly monitoring individual growth and 

development [7]. This measurement aims to detect potential 

growth disorders, such as microcephaly or macrocephaly [8], 

which may affect cognitive development and general health. 

Early detection is essential to enable timely medical 

intervention [9]. Additionally, head size monitoring supports 

healthcare professionals in evaluating patient health, especially 

in situations where direct physical contact between doctors and 

patients is limited. 

The measurement method proposed in this study adopts an 

image-based telemetry system designed to provide easy access 

for both patients and medical personnel. This technology 

enables remote measurements without requiring physical 

presence at healthcare facilities, making it especially beneficial 

for individuals with mobility limitations [10]. The system also 
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supports long-term monitoring with high accuracy and reduces 

the potential for subjective bias found in manual methods. With 

standardized and consistent data, medical professionals can 

analyze head circumference development more objectively, 

resulting in more precise, data-driven diagnoses. 

Prior studies have investigated the application of machine 

vision technologies in anthropometric measurement. One study 

utilized digital images to measure head dimensions through 

image processing techniques [3]. Another used OpenPose to 

detect body parts such as chest, abdomen, and waist, then 

calculated their circumferences using elliptical perimeter 

formulas [1]. Research on telemetry systems has also included 

camera control based on human fall detection using a 

combination of accelerometer and gyroscope sensors [11]. 

These studies employed wearable devices attached directly to 

the body. A similar approach has been applied in bio-signal 

measurements through wearable devices [12], although their 

effectiveness remains limited by the need for direct physical 

contact. 

Other studies explored body dimension measurements in 

2D and 3D using convolutional body dimensions, point clouds, 

skinned multi-person linear (SMPL) models, and nonlinear 

regressors [13]. There are also studies on body weight 

estimation using body surface area derived from elliptical 

cylinder formulas and linear regression [14], [15], as well as 

object detection and waist circumference measurement using 

the Viola-Jones method [16]. In this study, a telemetry system 

combining object detection with elliptical model perimeter 

estimation was proposed for automated head circumference 

measurement. The system integrated a dual-axis movable 

camera with an automated height adjustment mechanism to 

independently identify the target object. 

This study contributes to the development of automated 

anthropometric systems by integrating a MCPS, multi-axis 

moving cameras, and an object detection algorithm based on 

elliptical modeling to enable noncontact, real-time, and precise 

head circumference measurement. This approach addresses the 

limitations of traditional methods that rely on manual tools, 

such as measuring tapes or wearable devices, which require 

physical contact and are prone to inconsistent data [3], [11], 

[12]. Meanwhile, modern 3D modeling methods such as SMPL 

and point clouds [13] often require expensive equipment and 

complex setups. Wearable systems are also limited for user 

groups with mobility impairments or in regions with inadequate 

healthcare infrastructure. 

The solution proposed in this study emphasizes automated, 

efficient, and remotely accessible measurement using a 

machine vision-based telemetry system. This approach offers a 

smart, user-friendly, and noninvasive alternative that is 

compatible with telemedicine platforms, thus having the 

potential to transform growth monitoring practices—

particularly in areas with limited access to medical services. 

The system’s advantages enable faster, safer, and more 

accurate screening processes. Its implications extend beyond 

diagnostics to include clinical evaluation, nutritional status 

monitoring, and even the design of head protection equipment 

based on valid and objective anthropometric data.  

II. SYSTEM PERFORMANCE 

A. OVERVIEW 

Figure 1 illustrates the performance of the telemetry system 

for human head circumference measurement based on machine 

vision and MCPS technology. As shown in Figure 1, the first 

block diagram, representing the MCPS, includes a main 

subprocess responsible for data acquisition. This process 

begins with image capture using a camera sensor, which 

functions as the primary device in the measurement system. 

The acquired image is then analyzed to determine the centroid 

or geometric center of the measured object. Determining the 

centroid is essential, as it serves as a reference for object 

position stabilization, thereby improving the accuracy and 

consistency of the measurements [17]–[19]. 

After identifying the centroid, the system proceeds to the 

image identification and classification stage using machine 

vision. In this phase, images are analyzed based on the 

proportions of the human body to optimize detection and 

measurement accuracy [11], [12]. Machine vision plays a key 

role in this process as it enables automated object detection 

without manual interaction, thus minimizing errors caused by 

human factors. 

In this study, the camera is integrated as the main 

component of the physical system within the MCPS framework. 

It serves as a visual sensor that captures images, which are then 

processed automatically by the system. The implementation of 

this device allows monitoring without direct contact with the 

measured object, which is particularly relevant in contexts 

requiring reduced physical interaction, such as with patients 

with limited mobility or during certain epidemic conditions. 

The integration of this technology is intended to enhance both 

the efficiency and accuracy of automated measurements while 

expanding access to telemetry-based healthcare services. 

The use of the centroid in this study serves several key 

purposes. One of them is to determine the average position 

reference of the object, which assists in stabilizing and 

adjusting the measurement based on the object’s midpoint [17]. 

This approach enables more accurate measurements, especially 

in machine vision-based monitoring processes. 

This research requires consistent distance calculations, 

which involve converting object dimensions from pixels to 

millimeters. This conversion is critical, as the distance between 

the camera and the object must first be determined before pixel 

dimensions can be translated into millimeters. By identifying 

the centroid, the system can compute position shifts and adjust 

the measurement scale to achieve more precise results. 

Additionally, this study considers perspective correction and 

geometric distortion. Preliminary studies found that several 

 

Figure 1. Performance of a machine vision-based human head circumference 
telemetry system. 
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captured images exhibited perspective changes or distortions 

due to varying camera angles. 

Therefore, a recalibration process was required to improve 

measurement accuracy. During the centroid determination 

stage, the average pixel value within a defined area was 

calculated using an image moment detection method. This 

technique enabled the computation of several image properties, 

such as radius, area, and center of mass, which were 

subsequently used to identify the centroid coordinates (x, y) of 

the object contour [18]. Furthermore, this study integrated a 

machine vision system with an object detection algorithm 

aimed at identifying humans and surrounding objects in an 

image.  

The detection process is categorized into two types: soft 

detection and hard detection. Soft detection identifies the 

presence of objects without specifying their location, while 

hard detection not only recognizes the objects but also 

determines their exact position and size [20]. The study then 

proceeded to the anthropometric analysis stage, focusing on the 

measurement of various human body features. 

Anthropometry in this context was categorized into two 

main types: static anthropometry, which pertains to 

measurements of body shape and composition, and dynamic 

anthropometry, which involves movement capability, physical 

strength, and spatial usage during various activities [13], [21], 

[22]. Table I presents the specifications of assistive tools and 

standard requirements used in this study to ensure the system 

operates optimally during the telemetry-based head 

circumference measurement process. 

This study then continued with anthropometric analysis 

focusing on the measurement of human body features. During 

the measurement process, the object was positioned seated on 

a chair facing directly toward the measuring device to ensure 

data stability and consistency. 

To obtain more accurate measurement results, the image 

acquisition system was designed with three distance options 

between the object and the camera. The closest distance used 

in the system was 50 cm, while the farthest distance reached 70 

cm. The selection of these varying distances aimed to optimize 

the detection process and adjust the measurements under 

different lighting conditions and camera angles. This distance 

configuration enabled the system to analyze differences in 

measurement results that may arise due to perspective changes 

and to determine the optimal distance for the best accuracy. 

Figure 2 illustrates the image acquisition stages performed 

by the camera. The object’s position and the camera angle were 

arranged to comply with the predefined measurement standards. 

This configuration was intended to ensure optimal visual data 

acquisition and reduce potential distortion or errors during 

image analysis. 

Figure 3 depicts the horizontal movement path of the 

camera, which was designed to move automatically from left to 

right. This mechanism allowed the system to adjust the 

camera’s position to obtain the best viewing angle during the 

measurement process. The camera movement was only 

activated when the system detected the presence of an object 

located at the predetermined position. 

Once the object was successfully identified, the system 

automatically captured the image. The captured image was then 

stored for further processing in the feature extraction and 

measurement stage. This extraction stage served to isolate key 

information from the image, such as the object’s shape and 

dimensions, to ensure that the measurement results had a high 

level of accuracy [23], [24]. 

Through automatic horizontal movement, the system was 

able to optimize the image acquisition angle, resulting in more 

precise measurements. Moreover, this mechanism reduced 

human involvement in the image capture process, thereby 

minimizing the potential for errors caused by subjectivity or 

TABLE I 

STANDARD SPECIFICATION REQUIREMENTS 

No Criteria Description 

1 Object 

measurement 

position 

Seated position with a height between 35 

- 45 cm. 

2 Camera 

resolution 

1920×1080 (1080p) / 30fps with a 60-

degree field of view. 

3 Light intensity 250 – 450 lux. 

4 Microcontroller NodeMCU ESP8266. input voltage: 3.3 ~ 

5V. GPIO: 13 pins. PWM Channels: 10. 

ADC Pin: 1. Flash Memory: 4 MB. Clock 

Speed: 40/26/24 MHz. 

5 Stepper motor Bipolar stepper motor NEMA 17HS4401. 

step angle 1.8° (200 steps/rev). holding 

torque 40 N·cm. 

6 Motor driver A4988. Micro stepping resolution: full 

step. 1/2. 1/4. 1/8. and 1/16. 

7 Mechanical 

system 

Horizontal track dimensions: 1470 × 40 × 

20 mm (45⁰ angle). vertical track 

dimensions: 800 × 20 × 20 mm. camera 

mount actuator: V-slot wheel and timing 

belt. 

 

Figure 2. Camera track can move automatically. 

 

Figure 3. Camera trajectory for image capture and extraction. 
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manual mistakes. This made the system more efficient and 

reliable for machine vision-based measurement.  

In this mechanical design, the system was equipped with a 

camera mount mobility track that moved along two axes using 

stepper motors as the primary actuators. This track was 

designed to allow the camera to move precisely in two 

directions—vertical and horizontal—to automatically adjust 

the viewing angle and measurement position. 

The horizontal movement of the track is designed in the 

shape of the letter L, with the corner section formed to resemble 

a quarter-circle curve. This design allows the system to capture 

images of the object from two main viewpoints: front and side. 

Consequently, the system is able to obtain more comprehensive 

and accurate measurement data, particularly in the analysis of 

the shape and dimensions of the measured object. 

Meanwhile, the vertical movement of the track serves to 

adjust the camera’s height relative to the object. This 

mechanism is essential for enabling the system to 

accommodate variations in object height, ensuring that the 

captured image remains within the optimal field of view. With 

the combination of vertical and horizontal movement, the 

system is capable of performing detection and measurement 

flexibly without manual intervention, thereby improving 

efficiency and accuracy in machine vision-based analysis 

processes. 

B. MEASUREMENT OF HEAD LENGTH AND WIDTH 

The measurement process begins with the object detection 

stage. At this stage, the system is focused on identifying the 

frontal and side views of the head. Detection is carried out to 

ensure that the measured area corresponds to the predetermined 

parameters. Figure 4(a) shows the bounding box used to 

determine head length, while Figure 4(b) presents the bounding 

box used in measuring head width. 

After the camera successfully detects and identifies the 

head object, the next process is the measurement of head width. 

This measurement is performed by adjusting the position of the 

bounding box so that the system can obtain accurate 

dimensions. At this stage, the system measures the head along 

the horizontal axis (x-axis), as shown in Figures 5(a) and 5(b). 

The data obtained from these two images are then used as the 

basis for further calculations. 

Based on the values obtained from Figures 5(a) and 5(b), 

the system proceeds with the measurement process by applying 

the elliptical model scheme. This approach enables a more 

accurate estimation of head circumference because it takes into 

account the natural contour of the human head. The 

measurement result is visualized in Figure 5(c), which displays 

the calculated head circumference based on the elliptical model 

as the final output. This method yields more precise data that 

align with anthropometric standards used in human head 

growth analysis. 

To determine the object’s width, this study used a reference 

to the Euclidean distance method, which is used to measure the 

distance between two points in coordinate space [13], [18]. In 

the context of this study, the method was applied to measure 

the distance between coordinates along the x-axis, which was 

then used as the width value of the head object. 

Once the width value in pixels was obtained, the 

measurement result was converted into centimeters (cm) to 

determine the actual size of the head object. The conversion 

process is carried out using (1). 

 𝑃𝑖𝑥𝑒𝑙 𝑡𝑜 𝑀𝑒𝑡𝑟𝑖𝑐 =
(𝑃𝑖𝑥𝑒𝑙𝑊𝑖𝑑𝑡ℎ)

(𝐴𝑟𝑒𝑎𝑊𝑖𝑑𝑡ℎ)
.  (1) 

Equation (1) is used to calculate the ratio between the 

PixelWidth (width in pixels) of the object detected within the 

bounding box and the AreaWidth (actual width) of the 

measured head object. By using this ratio, the system can 

convert object dimensions from the digital domain (pixel-based 

measurement) to metric units (centimeter-based measurement), 

thereby producing more accurate results in accordance with 

anthropometric standards. This approach ensures that the head 

size measurements generated by the machine vision-based 

system achieve a high level of precision, making them suitable 

for various medical or anthropometric analyses related to 

monitoring the growth and development of the human head. 

C. HEAD CIRCUMFERENCE CALCULATION 

In the head circumference calculation stage, the employed 

approach was the elliptical perimeter formula [1], [12], [25], as 

shown in Figure 5(c). The measured values of the object’s 

frontal and side view length and width were used in the 

calculation based on the elliptical model approximation 

formula, as shown in (2). In (2), a and b represent the major and 

minor radii of the elliptical model, respectively, estimated from 

the system’s detection results. 

 𝐿𝑃 ≈  𝜋 [ 3(𝑎 + 𝑏) −  √(3𝑎 + 𝑏)(𝑎 + 3𝑏). (2) 

As a form of validation for the accuracy of the calculation 

using the elliptical perimeter formula, head circumference was 

also measured manually using a measuring tape as the 

conventional method. The measurement results showed that the 

head circumference of the object was 55 cm, with a frontal-

view width of 16.4 cm (radius 8.2 cm) and a side-view width 

of 17.5 cm (radius 8.75 cm). The calculation using the elliptical 

model produced an estimated value close to the actual result, 

 

 (a) (b) 

Figure 4. Head bounding box, (a) frontal view, (b) side view. 

 

 (a) (b) (c) 

Figure 5. (a) Front-view head bounding box measurement, (b) side-view head 
bounding box measurement, and (c) head circumference measurement based on 
the elliptical model. 
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with a difference of approximately 2 cm compared to the 

manual measurement. To improve the accuracy of the system, 

this error value was compensated through the application of 

pixel-to-metric conversion calibration in the measurement 

algorithm. This adjustment is expected to enhance the precision 

of the final result, thereby making the system more reliable as 

a supporting tool for technology-based anthropometric analysis. 

D. SYSTEM TESTING FOR HEAD CIRCUMFERENCE 
CALCULATION 

The system testing process was carried out by comparing 

the head circumference measurement results produced by the 

system with manual measurement results using a measuring 

tape as a reference. The purpose of this comparison was to 

evaluate the system’s accuracy level in estimating head 

dimensions automatically. After all measurement data had been 

collected, the accuracy level was calculated by analyzing the 

error percentage to assess the deviation of the system results 

from the manual reference values. 

The system’s accuracy value was calculated by subtracting 

the measurement error from 100% [14]. In other words, the 

smaller the error value, the higher the system’s accuracy. 

Equation (3) is used to calculate the error and accuracy values 

in the system: 

𝐸𝑟𝑟𝑜𝑟
= (𝑠𝑦𝑠𝑡𝑒𝑚 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒
− 𝑚𝑎𝑛𝑢𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒)
/(𝑚𝑎𝑛𝑢𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒) ×  100% 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100% −  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

(3) 

By applying the calculations in (3), an overview of the 

system’s reliability in performing automatic measurements can 

be obtained. If the resulting accuracy value approaches 100%, 

the system can be considered to have good performance and 

can be used as an alternative for head circumference 

measurement through telemetry-based machine vision. 

III. SYSTEM TESTING  

As shown in Figure 6(a), the object to be measured was 

seated facing the camera mount. The positions of the camera 

and the object were adjusted according to a predetermined 

distance to ensure that the measurement could be carried out 

optimally. The camera automatically adjusted its position to 

obtain the proper view before initiating the detection and 

measurement process. 

This study integrated a machine vision system with an 

object detection algorithm to detect the presence of humans and 

other objects in a digital image. The detection was divided into 

two types: soft detection and hard detection. Soft detection only 

identifies the existence of objects without spatial information, 

while hard detection is capable of determining the object’s 

position, size, and boundary precisely [20]. To ensure that the 

detected head met the measurement criteria, the system 

automatically adjusted the camera position so that the object 

was located precisely at the center of the frame with an accurate 

frontal orientation. 

The process began with the frame alignment stage, which 

involved an initial alignment through scanning the image area 

and evaluating the detection results using a bounding box. If 

the object was outside the optimal zone or had an incorrect 

orientation, the camera adjusted its position automatically via 

actuators until it met the predetermined standards of 

proportionality and orientation. Additional validation was 

conducted based on facial symmetry parameters, image clarity, 

and potential visual disturbances, such as the presence of 

dominant accessories. This approach ensured that only images 

with optimal quality and positioning were used in the 

measurement process, thereby improving the accuracy and 

consistency of the system in automatically detecting and 

computing head circumference.  

After the object was successfully detected from both the 

frontal and side views, the system proceeded with head width 

measurement as the main parameter for estimating head 

circumference. This process is visualized in Figure 6(b), which 

displays the detection results used for calculating head 

dimensions based on the elliptical model. This approach has 

been proven to yield more accurate and stable measurement 

results compared to manual methods. 

The results from the frontal and side views were then stored 

on the server as reference data for model training and testing. 

The initial dataset consisted of 420 samples and was split using 

an 80:20 ratio between training and testing data to ensure that 

the model received sufficient data for learning and was tested 

on unseen data.  

During the testing stage, the system was evaluated based on 

two main categories: frontal and side views of the head. The 

evaluation was conducted by comparing reference annotations 

with the system’s prediction results. System performance was 

analyzed using a confusion matrix, which served as the basis 

for calculating evaluation metrics such as accuracy, precision, 

recall, and F1 score to assess the effectiveness of the system in 

detecting and measuring head circumference automatically. 

Additional testing was also performed involving human 

subjects wearing facial or head accessories such as glasses, 

masks, and hats to assess the impact of these elements on 

detection accuracy. As shown in Figure 7(a), this test aimed to 

identify potential disturbances or biases that could affect the 

performance of the machine vision-based measurement system. 

The test results showed that the model was still able to 

detect human objects wearing black head coverings. This 

 

(a) 

 

(b) 

Figure 6. (a) Telemetry system implementation on a human subject, (b) bounding 
box implementation in the telemetry system. 

 

EN-211



 Jurnal Nasional Teknik Elektro dan Teknologi Informasi 
  Volume 14 Number 3 August 2025 

 

 

p-ISSN 2301–4156 | e-ISSN 2460–5719 Susetyo Bagas Bhaskoro: A Machine Vision-Based Anthropometric ... 

occurred because such accessories resembled hair 

characteristics, thus having minimal effect on the detection 

process. However, the model had difficulty detecting faces 

when the object was wearing a mask that covered a large 

portion of the frontal view area. This error occurred due to a 

mismatch between the data used in model training and the 

testing conditions, as the dataset used did not include facial 

variations with masks.  

In addition to testing on human subjects, further testing was 

also conducted on nonhuman objects, such as animations or 

dolls, to evaluate the model’s ability to differentiate human 

from non-human objects. The test results showed that the 

model did not produce any detection on animation or doll 

objects, as there were no matching annotations within the 

trained dataset. However, under certain conditions, false 

positive errors occurred, in which the model incorrectly 

identified nonhuman objects as humans, as shown in Figure 

7(b). This error was likely caused by visual similarities between 

the test objects and human objects in the dataset, especially 

when the object had a face shape or body proportions 

resembling those of a human. 

Based on the results of this evaluation, it can be concluded 

that the developed model has successfully detected human 

objects and distinguished between objects belonging to trained 

classes and those that did not. However, there remains 

opportunities to improve the robustness of the model, 

particularly in handling variations in facial accessories and 

reducing the likelihood of false detections involving human-

like objects. 

A. OBJECT DETECTION TESTING 

Table II presents the results of testing several parameters 

that affecting the object detection process within the object 

detection algorithm. The tested parameters included variations 

in light intensity and the distance between the object and the 

camera. The experiments were conducted indoors using three 

levels of light intensity and three distance variations to evaluate 

the impact of these factors on system detection performance. 

According to the results, the object detection algorithm was 

able to detect objects within a light intensity range of 200–400 

lux. When the light intensity was below 200 lux, the model 

struggled to detect objects due to insufficient contrast between 

the object and the background, resulting in an improperly 

formed bounding box. Conversely, under lighting conditions 

exceeding 400 lux, the model was still able to detect objects; 

however, excessive light reflection occasionally interfered with 

detection accuracy. 

Furthermore, the distance between the object and the 

camera was also found to affect detection results. At an optimal 

range of 50–60 cm, detection was performed reliably. However, 

when the object was positioned too close (< 50 cm) or too far 

(> 60 cm), the model experienced a decline in accuracy due to 

perspective distortion, which altered the perceived size of the 

object in the image. These findings confirmed that both lighting 

intensity and object distance played a crucial role in the success 

of object detection, highlighting the need for proper lighting 

calibration and optimal distance settings to ensure maximum 

system performance. 

B. HEAD CIRCUMFERENCE MEASUREMENT TESTING  

In the head circumference measurement test, the accuracy 

level of the measurements produced by the designed system 

was evaluated, as shown in Table III. The test was conducted 

on six object samples, with each sample measured at three 

different distances to analyze the effect of distance variation on 

measurement accuracy. During the testing process, the lighting 

intensity was maintained in the range of 300–400 lux, while the 

distance between the object and the camera was varied to 50 

cm, 60 cm, and 70 cm. 

The measurements obtained from the system were then 

compared with manual measurements using a measuring tape, 

with the aim of calculating the system’s accuracy and error 

values. Based on the results presented in Table III, the average 

error across all measurements at the three different distances 

was found to be 2.999%. Among the three distances, the 50 cm 

test distance yielded the best results, with an average error of 

2.299%, indicating that the system provided the highest 

accuracy at this distance. 

Several factors contributed to the measurement error values, 

including the distance between the object and the camera, the 

object’s sitting posture, and the indoor lighting intensity. These 

factors could influence the bounding box detection and head 

dimension calculation; therefore, it was important to ensure 

 

(a) 

 

(b) 

Figure 7. (a) Testing with facial accessories, (b) testing using non-human objects. 

TABLE II 

LIGHT INTENSITY PARAMETER TESTING 

Lux Object 
Detection 

Class 

Distance (cm) 

50 60 70 

300 Object without 

head covering 

Frontal view ✓ ✓ ✓ 

Side view ✓ ✓ ✓ 

Object with head 

covering 

Frontal view ✓ ✓ ✓ 

Side view ✓ ✓ ✓ 

160 Object without 

head covering 

Frontal view ✓ ✓ ✓ 

Side view ✓ ✓ ✓ 

Object with head 

covering 

Frontal view ✓ ✓ ✓ 

Side view ✓ ✓ × 

70 Object without 

head covering 

Frontal view ✓ ✓ ✓ 

Side view ✓ ✓ ✓ 

Object with head 

covering 

Frontal view ✓ ✓ × 

Side view ✓ ✓ × 
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stable object positioning and optimal lighting conditions to 

enable the system to operate with maximum accuracy. 

C. HEAD CIRCUMFERENCE TESTING FOR OBJECT OF 
DIFFERENT AGES 

In addition to evaluating measurement accuracy based on 

distance variation, head circumference testing was also carried 

out according to the age differences of the objects. The purpose 

of this test was to ensure that the system could perform accurate 

measurements across various age ranges, particularly for 

children, since their head dimensions are smaller compared to 

adults. The measurement results based on the age parameter are 

presented in Table IV. 

This test was conducted on three object samples with 

different age categories, namely ≤ 10 years, 12 ≤ x ≤ 23 

years, and ≥ 24 years. All objects were measured at a fixed 

distance of 50 cm from the camera to ensure that the 

measurement results were not influenced by distance variation. 

Based on the results in Table IV, the average measurement 

error is found to be 2.002%. The measurements in the ≥ 24 

years category show the smallest error, at 0.179%, indicating 

that the system is capable of detecting head circumference with 

very high accuracy for adult objects. In the ≤ 10 years category, 

the error value is 1.569%, which remain within an acceptable 

range. However, in the 12 ≤ x ≤ 23 years category, the error 

reaches 4.259%, representing the highest among the three age 

groups. 

These results indicate that the system achieve higher 

accuracy for objects with larger head sizes, such as in the 12 ≤ 

x ≤ 23 years and ≥ 24 years categories. A possible reason for 

the higher error in the teenage group is the more complex head 

shape variation or suboptimal lighting and object positioning 

during measurement. This test provides insights that the system 

can be further optimized to improve accuracy, particularly for 

objects with smaller (≤  10 years) or more varied head 

dimensions.  

IV. RESULTS 

After several tests were conducted on the system, the results 

are presented in Table V, which shows the detection outcomes 

for the frontal and side views of the objects. The objective of 

this test was to evaluate the model’s success rate in detecting 

objects with a confidence value ≥  0.9 (highly accurate 

detection) and confidence < 0.9 (less accurate or poorly 

detected).  

The test results showed that most objects were successfully 

detected, although some samples exhibited lower confidence 

values. Several factors contributed to detection errors. First, 

when the system was tested using non-human objects, such as 

dolls or animations, the model did not yield significant 

detection results. This indicates that the system operated 

according to the training dataset, which only included human 

objects. Second, the use of accessories—such as masks, glasses, 

or long hair covering the face—reduced confidence scores, as 

the model struggled to recognize objects when facial features 

were not clearly visible. Third, lighting conditions and object 

positioning also affected detection; suboptimal lighting or head 

positions inconsistent with the patterns in the training data 

reduced detection accuracy or caused identification failures. 

Based on these findings, the detailed results are presented in 

Table VI, which outlines the key factors influencing the 

system’s detection accuracy.  

From the results in Table VI, a performance metric was 

calculated to evaluate the system’s effectiveness in detecting 

and automatically measuring head circumference. The 

evaluation metrics included accuracy, precision, recall, and F 

score. 

The performance metric results are as follows. First, an 

accuracy of 92.8% indicated the overall correctness of the 

model in making accurate detections compared to the total 

tested samples. Precision reached 100%, showing that all 

detected objects truly belonged to the trained dataset class, with 

no false detections of non-target objects. Recall was 97.5%, 

meaning that most objects that should have been detected were 

successfully detected, although some were missed due to 

factors such as lighting or accessories. Finally, the F score was 

98.7%, representing the harmonic mean of precision and recall, 

which indicated an excellent balance between detection 

precision and sensitivity. 

From this evaluation, it can be concluded that the machine 

vision–based head circumference measurement system 

performed very well, with a low error rate. Although challenges 

remain in terms of lighting, object positioning, and the use of 

accessories, the measurement results show that the system 

TABLE IV 

HEAD CIRCUMFERENCE MEASUREMENT TESTING FOR OBJECTS OF 

DIFFERENT AGE GROUPS 

Object Age 

(years) 

Manual 

Measurement 

(cm) 

System 

Measurement 

(cm) 

Error 

(%) 

≤ 10 51 50.2 1.569 

12 ≤ x ≤ 23 54 56.3 4.259 

≥ 24 yo 56 56.1 0.179 

Average Measurement Error 2.002 

 

 

TABLE III 

HEAD CIRCUMFERENCE MEASUREMENT TESTING 

Distance No. 

Manual 

Measurement 

(cm)  

System 

Measurement 

(cm) 

Error 

(%) 

50 

1. 56 56.65 1.161 

2. 55.8 56.21 0.735 

3. 54 52.30 3.148 

4. 55 55.52 0.945 

5. 54.5 51.90 4.771 

6. 54 52.36 3.037 

 Average Measurement Error 2.299 

60 

7. 56 51.50 8.036 

8. 55.8 54.41 2.491 

9. 54 53.30 1.296 

10. 55 53.94 1.927 

11. 54.5 52.79 3.138 

12. 54 51.80 4.074 

 Average Measurement Error 3.494 

70 

13. 56 54.45 2.768 

14. 55.8 56.90 1.971 

15. 54 51.43 4.759 

16. 55 53.31 3.073 

17. 54.5 53.70 1.468 

18. 54 51.20 5.185 

 Average Measurement Error 3.204 
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achieves high accuracy and can serve as a viable alternative for 

automatic head circumference measurement.  

In real-time testing, Table VII presents the confusion matrix 

for frontal and side view detection. The results are as follows: 

the system achieve 20 true positives (TP), meaning all human 

objects that should have been detected as positive are correctly 

identified. False positives (FP) are 0, indicating no nonhuman 

objects are incorrectly detected as positive. False negatives (FN) 

are also 0, meaning no target objects go undetected. Lastly, true 

negatives (TN) are 0, as no negative samples are included in 

this test, making the TN metric irrelevant in this context.  

These results indicate that the system performed 

exceptionally well for real-time frontal and side view object 

detection, as no detection errors occurred (FP = 0, FN = 0). The 

system achieved 100% accuracy in this scenario, demonstrating 

its reliability in recognizing human objects consistent with the 

training dataset. 

V. CONCLUSION 

This study concludes that the machine vision-based head 

circumference telemetry system, integrating an object detection 

algorithm and an elliptical approach for circumference 

calculation, is capable of automating the detection and 

measurement process with precision, achieving a relative error 

rate ranging from 2.299% to 3.494%. The system improves 

efficiency and consistency in anthropometric data acquisition 

and contributes to the development of biometric technologies 

that can be connected to smart devices and medical telemetry 

platforms. Its applications extend across multiple sectors, 

including public health, the wearable device industry, and real-

time population monitoring. The testing results also indicate 

that the system can still be optimized to enhance accuracy, 

particularly for individuals with more extreme head dimension 

variations, such as children under the age of 10. Future 

development will focus on improving generalization across 

morphological diversity, validating performance under varied 

environmental conditions, refining system operation in 

dynamic contexts, and implementing adaptive mechanisms that 

enable automatic adjustment to object position and distance to 

maintain measurement consistency. 
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