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ABSTRACT –– This paper proposes a stochastic unit commitment (SUC) approach to solve a day-ahead unit commitment 

(UC) problem in a system with high uncertainty net load which is caused by photovoltaic (PV) power plants. In contrast 

with robust unit commitment (RUC) which only considers the worst-case scenario, SUC considers every possible scenario 

with its probability. Multiple possible PV curves were obtained using k-means clustering on historical data. The proportion 

of cluster members was used as a weight factor representing the occurrence probability of PV curves. The test was separated 

into two-step tests, namely day-ahead and real-time markets, using IEEE 10 generating unit system and solved using CPLEX. 

The results showed that in a day-ahead UC, SUC ($539,896) had lower cost than RUC ($548,005). However, when the total 

energy generated was considered, the SUC (20.78 $/MWh) cost higher compared to RUC (20.75 $/MWh). It is because the 

solution proposed by SUC is as robust as the RUC, but the generation cost formulation also considers over-commitment. 

Thus, SUC produced a fairer price for the independent power producer and electric utility in the day-ahead calculation. The 

results also showed that in the test environment of the real-time market, SUC was able to produce a robust solution without 

going into over-commitment. It is clearly shown in a 30 units system test with 10 centroids, in which SUC had a cheaper 

solution (20.7253 $/MWh) compared to RUC (20.7285 $/MWh), without violating power balance or going to load shedding. 

KEYWORDS –– Intermittency, K-Means, Mixed-Integer Linear Programming, Stochastic Unit Commitment. 

I. INTRODUCTION 

The regulation of minimum renewable energy (RE) power 

share is getting higher each year. This regulation leads to a rise 

in solar photovoltaic (PV) installment as one of the most cost-

efficient RE power plants. At the same time, the levelized cost 

of electricity (LCOE) of PV is decreasing every year, which 

further incentives independent power producers (IPPs) to 

choose the stochastic power source [1]. Whereas a high PV 

power share will be followed by a high uncertainty net load 

curve. This high uncertainty increases the difficulty of power 

system utility to schedule generating units while minimizing 

the total cost, resulting in an increase in operational costs. 

The generating unit scheduling optimization problem is 

dubbed the unit commitment (UC). It is usually presented as a 

day-ahead deterministic unit commitment problem (DUC). It 

can be described as an optimization problem to determine the 

on/off schedule of generating units, including the power 

dispatched by each generating unit to meet the forecasts of the 

load demand profile of the next day, subjecting to various 

constraints [2], [3]. In considering the power produced by PV, 

the electrical power system utility can treat it as a negative load 

due to its characteristic as noncontrollable, noncontinuously 

available, and fluctuant power sources, simply called 

intermittent generators [4], [5]. Thus, the forecast of the load 

demand profile can be substituted with the forecast of a net load 

profile for the next day. One approach to solving UC in a 

system with high uncertainty net load caused by PV power 

plants is to implement the stochastic unit commitment (SUC). 

In contrast with robust unit commitment (RUC) [6] which only 

considers the worst-case scenario, the SUC considers every 

possible scenario with its probability. In systems with 

significant PV power share and high uncertainty, SUC is better 

suited to model the scheduling optimization problem. It is 

because RUC neglects all forecasts except the worst scenario 

forecast. 

Various SUC formulations have been done in previous 

studies [7]–[10]. In [7], SUC was solved using an exchange 

market algorithm and fuzzy satisfying method by considering 

the uncertainty of forecast to schedule electricity and heat 

dispatch. This method could handle various scenarios but did 

not incorporate scenario-independent variables such as a unit 

on/off status. In [8], the stochastic solution included a unit of 

on/off status, but it was treated as a scenario-dependent variable 

where each scenario had an independent on/off status. In [9], a 

two-model approach was used for solving multiple possible PV 

curves in dividing the problem. In the first model, the whole 

grid on/off status was solved first and unchanged, while the 

loop inside the second stage further optimized the scenario-

dependent variable. Further splitting has been done in [10] by 

incorporating multiple time resolutions where the nearest 

interval was binding, while the other was an advisory that will 

be recomputed in the future. In respect to the current solution, 

this approach has solved both scenario-dependent and scenario-

independent variables at a time. However, there is an 

information gap for the electrical power system utility to 

determine whether the SUC model is required for their systems. 

Furthermore, the impacts of the number of PV curves forecast 

in various system sizes have not been investigated. 

This paper aims to fill the gap from previous studies in SUC, 

namely the impacts of the number of PV forecast curves in 

various systems sizes. This paper also provides a step-by-step 

reformulation of DUC into SUC. Furthermore, a simple k-

means clustering is also presented as an example to transform 

a high number of weightless forecasts into a weighted forecast 

sample that can represent the original forecast. 

The paper is organized as follows: Section II presents the 

mathematical formulation of the DUC and SUC in the form of 

a mixed-integer linear problem (MILP) problem. Section III 

covers the methodologies to reproduce all the simulations used 

in this paper, namely electrical power system data and PV data. 
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Section IV presents the data of the hardware and software used 

to run the simulation. Section V analyses the result of the 

proposed method. Furthermore, this section also investigates 

the effect of the number of forecast points considered in various 

system sizes. Finally, Section VI is the conclusion. 

II. MATHEMATICAL FORMULATION 

A. DETERMINISTIC UNIT COMMITMENT 

The objective of DUC is to minimize total cost. For each 

time 𝑡 ∈  𝑇  and generating unit 𝑔 ∈  𝐺 , the objective to 

minimize total cost consisting of a startup, shutdown, and 

operation cost is as follows, 

 min 𝑐 = ∑ ∑ (

𝐶𝑔
𝑠𝑢𝑣𝑡,𝑔

+𝐶𝑔
𝑠𝑑𝑤𝑡,𝑔

+𝑐𝑡,𝑔
𝑜𝑝
𝑢𝑡,𝑔

)𝐺
𝑔=1

𝑇
𝑡=1  (1) 

where 𝑣𝑡,𝑔, 𝑤𝑡,𝑔, and 𝑢𝑡,𝑔 denote the binary decision variable 

of startup, shutdown, and status of the generating unit, 

respectively. The value of 𝐶𝑔
𝑠𝑢

 and 𝐶𝑔
𝑠𝑑 are constant and they 

respectively denote the cost to turn on and off a generating unit 

𝑔. Since the formulation of operation cost 𝑐𝑡,𝑔
𝑜𝑝

 is a function of 

dispatched power 𝑝𝑡,𝑔, it creates a multiplication between two 

decision variables. To avoid this multiplication, the operational 

cost can be expanded as follows, 

 𝑐𝑡,𝑔
𝑜𝑝
𝑢𝑡,𝑔 = 𝛼𝑔,0𝑢𝑡,𝑔 +∑ (𝛼𝑔,𝑙𝑝𝑡,𝑔,𝑙)

𝐿
𝑙=1  (2) 

where 𝛼𝑔,0 and 𝛼𝑔,𝑙  denote the constant part of 𝑐𝑡,𝑔
𝑜𝑝

 for every 

piecewise 𝑙 ∈  𝐿. Additionally, IEEE 10 generating units has 

$0 shutdown cost 𝐶𝑔
𝑠𝑑 . It means that the shutdown cost 

component 𝐶𝑔
𝑠𝑑𝑤𝑡,𝑔 can be removed. Thus, the formulation of 

the objective function in (1) for DUC can be rewritten into, 

 min 𝑐 = ∑ ∑ (

𝐶𝑔
𝑠𝑢𝑣𝑡,𝑔

+𝛼𝑔,0𝑢𝑡,𝑔

+∑ (𝛼𝑔,𝑙𝑝𝑡,𝑔,𝑙)
𝐿
𝑙=1

)𝐺
𝑔=1

𝑇
𝑡=1  (3) 

The objective of DUC is subject to constraints, 

 𝑝𝑡,𝑔 = 𝑃𝑔𝑢𝑡,𝑔 + ∑ 𝑝𝑡,𝑔,𝑙
𝐿
𝑙=1  (4) 

 𝑃𝑔𝑢𝑡,𝑔 ⩽ 𝑝𝑡,𝑔 ⩽ 𝑃𝑔𝑢𝑡,𝑔 (5) 

 ∑ 𝑝𝑡,𝑔𝑢𝑔,𝑡 = 𝑃𝑡
𝑛𝑒𝑡 = 𝑃𝑡

𝑑 − 𝑃𝑡
𝑠𝑢𝑛𝐺

𝑔=1  (6) 

 (𝑃𝑔 − 𝑃𝑔) 𝑣𝑡,𝑔 + 𝑝𝑡,𝑔 ≤ 𝑃𝑔 (7) 

 (𝑃𝑔 − 𝑃𝑔)𝑤𝑡,𝑔 + 𝑝𝑡−1,𝑔 ≤ 𝑃𝑔 (8) 

 ∑ ((𝑃𝑔−𝑝𝑡,𝑔)𝑢𝑡,𝑔) ≥ 𝑆𝑅%𝑃𝑡
𝑑𝐺

𝑔=1  (9) 

 ∑ 𝑢𝜏,𝑔 ≥ 𝑇𝑔
𝑢𝑝
𝑤𝑡,𝑔, ∀𝑡 ≥ 𝑇𝑔

𝑢𝑝𝑡−1
𝜏=𝑡−𝑇𝑔

𝑢𝑝  (10) 

 𝑇𝑔,0
𝑢𝑝
+∑ 𝑢𝜏,𝑔 ≥ 𝑇𝑔

𝑢𝑝
𝑤𝑡,𝑔, ∀𝑡 < 𝑇𝑔

𝑢𝑝𝑡−1
𝜏=1   (11) 

 ∑ (1 − 𝑢𝜏,𝑔) ≥ 𝑇𝑔
𝑑𝑛𝑣𝑡,𝑔, ∀𝑡 ≥ 𝑇𝑔

𝑑𝑛𝑡−1
𝜏=𝑡−𝑇𝑔

𝑑𝑛   (12) 

 𝑇𝑔,0
𝑑𝑛 + ∑ (1 − 𝑢𝜏,𝑔) ≥ 𝑇𝑔

𝑑𝑛𝑣𝑡,𝑔, ∀𝑡 < 𝑇𝑔
𝑑𝑛𝑡−1

𝜏=1   (13) 

where 𝑝𝑡,𝑔,𝑙 denotes power produced by generator 𝑔 at time 𝑡 

in piecewise 𝑙. The 𝑃𝑔 and 𝑃𝑔 denote the constant value of the 

minimum and maximum power dispatched from generating 

unit 𝑔, respectively. The 𝑃𝑡
𝑛𝑒𝑡, 𝑃𝑡

𝑑 , and 𝑃𝑡
𝑠𝑢𝑛 denote net load, 

power demand or load, and PV power output profile curves 

respectively. The 𝑆𝑅% denotes spinning reserve requirements 

in the percentage of load demand at time 𝑡 . 𝑇𝑔
𝑢𝑝

 and 𝑇𝑔
𝑑𝑛 

denote minimum up-time and down-time for unit 𝑔 in hours, 

while 𝑇𝑔,0
𝑢𝑝

 and 𝑇𝑔,0
𝑑𝑛 denote the duration of generator 𝑔 has been 

turned on or off before the simulation starts, respectively. 

Constraints in (4) and (5) ensure that generating unit only 

produces power if the unit is turned on and within the unit 

operation limits. Constraints in (6) ensure that the total output 

power matches the required net load. Constraints in (7) and (8) 

ensure that each generator output power must equal the 

minimum power limit of the corresponding unit before being 

shut down and after being started up. Constraints in (9) ensure 

that there is a spinning reserve available. Constraints in (10)–

(13) ensure that the operation follows the required minimum 

up-time and down-time of each generating unit. 

The DUC objective and constraint formulation follow the 

MILP equation format as follows, 

 𝑚𝑖𝑛 
𝑥
𝑐𝑇𝑥 (14) 

 𝐴𝑥 ≼ 𝑏 (15) 

 𝑥 ≼ 𝑥 ≼ 𝑥 (16) 

where 𝑐𝑇 denotes constants to calculate the objective function 

in row vector format. The 𝐴, 𝑏, 𝑥, and 𝑥 denote constants for 

MILP formulation with decision variable 𝑥. The notation of 

𝐴𝑥 ≼ 𝑏 means that every row that resulted from 𝐴𝑥 must be 

less than or equal to the corresponding row of b. The 𝐴 is in 

matrix form, whereas 𝑏, 𝑥, 𝑥, and 𝑥 are in column vector form. 

B. STOCHASTIC UNIT COMMITMENT 

In contrast to DUC that only considers a single net load 

profile or curve 𝑃𝑡
𝑛𝑒𝑡, SUC considers various possibilities of net 

load profiles or curves 𝑃𝑠,𝑡
𝑛𝑒𝑡. To model those various net load 

profiles in a single MILP problem, the objective function and 

constraints of DUC need to be reformulated. All constraints are 

grouped into state-independent variables, marked with 𝐷 

subscript; and state-dependent variables, marked with 𝑆 

subscript. The state-independent variables are all variables that 

have the same values across all states, such as on/off status, 

while the state-dependent variables are all variables that have 

different values across all states, even when at the same time 

segment, such as power generation. In general, the MILP 

formulation can be written as follows,  

 𝑚𝑖𝑛
𝑥
(𝑐𝐷
𝑇𝑥𝐷 + 𝑐𝑠

𝑇𝑥𝑠) (17) 

 [
𝐴𝐷 0
𝐴𝐷𝑠 𝐴𝑆

] [
𝑥𝐷
𝑥𝑆
] ≼ [

𝑏𝐷
𝑏𝑆
] (18) 

 [
𝑥𝐷
𝑥𝑆
] ≼ [

𝑥𝐷
𝑥𝑆
] ≼ [

𝑥𝐷
𝑥𝑆
] (19) 

The notation of 𝐴𝑥 ≼ 𝑏 is transformed into new constraint 

notations: 𝐴𝐷𝑥𝐷 ≼ 𝑏𝐷  and 𝐴𝐷𝑆𝑥𝐷 + 𝐴𝑆𝑥𝑆  ≼ 𝑏𝑆 . The state-

independent constraints 𝐴𝐷𝑥𝐷 ≼ 𝑏𝐷  are identical and can be 

obtained directly from 𝐴𝑥 ≼ 𝑏 , whereas the new constraint 

equations 𝐴𝐷𝑆𝑥𝐷 + 𝐴𝑆𝑥𝑆  ≼ 𝑏𝑆  are constraints that consist of 

state-dependent variable 𝑥𝑆. In this study, the state-independent 

variables 𝑥𝐷 consisted of 𝑣𝑡,𝑔, 𝑤𝑡,𝑔, and 𝑢𝑡,𝑔, whereas the state-

dependent variables 𝑥𝑆 consisted of 𝑝𝑠,𝑡,𝑔 and 𝑝𝑠,𝑡,𝑔,𝑙. Thus, the 
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objective function of SUC in the form of MILP can be written 

as follows, 

 min 𝑐 = ∑ ∑ (

𝐶𝑔
𝑠𝑢𝑣𝑡,𝑔

+𝛼𝑔,0𝑢𝑡,𝑔
+𝑐𝑠

)𝐺
𝑔=1

𝑇
𝑡=1  (20) 

 𝑐𝑠 = ∑ 𝜇𝑠(∑ 𝛼𝑔,𝑙𝑝𝑠,𝑡,𝑔,𝑙
𝐿
𝑙=1 )𝑆

𝑠=1  (21) 

where µs denotes the weight factor of scenario 𝑠 based on the 

occurrence probability. Therefore, the sum of µ𝑠 for all 𝑠 ∈  𝑆 

must be equal to 1. The objective of SUC is subject to DUC 

constraints, with some modifications in constraints containing 

state-dependent variables. In this paper, the stochastic forecasts 

come from the net load, specifically caused by high uncertainty 

PV forecast 𝑃𝑠,𝑡
𝑠𝑢𝑛. Hence, the DUC constraints in (4)–(9) are 

replaced by following SUC constraints, 

 𝑝𝑠,𝑡,𝑔 = 𝑃𝑔𝑢𝑡,𝑔 +∑ 𝑝𝑠,𝑡,𝑔,𝑙
𝐿
𝑙=1  (22) 

 𝑃𝑔𝑢𝑡,𝑔 ⩽ 𝑝𝑠,𝑡,𝑔 ⩽ 𝑃𝑔𝑢𝑡,𝑔  (23) 

 ∑ 𝑝𝑠,𝑡,𝑔,𝑙𝑢𝑔,𝑡 = 𝑃𝑠,𝑡
𝑛𝑒𝑡 = 𝑃𝑡

𝑑 − 𝑃𝑠,𝑡
𝑠𝑢𝑛𝐺

𝑔=1  (24) 

 (𝑃𝑔 − 𝑃𝑔) 𝑣𝑡,𝑔 + 𝑝𝑠,𝑡,𝑔 ≤ 𝑃𝑔 (25) 

 (𝑃𝑔 − 𝑃𝑔)𝑤𝑡,𝑔 + 𝑝𝑠,𝑡−1,𝑔 ≤ 𝑃𝑔 (26) 

 ∑ ((𝑃𝑔−𝑝𝑠,𝑡,𝑔)𝑢𝑡,𝑔) ≥ 𝑆𝑅%𝑃𝑡
𝑑𝐺

𝑔=1  (27) 

The outputs of day-ahead SUC contain state-independent 

variables that must have the same value for all 𝑠 ∈  𝑆 (𝑣𝑡,𝑔 , 

𝑤𝑡,𝑔, and 𝑢𝑡,𝑔), and state-dependent variables that are allowed 

to be different across all scenarios (𝑝𝑠,𝑡,𝑔 and 𝑝𝑠,𝑡,𝑔,𝑙). In real-

time operations, only the state-independent variable is fixed, 

while the state-dependent variable is allowed to be recalculated 

to satisfy operational constraints. 

To test the performance of the SUC solution, a test in 

simulated real-time operation was conducted. The test used the 

DUC objective function and constraints; thus, no state-

dependent variables were used. However, the DUC power 

balance constraints in (6) and (9) were replaced with the 

following equations,  

 ∑ 𝑝𝑡,𝑔𝑢𝑔,𝑡 + 𝑝𝑡
𝑠ℎ𝑒𝑑 − 𝑝𝑡

𝑑𝑚𝑦
= 𝑃𝑡

𝑑 − 𝑃𝑡
𝑠𝑢𝑛𝐺

𝑔=1   (28) 

 ∑ ((𝑃𝑔−𝑝𝑡,𝑔)𝑢𝑡,𝑔) + 𝑝𝑡
𝑆𝑅𝑣𝑖𝑜𝑙 ≥ 𝑆𝑅%𝑃𝑡

𝑑𝐺
𝑔=1  (29) 

where 𝑝𝑡
𝑠ℎ𝑒𝑑, 𝑝𝑡

𝑑𝑚𝑦
, and 𝑝𝑡

𝑆𝑅𝑣𝑖𝑜𝑙 denote load shedding, reserve 

violation, and dummy load at time 𝑡 , respectively. To 

encourage the solver to maximize the value of load shedding 

and reserve violation, an arbitrary high cost was added as the 

value of lost load and reserve violation penalty. Thus, the 

objective function in simulated real-time operation replaced the 

objective in (3) with the following equation, 

 min 𝑐 = ∑ ∑

(

 
 
 

𝐶𝑔
𝑠𝑢𝑣𝑡,𝑔

+𝛼𝑔,0𝑢𝑡,𝑔

+∑ (𝛼𝑔,𝑙𝑝𝑡,𝑔,𝑙)
𝐿
𝑙=1

+𝜓𝑠ℎ𝑒𝑑𝑝𝑡
𝑠ℎ𝑒𝑑

+𝜓𝑆𝑅𝑉𝑖𝑜𝑙𝑝𝑡
𝑆𝑅𝑉𝑖𝑜𝑙 )

 
 
 

𝐺
𝑔=1

𝑇
𝑡=1  (30) 

where 𝜓𝑠ℎ𝑒𝑑 and 𝜓𝑆𝑅𝑉𝑖𝑜𝑙 denote the constant for load shedding 

penalty and reserve violation penalty. Then, a separate 

calculation outside the solver could be used to calculate only 

the total operational cost based on (3). 

In the simulated real-time test, the commitment solution 

(𝑣𝑡,𝑔, 𝑤𝑡,𝑔, and 𝑢𝑡,𝑔) of every approach, both SUC and DUC, 

were fixed based on the outputs of the day-ahead solution of 

the corresponding approach. To evaluate the performance of 

every simulation, the following average generation cost 𝑐𝑔𝑒𝑛 

was used. 

 𝑐𝑔𝑒𝑛 =
𝑐

(𝑃𝑑−𝑃𝑠𝑢𝑛−𝑝𝑠ℎ𝑒𝑑+𝑝𝑑𝑚𝑦)
  (31) 

where 𝑃𝑑, 𝑃𝑠𝑢𝑛, 𝑝𝑠ℎ𝑒𝑑, and 𝑝𝑑𝑚𝑦 are all in the cumulative sum 

of all time 𝑡 ∈  𝑇. The value of 𝑐 here is based on (3).  

III. TEST SYSTEM 

A. ELECTRICAL POWER SYSTEMS DATA  

The test system used to test both the DUC and SUC is the 

IEEE 10-unit UC problem [11]. The IEEE 10-unit UC problem 

was selected because it is commonly used by other algorithms 

to compare a novel method with an existing method. A small 

modification of the quadratic cost constant was applied to 

change the quadratic cost function into a linear piecewise cost 

function containing two piecewise each. The linearization 

method for the fuel cost was based on SciPy curve-fit [12], [13]. 

The resulting piecewise cost can be seen in Table I. 

To simulate the system test with more than twenty 

generating units, the original ten generating units of the IEEE 

10-unit UC problem were duplicated, and the load was 

multiplied accordingly. For simulating a PV power plant, a 

fixed PV power plant with a size equal to 20% of peak load was 

used, making the size of the PV power plant became 300 MW, 

600 MW, 900 MW, 1.2 GW, and 1.5 GW for 10, 20, 30, 40, 

and 50 generating unit cases, respectively. 

B. PHOTOVOLTAIC DATA 

Forecast data used in this study were generated using scikit-

learn k-means clustering [14], specifically the Llyod algorithm 

[15]. The clustering approach is chosen because of its 

simplicity compared to other forecast method such as Markov 

switching [16] and seasonal forecast [17], [18]. Furthermore, 

the clustering approach can generate flexible numbers of 

profiles based on the number of centroids used. In future 

research, other scenario reduction algorithm can be employed 

such as important sampling [19], and dynamic time warping 

clustering [20], [21]. The inputs for the clustering were data 

number 724030 of the National Renewable Energy Laboratory 

(NREL) [22]. The first 19 years’ data were used as input data 

for k-means clustering, while the last year’s data were used as 

test data. The output of k-means clustering was forecast data 

TABLE I 

LINEARIZED GENERATING UNITS DATA FOR IEEE 10-UNIT UC PROBLEM 

Parameters 
Value 

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 

𝛼0 ($/h) 3,438.00 3,565.00 1,032.00 1,010.00 944.00 

𝛼1 ($/MWh) 16.40 17.40 16.78 16.69 20.12 

𝛼2 ($/MWh) 16.56 17.50 17.02 16.95 20.77 

Parameters 
Value 

Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 

𝛼0 ($/h) 817.00 1,173.00 919.00 937.00 948.00 

𝛼1 ($/MWh) 22.74 27.83 26.10 27.39 27.86 

𝛼2 ($/MWh) 23.23 27.84 26.30 27.45 27.92 
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for the input of SUC. The proportion of the cluster member 

within the group to all data was used as the weight or 

probability of occurrence of the cluster centers. Thus, the input 

of SUC for day-ahead UC was multiple PV curves with the 

occurrence probability of each state. 

The solution of UC was tested using data of 365 days. Each 

day in the test was treated as a single independent day, in which 

there was no relation between each day in the test. Thus, there 

were no between-day constraints such as minimum uptime and 

downtime between each day. 

The raw output of NREL data number 724030 was in 

MW/m2. To make it into percent energy produced by PV plants, 

normalization was done in the original data. The value of the 

highest PV solar radiation used for normalization was obtained 

from the highest value of the learning data set, which was 1,014 

MW/m2. This normalization was used in the day-ahead UC and 

the test. The normalized PV profile was used as the multiplier 

of PV size to create a PV power output profile. 

C. TEST ENVIRONMENT 

In this paper, the performances of various UC approaches 
in two different environments were tested. The first 
environment was day-ahead UC. In this environment, each 
approach was given several possibilities of the next-day PV 
profile forecast with the corresponding occurrence probability. 
In the second environment, a simulated real-time market was 
used. In this environment, the solution of generating units 
schedule was used whereas the power dispatch was 
recalculated based on the pseudo-real-time value of PV output.  

IV. HARDWARE AND SOFTWARE INFORMATION 

The simulation was conducted on HP Joy 2 laptop with 
Windows 10 operating system, AMD A4-9125 Dual-Core 2.3 
GHz, and 4 GB RAM. The solver used to run the simulation 
was a MILP solver by CPLEX 12.9.0.0 [23] with the branch-
and-cut algorithm. The CPLEX solver was run on Python 3.7.4. 

V. RESULTS AND DISCUSSION 

This section analyzes and compares various day-ahead UC 

solutions and parameters between five distinct UC perspectives 

or strategies. Two approaches were based on RUC, which 

considered only the worst-case scenarios, those were the 

cloudy worst-case scenario (WC) and no consideration of the 

PV scenario (NC). On the other hand, two optimistic 

perspectives were also considered, those were sunny best-case 

scenario (BC) and average irradiance case scenario (AIC). All 

those four perspectives used the DUC formulation. The last 

perspective was the stochastic approach that was based on the 

multiforecast of PV curves (MC). For WC, BC, and MC 

scenarios, the number following the name means the number of 

centroids used. For example, WC-10 means the worst-case 

scenario of a forecast containing 10 forecast curves is selected, 

whereas MC-10 means that ten scenarios are used for SUC 

inputs. 

A. PHOTOVOLTAIC FORECAST 

Ten separate forecast sets were generated using k-means 

clustering [14], [15] from the original data. The simplest set 

with one cluster center was used as the average irradiance 

forecast. The number of cluster centers was increasing for each 

forecast set, with the first set had only a single forecast. On the 

other hand, the tenth set had ten different forecast curves. The 

total daily energy in MWh generated from PV power plants 

with its occurrence probability, sorted from the highest 

probability, for the ten sets of forecasts can be seen in Table II. 

The total daily energies are shown on the left side of the slash, 

while the probabilities are shown on the right side of the slash.  

From Table II, it can be seen that by increasing the number 

of forecast points, the gap in total daily energy produced by PV 

sources between the highest energy output (BC) and the lowest 

power energy output (WC) for that particular number of 

centroids also tended to increase. It means that if an electrical 

power system utility decides to use the RUC approach by 

considering only the worst-case scenario, it overlooks the 

opportunity to turn off some generating units if other scenarios 

appear in the real-time market. Thus, the RUC approach misses 

the chance to reduce overall operational costs. For example, in 

the ten centroids case, the RUC approach would only consider 

the PV profile with 321 MWh, neglecting the other profiles 

with a total of 87% occurrence probability. Choosing only the 

average profile or single centroid alone also might not help. It 

is because all forecast sets were slightly skewed towards the 

worst-case scenario. For example, in the ten centroids case, the 

AIC approach only used the single centroid with 1,124 MWh 

total energy produced while neglecting a worst-case scenario 

with only 321 MWh total energy output. 

The shape of PV profile data and some of the clustering 

results can be seen in Figure 1. The darker the plot in Figure 1, 

 

Figure 1. Photovoltaic historical data distribution and clustering results. 

TABLE II 

DAY-AHEAD TOTAL DAILY PV GENERATION (MWH) AND OCCURRENCE 

PROBABILITY 

Cluster Numbers 

1 2 3 4 5 

1,124/1.00 691/0.57 532/0.37 888/0.29 764/0.25 

-/- 1,692/0.43 1,126/0.34 454/0.26 405/0.21 

-/- -/- 1,870/0.29 1,430/0.25 1,164/0.20 

-/- -/- -/- 1,999/0.20 1,599/0.19 

-/- -/- -/- -/- 2,074/0.15 

Cluster Numbers 

6 7 8 9 10 

742/0.23 727/0.22 644/0.19 626/0.17 604/0.16 

403/0.20 396/0.20 1,705/0.15 823/0.15 773/0.14 

1,613/0.19 2,066/0.15 861/0.15 329/0.14 321/0.13 

1,142/0.15 1,591/0.14 338/0.14 2,110/0.12 1,123/0.11 

2,079/0.14 1,079/0.13 2,121/0.12 1,666/0.11 1,868/0.10 

1,164/0.08 1,448/0.08 1,265/0.11 1,227/0.11 1,537/0.10 

-/- 1,113/0.07 1,394/0.07 1,646/0.08 2,189/0.08 

-/- -/- 1,124/0.07 1,132/0.06 1,541/0.07 

-/- -/- -/- 1,171/0.06 1,132/0.06 

-/- -/- -/- -/- 1,123/0.05 
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the higher the probability of occurrence. It can be seen that the 

shape of the historical data is in the form of a bell-shaped curve, 

with the lower area of the bell being darker compared to the top 

area. It confirms what is presented in Table II that most of the 

data are under the average value. However, it can be seen that 

the darkest area is not the one at the bottom of the plot. It further 

supports what has been presented in Table II that the most 

probable scenario is a low irradiance PV profile but does not 

necessarily mean the lowest area of the bell-shaped profile. 

B. DAY-AHEAD UNIT COMMITMENT SOLUTION 

In this study, the deterministic and stochastic solutions on 

the day-ahead UC problem were compared. The system used in 

this section was the base case of the IEEE 10-unit system that 

consisted of ten generating units. The sample of unit work 

hours from two centroids case scheduling solution of day-ahead 

UC can be seen in Table III. It can be seen that all the solution 

has their own schedule, except for the worst-case scenario 

(WC-2) and SUC solution (MC-2). The exact same solution 

between WC-2 and MC-2 is caused by the SUC that must meet 

all constraints caused by all given PV curves in the constraint 

declaration. Thus, the system in SUC was prepared for all the 

possible PV curves. 

The total cost, generated energy, and generation cost of the 

day-ahead UC problem can be seen in Table IV. The value of 

generated energy for MC-2 was a weighted generated energy 

based on the probability of every possible scenario. It can be 

seen that the total cost of MC-2 is in the middle of the total cost 

of BC-2 and WC-2 because it considers both cases. This total 

cost can be seen as the expected total cost that the electrical 

power systems utility needs to be prepared for. Although MC-

2 has a lower total cost compared to WC-2, it can be seen that 

MC-2 has a higher generation cost. It is because MC-2 has 

lower generated power. It means that the SUC approach of MC-

2 requires a lower total cost compared to the RUC approach of 

WC-2, but resulted in higher generation cost due to the 

generating units in the SUC approach producing lower total 

energy, resulting in higher payment of generated energy to IPPs. 

By looking at Table IV, it is argued that the SUC approach 

of MC-2 produces the best generation cost to be offered to IPPs. 

It is because it used all possible curves with their corresponding 

occurrence probability, unlike the others. The generation cost 

produced by NC gave a price that was too expensive for utility, 

while BC did the opposite. Although AIC and WC-2 produced 

a middle value between the two extremes, it did not consider 

whether the PV profile ended up having a higher value. Hence, 

the solution of MC-2 is the best compared to the others as it is 

prepared for the worst-case scenario yet produces a generation 

cost that considers the probability of high irradiance profile. It 

means that the generation cost formulation of SUC also 

considers the probability of over-commitment if the best-case 

scenario happens. 

C. UNIT COMMITMENT PERFORMANCE ON TEST  

A good solution for UC must be able to satisfy all 
constraints present in the actual next day’s market. The 
solutions of day-ahead UC were tested using the independent 
PV profiles of 365 days. Furthermore, both the impact of the 
number of centroids and the size of the electrical power system 
on its performance were investigated. Both performance 
investigations were done in the test environment. 

To test the performance of the resulting generating unit 

schedule by various UC solutions, a test scenario was used. The 

test scenario consists of ten generating units from IEEE 10-unit 

data. All solutions of day-ahead UC were tested in 365 

independent tests. Each test had its PV profile that was not 

visible in the day-ahead process of making the generating unit 

schedule. The generation cost of each solution in the test 

environment can be seen in Table V. It needs to be noted that 

the NC approach was not using any PV profile, thus the value 

of the centroid was zero, while the average irradiance case 

approach of AIC used only single PV profile, that was the 

average profile. On the other hand, the RUC approach of WC 

and the SUC approach of MC were used when there were at 

least two PV profiles, and so did the optimistic approach of BC. 

As presented in Table V, increasing the number of forecast 

PV curves will introduce more extreme PV curves. As 

centroids increase, the BC perspective becomes more 

optimistic about the next day’s value and schedules fewer units, 

resulting in low generation costs. On the other hand, WC and 

MC become more careful in turning off a generating unit, 

resulting in higher generation costs. 

Since different schedules result in different spinning 

reserve values, a UC solution impacts system reliability. The 

impact of centroid number on spinning reserve violation and 

load shedding can be seen in Table VI and Table VII. Even 

though BC gives the least operational cost, it comes with 

spinning reserve violations and even load shedding, as does 

AIC (one centroid case). Thus, neither BC nor AIC produced a 

robust schedule and should not be chosen as a UC solution 

approach. It can also be seen that MC produced a robust 

solution just like the RUC approach (NC and WC). 

Furthermore, although turning on lots of generators, no dummy 

load was used by all approaches. 

TABLE III 

GENERATOR WORK HOURS ON IEEE 10- UNIT DAY-AHEAD UC 

Case 
Unit Work Hours (hours) 

1 2 3 4 5 6 7 8 9 10 

NC 24 24 17 19 20 9 9 5 2 1 

AIC 24 24 17 19 20 8 3 4 1 0 

BC-2 24 24 13 18 20 6 3 3 0 0 

WC-2 24 24 17 19 20 9 7 3 0 0 

MC-2 24 24 17 19 20 9 7 3 0 0 

TABLE IV 

TOTAL COST ($) AND GENERATION COST ($/MWH) ON IEEE 10- UNIT DAY-

AHEAD UC 

Case Total Cost ($) 
Generated 

Energy (MWh) 

Generation 

Cost ($/MWh) 

NC 567,145.6332 27,100 20.9279 

AIC 537,596.8160 25,976 20.6960 

BC-2 523,399.3931 25,408 20.5995 

WC-2 548,005.1606 26,409 20.7507 

MC-2 539,896.0258 25,976 20.7845 

 

 

TABLE V 

GENERATING COST IN TEST ENVIRONMENT BASED ON IEEE 10-UNIT 

Number 

of 

Centroids 

Generation Cost ($/MWh) 

NC AIC BC WC MC 

0 20.9862 - - - - 

1 - 20.7041 - - - 

2 - - 20.5798 20.7864 20.7864 

4 - - 20.5029 20.8165 20.8165 

6 - - 20.5029 20.8443 20.8443 

8 - - 20.5037 20.8443 20.8443 

10 - - 20.4979 20.8443 20.8443 
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The small number of the generating units in IEEE 10-unit 

restricts the number of possible solutions. This very limited 

possible solution limits the flexibility of SUC in making unit 

commitment schedules. That is why, in Table V, all SUC 

solutions ended up in the same solutions from the worst-case 

scenario of RUC. By increasing the number of available 

generating units, SUC was given more flexibility in making 

unit commitment schedules. The impact of the system size on 

the SUC solution can be seen in Table VIII, Table IX, and 

Table X. Only the lowest and highest centroids numbers are 

shown for the comparison, that is two and ten centroids 

respectively. The column title represents the number of 

generating units in the system. 

In terms of the SUC solution compared to the RUC as 

shown in Table VIII, it can be seen that there is a slight 

difference between those two in some medium-sized systems. 

It means that SUC shifts its solution a little towards the 

possibility of a BC. Since the PV curve probability distribution 

used in this study was heavily leaning towards the WC, it is 

understandable that the shift of the SUC diverging from WC is 

only a little. If the probability of the occurrence of BC increases, 

this shift most likely also increases, producing a more 

distinctive result of the unit commitment schedule. 

The impact of system size on the SUC solution in terms of 

spinning reserve violation and load shedding can be seen in 

Table IX and Table X, respectively. It can be seen from Table 

IX and Table X that SUC kept its robust solution in medium-

sized systems while having a lower generation cost, as shown 

in Table VIII. Thus, it can be concluded that SUC solutions are 

cheaper than WC but have a similar result of spinning reserve 

violation without having load shedding. The best result in this 

study occurred in a 30 units system test in which SUC with 10 

centroids had a cheaper solution (20.7253 $/MWh) compared 

to RUC (20.7285 $/MWh) without violating power balance or 

going to load shedding. Furthermore, the SUC solution even 

managed to have a lower spinning reserve violation on that 

system size, further exhibiting the superiority of MSUC. 

D. COMPUTATION TIME OF UNIT COMMITMENT 

A day-ahead deterministic unit commitment problem can 

be formulated as a mixed-integer programming (MIP) [2]. It is 

already well known that the general MIP optimization problem 

is an NP-hard (at least as hard as non-deterministic polynomial-

time) problem [24]. In this study, mixed-integer linear 

programming was chosen instead of the original mixed-integer 

quadratic programming to reduce the computational time of UC. 

A unit commitment problem in the form of a MILP 

optimization problem consisted of a set of decision variables 

and constraints. By adding multiple centroids as forecast curves 

in SUC, both the number of decision variables and constraints 

were also increased. The impact of the number of centroids in 

TABLE IX 

SPINNING RESERVE VIOLATION IN TEST ENVIRONMENT BASED ON IEEE 10-

UNIT 

Case 
Spinning Reserve Violation (MWh/day) 

10 20 30 40 50 

NC 0 0 0 0 0 

AIC 76.08 199.02 425.03 640.64 810.47 

BC-2 243.76 648.78 1,009.32 1,425.42 1,805.54 

WC-2 10.96 52.19 114.19 146.07 194.97 

MC-2 10.96 52.19 118.22 146.07 213.65 

BC-10 384.75 922.29 1,584.04 2,191.45 2,758.69 

WC-10 1.02 2.05 4.39 5.54 9.95 

MC-10 1.02 2.47 3.93 5.54 9.95 

TABLE X 

LOAD SHEDDING IN TEST ENVIRONMENT BASED ON IEEE 10-UNIT 

Case 
Load Shedding (MWh/day) 

10 20 30 40 50 

NC 0 0 0 0 0 

AIC 2.59 8.11 15.30 43.87 50.47 

BC-2 75.32 96.45 178.39 287.70 411.81 

WC-2 0.00 0.01 0.18 0.02 0.10 

MC-2 0.00 0.01 0.18 0.02 0.10 

BC-10 133.89 301.99 477.50 758.70 910.89 

WC-10 0 0 0 0 0 

MC-10 0 0 0 0 0 

TABLE XI 

COMPUTATION TIME COMPARISON BETWEEN SUC AND RUC IN SECOND 

Case 
Computation Time (second) 

10 20 30 40 50 

WC-10 0.50 10.30 111.10 39.00 17.40 

MC-2 1.50 14.80 37.10 59.60 45.60 

MC-4 1.20 15.70 455.00 84.90 110.60 

MC-6 2.90 43.80 2497.50 674.40 125.00 

MC-8 5.10 136.70 970.20 737.30 218.80 

MC-10 4.20 310.80 1473.80 865.40 254.90 

 

TABLE VI 

SPINNING RESERVE VIOLATION IN TEST ENVIRONMENT BASED ON IEEE 10-

UNIT 

Number of 

Centroids 

Spinning Reserve Violation (MWh/day) 

NC AIC BC WC MC 

0 0 - - - - 

1 - 76.08 - - - 

2 - - 243.76 10.96 10.96 

4 - - 329.56 2.38 2.38 

6 - - 329.56 1.02 1.02 

8 - - 378.04 1.02 1.02 

10 - - 384.75 1.02 1.02 

TABLE VII 

LOAD SHEDDING IN TEST ENVIRONMENT BASED ON IEEE 10-UNIT 

Number of 

Centroids 

Load Shedding (MWh/day) 

NC AIC BC WC MC 

0 - - - - - 

1 - 2.59 - - - 

2 - - 75.32 0 0 

4 - - 83.87 0 0 

6 - - 83.87 0 0 

8 - - 64.88 0 0 

10 - - 133.89 0 0 

TABLE VIII 

GENERATING COST IN TEST ENVIRONMENT BASED ON IEEE 10-UNIT 

Case 
Generation Cost ($/MWh) 

10 20 30 40 50 

NC 20.9862 20.8822 20.8581 20.8472 20.8217 

AIC 20.7041 20.5821 20.5424 20.5270 20.5251 

BC-2 20.5798 20.4634 20.4412 20.4320 20.4279 

WC-2 20.7864 20.6599 20.6330 20.6202 20.6126 

MC-2 20.7864 20.6599 20.6325 20.6199 20.6128 

BC-10 20.4979 20.4115 20.3913 20.3823 20.3719 

WC-10 20.8443 20.7539 20.7285 20.7175 20.7094 

MC-10 20.8443 20.7526 20.7253 20.7175 20.7092 
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SUC across various system sizes can be seen in Table XI. The 

computation time of the RUC solution of WC-10 is also 

presented as the baseline. It can be seen from Table XI that 

SUC generally increased the computation time of UC, but not 

in an exponential manner. Using up to ten centroids, the 

computational time increased near linear time to the number of 

centroids used. Thus, the SUC is a feasible approach compared 

to using a probability density function and iterating through 

thousands of DUC problems based on Monte Carlo simulation 

[25]. Furthermore, simulations using Monte Carlo did not have 

the advantage of SUC, that is having only single unit 

commitment schedule. 

VI. CONCLUSION 

An increase in PV penetration means an increase in 

disparity of the forecast of the next day’s net load profile. 

Combined with the intermittent and uncertain nature of PV 

power plants, a robust solution of unit commitment is needed. 

This study has proposed an approach of stochastic unit 

commitment in solving a day-ahead unit commitment problem 

in a system with a high uncertainty net load. In contrast with 

robust unit commitment which only considers the worst-case 

scenario, the proposed approach considers every possible 

scenario of the next day’s net load profile. The next day net 

load profile was acquired using k-means clustering on 

historical data. The proportion of cluster members is used as a 

weight factor that represents the occurrence probability of PV 

curves. 

This study has shown that the proposed stochastic unit 

commitment using k-means clustering produced a fairer price 

of electricity generating cost compared to a robust unit 

commitment with the same robustness in the day-ahead unit 

commitment problem. It also has shown that the unit 

commitment schedule of the stochastic approach in the day-

ahead unit commitment was able to outperform the robust unit 

commitment with the same robustness. All those advantages 

are also shown to only increase the computation time near 

linear time to the number of centroids used. 

In future works, various approaches to generate the next day 

net load profile can be studied. It includes both the algorithm 

to forecast, such as seasonal forecast and Markov switching; 

and the scenario reduction algorithm, such as important 

sampling, and dynamic time warping clustering. Furthermore, 

a more in-depth study is needed to better determine the impact 

of the number of centroids used in stochastic unit commitment 

on the computational complexity based on big O notation. 
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