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ABSTRACT — This research presents the INVys system aiming to solve the problem of indoor navigation for persons with 

visual impairment by leveraging the capabilities of an RGB-D camera. The system utilizes the depth information provided 

by the camera for micronavigation, which involves sensing and avoiding obstacles in the immediate environment. The INVys 

system proposes a novel auto-adaptive double thresholding (AADT) method to detect obstacles, calculate their distance, and 

provide feedback to the user to avoid them. AADT has been evaluated and compared to baseline and auto-adaptive 

thresholding (AAT) methods using four criteria: accuracy, precision, robustness, and execution time. The results indicate 

that AADT excels in accuracy, precision, and robustness, making it a suitable method for obstacle detection and avoidance 

in the context of indoor navigation for persons with visual impairment. In addition to micronavigation, the INVys system 

utilizes the color information provided by the camera for macro-navigation, which involves recognizing and following 

navigational markers called optical glyphs. The system uses an automatic glyph binarization method to recognize the glyphs 

and evaluates them using two criteria: accuracy and execution time. The results indicate that the proposed method is accurate 

and efficient in recognizing the optical glyphs, making it suitable for use as a navigational marker in indoor environments. 

Furthermore, the study also provides a correlation between the size of the glyphs, the distance of the recognized glyphs, the 

tilt condition of the recognized glyphs, and the accuracy of glyph recognition. These correlations define the minimum glyph 

size that can be practically used for indoor navigation for persons with visual impairment. Overall, this research presents a 

promising solution for indoor navigation for persons with visual impairment by leveraging the capabilities of an RGB-D 

camera and proposing novel methods for obstacle detection and avoidance and for recognizing navigational markers.  
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I. INTRODUCTION 

Indoor navigation is one of the most difficult activities for 

persons with visual impairment, particularly if they must do it 

independently. Most people, including persons with visual 

impairment, spend most of their time indoor, so safe navigation 

in this environment is a must. In order to navigate safely, 

persons with visual impairment need to handle two important 

aspects of wayfinding, namely micronavigation and 

macronavigation [1], [2]. Micronavigation deals with sensing 

of the immediate environment for obstacles and hazards, while 

macronavigation is about navigating to remote destinations 

beyond the immediate perceptible environment [3]. Moreover, 

to successfully navigate to desired destination inside a building, 

persons with visual impairment should be able to confirm 

whether the place in front of them is the right destination. 

Without the aid of others or assistive tools, they may encounter 

difficulties in performing those tasks. 

In order to overcome this problem, conventionally, persons 

with visual impairment use white cane or guide dog. A white 

cane allows persons with visual impairment to detect obstacles 

at average distance of 1,500 mm [4], but its utility is only 

limited in the aspect of micronavigation. Guide dog could help 

in both aspects of wayfinding, but it needs to be trained and the 

cost is prohibitive for most people [5]. 

Many researchers have been developing assistive 

technology (AT) in the form of electronic travel aids (ETA). 

Some studies opt to fuse a cane with laser [6], [7] or ultrasonic 

technology [8], [9] to assist persons with visual impairment in 

avoiding obstacles. The information of the obstacle is conveyed 

to the user by sound, voice, or vibration. Judging from that 

ability, these tools are better than the conventional white cane 

because they can automatically detect obstacles and actively 

give feedback to the users. However, laser and ultrasonic 

provide poor information about the environment [10] and they 

only support micronavigation function. 

In area of macronavigation, global positioning system (GPS) 

is widely used to guide persons with visual impairment in 

outdoor [11], [12]. However, GPS is unsuitable for indoor 

environments because the coverage of satellite signal is poor, 

which in turn significantly decreases its accuracy [13]. Many 

researchers utilize radio-frequency identification (RFID) tag 

[14], [15] that is used as markers of places in indoor 

environments. However, RFID is an infrastructure-dependent 

technology that needs to be preinstalled inside a building by 

technicians. The absence of the infrastructure renders the 

building is not disability friendly. 

Even though most of the studies focus only on one aspect 

of wayfinding (either micronavigation or macronavigation), 

some researchers try to combine both functions [16], [17]. 

However, the simultaneous integration of many technologies 

(such as laser, ultrasonic, GPS, or RFID) could potentially 

make the system too complex, cumbersome, infrastructure-

dependent, and expensive to build. 

Recently, the advancement of technology leads to the 

development of low-cost RGB-D cameras such as Microsoft 

Kinect. Unlike conventional camera, RGB-D camera provides 

two images: depth image from the depth camera and color 

image from the RGB camera. This kind of camera is useful for 

many scenarios and applications, including indoor navigation 

for persons with visual impairment. The depth image can be 
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used to estimate the distance to the nearest physical surface by 

providing depth information for each pixel [18]. While the 

colour image can be utilized for macronavigation function by 

recognizing objects or printed markers collocated in interest 

points/places.  

This research developed an indoor navigation system for 

persons with visual impairment, called INVys, based on an 

RGB-D camera. INVys employs a novel auto-adaptive double 

thresholding (AADT) method to detect obstacle and send 

feedback regarding the obstacle to the user. AADT splits the 

depth image area and searches the best two-threshold values 

automatically.  

In area of macronavigation, INVys utilizes optical glyphs 

as printed marker to tag interest points. This study enhances 

Kirillov’s glyph recognition method [19] using automatic 

glyph binarization.  

The rest of this paper is organized as follows. Section II 

discusses micronavigation and its related studies. Section III 

gives overview of INVys’s system architecture. Section IV 

explains obstacle avoidance function and Section V explains 

the algorithm to recognize glyph. Experimental setup and 

results are presented in the Section VI. Finally, Section VII 

sums up the conclusion. 

II. MICRONAVIGATION 

Micronavigation seems to elicit more interest and 

publications than macronavigation in the field of navigational 

aid for people with visual impairment. One of the early and 

prominent micronavigation technologies is laser, from laser 

cane [20] to virtual white cane [21] and many others that detect 

obstacles and hazardous objects [22], [23]. Triangulation 

method is generally used to calculate distance of the obstacle 

using laser measurement, by means of calculating the angle 

made by the diffuse reflected ray passing through the receiving 

lens [24]. Other researcher [25] combined infrared laser and 

Wiimote to locate user position in a room. However, this 

approach needs expensive preinstalled infrastructure. 

Moreover, the distance measurement using laser consumes a lot 

of energy [26]. 

Ultrasonic devices are mostly used for obstacle avoidance 

by combining it with a cane [6], [9], a wearable device [16], a 

mobile robot/system [17], or even a guide-dog robot [27]. Time 

of flight (ToF) is mostly used to calculate the distance of 

obstacles by measuring the time interval between sending the 

signal and receiving back the echo. However, both laser and 

ultrasonic technology provide poor information about the 

environment [28]. Moreover, by using those two technologies, 

the system needs to incorporate more than one sender/receiver 

of laser/ultrasonic sensors to map the complete scene in front 

of the user, which could make the system very complex, 

whereas simplicity and portability are important aspects in 

developing ETA for people with blindness [29]. 

Differ from the previous research, this study used depth 

camera that can directly perceive the complete view of map of 

the scene in front of the user with only one sensor without 

additional devices. Using depth camera, the ETA system could 

be much simpler and easier to use. However, in order to detect 

obstacles, raw depth data from depth image must be processed 

further. Some researchers have been developing methods to 

detect obstacle from depth image. The basic method is 

implemented by considering the height and width of persons 

with visual impairment to find the farthest point reachable on 

depth image [30]. Other approaches are applied by splitting 

depth image into many areas and processing each area 

separately to reduce the complexity of the scene [5].  

Other methods combine the information from depth image 

and color image and process the data using image processing 

[31], [32] or computer vision [28], [33] algorithms to perform 

obstacle avoidance. INVys applies AADT method by 

combining the principle of dividing depth image into several 

areas based on the need of easy-to-learn/understand direction 

recommendation for persons with visual impairment and the 

depth-histogram based analysis that results in fast-effective-

robust obstacle avoidance. 

RFID tag is frequently used as marker of specific room or 

direction to guide persons with visual impairment to move from 

one room to another room [15].  The utilization of this RFID 

technology is considered effective for guiding persons with 

visual impairment; however, RFID is infrastructure-dependent 

technology, so numerous RFID tags should be installed within 

a building. Instead of using RFID technology, INVys leverages 

color camera to recognize printed marker. 

III. SYSTEM ARCHITECTURE  

INVys relies on reliable software processing of data from 

its RGB-D camera to perform micronavigation and 

macronavigation functions. The system is divided into three 

subsystems as shown in Figure 1. The first subsystem, obstacle 

detection, uses the AADT module to detect the closest obstacle 

and calculate its distance in millimeters. The second subsystem, 

 

 

Figure 1. INVys architecture consists of three subsystems. 
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glyph recognition, processes color images to find and classify 

glyphs. The third subsystem, feedback, uses the decision 

module to determine if feedback needs to be given to the user 

based on data from the first two subsystems. If feedback is 

required, the feedback module transmits the information in the 

form of sound or voice. 

IV. OBSTACLE DETECTION 

A. BASIC REQUIREMENT 

The “friendliness” is one of the aspects that define the 

maturity of an obstacle detection and avoidance system [29]. In 

order to meet this requirement, this study divided region in 

front of persons with visual impairment into three, each 

representing path that they can traverse: the middle area 

(straight front), left area, and right area. By splitting into three 

regions, persons with visual impairment only needs to 

remember three directions, making it easier for them follow the 

instruction from the system.  

Figure 2 illustrates implementation of the divided area. By 

this method, each subarea of the depth image can fully cover 

any big objects, such as a human body. For instance, refers to 

Figure 2, at distance of 1,500 mm from Kinect, each subarea of 

the depth image can cover object with maximum width of 549 

mm. It is still wider than the average shoulder breadth of 

Singaporean and Indonesian [34]. 

B. BASELINE APPROACH 

The depth image contains depth information in millimeters 

for each pixel, so basically it can be used for obstacle detection. 

As the depth image had resolution of 640 × 480 and the sensor 

registers of 30 fps, the total number of depth samples analyzed 

was more than 9 million. The problem is how to make the 

overload data become meaningful for persons with visual 

impairment. 

The basic approach is developed by splitting depth image 

into many areas and calculating the average distance value for 

each area [5]. To improve efficiency, depth image of 640 × 480 

was divided into 32 × 40 blocks and the average of pixel values 

was calculated. Subsequently, all the blocks were grouped into 

5 × 3 regions, the ten middle values within each region were 

selected after sorting process, and the last average value of the 

obstacle distance was calculated based on those values. This 

approach yielded 15 distance values (one for each region) that 

were used as a metric of obstacle.  

C. AUTO-ADAPTIVE THRESHOLDING (AAT) 

Auto-adaptive thresholding (AAT) is the initial version of 

the algorithm to detect obstacle, AADT method. AAT refers to 

a method that can automatically generate threshold values that 

are specific to subarea of depth image. The threshold is used to 

separate the closest object and another object behind it. AAT 

starts by dividing depth image into three areas, converting each 

area into depth histogram, and finding the two closest peaks on 

that histogram [35]. The threshold value for each area of depth 

image was determined automatically by applying Otsu 

thresholding method  [36] to the area between those two closest 

peaks on depth histogram. The Otsu thresholding method 

produces the best threshold value by maximizing the 

separability between two classes which are yielded by the 

threshold value. Thus, the data between the two closest peaks 

were divided into two classes, C0 and C1, by maximizing the 

between-class variance using (1) as follows:  

 𝜎2(𝑘∗) =  𝑎𝑟𝑔 𝑚𝑎𝑥(𝜎2(𝑘)), 1 ≤ 𝑘 ≤ 𝐿 (1) 

where 𝜎2(𝑘∗) is the threshold value of 𝑘∗ that maximize the 

between-class variance, 𝜎2(𝑘)  is the between-class variance 

for each threshold value of k, and k is every possible threshold 

value that exists within range 1 and the maximum value of L in 

the image. The between-class variance itself is computed using 

(2).  

 𝜎2 = 𝜔0(𝜇0 − 𝜇𝑇)2 + 𝜔1(𝜇1 − 𝜇𝑇)2 (2) 

where 𝜎2 is the between-class variance, 𝜔0 is the probability 

of class 𝐶0, 𝜔1 is the probability of class 𝐶1, 𝜇0 is the mean of 

class 𝐶0, 𝜇1is the mean of class 𝐶1, and 𝜇𝑇 is the overall mean 

of the whole image. 

Based on the previous experiment, AAT is effective to 

detect and to calculate the distance of the obstacle when its 

distance is closer than 2,500 mm [35]. Afterwards, the accuracy 

begins to decline. It happens because AAT is unable to 

distinguish between the object and the floor in front of it when 

the floor is detected at a distance of farther than 2,500 mm. 

D. AUTO-ADAPTIVE DOUBLE THRESHOLDING (AADT) 

The AADT is a further development of AAT. It is 

developed to solve the primary problem of AAT, which is 

distinguishing the object from the floor in front of it when the 

object is at a distance of greater than 2,500 mm. Unlike AAT, 

which only employs a single threshold value, AADT produces 

two threshold values to distinguish between the obstacle and 

the floor in front of it. AADT generates a double threshold 

value automatically that varies for each area of the depth image 

(adaptive). The main differences between AADT and AAT are 

how to select peaks on the histogram, how to generate 

thresholds, and how to calculate the final distance value. The 

complete processes of the AADT method are described as 

follows. 

1)  DEPTH IMAGE ACQUISITION 

INVys acquires raw depth data from Kinect and converts 

them into 8-bit grayscale images to visualize them on the screen 

using (3): 

 𝑖𝑛 = 255 − (
255−(𝑚𝑎𝑥(𝑑𝑛−800.0))

3,200
) (3) 

where in is the nth pixel in grayscale image and dn is the nth 

depth information in depth image. 

1  

 

Figure 2. Captured image in front of persons with visual impairment is divided into 
three regions. 
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2)  DIVIDING DEPTH IMAGE INTO THREE AREAS 

Based on the basic requirement explained in the previous 

section, depth image was divided into three areas: left, middle, 

and right. The occurrence frequency of this step and thereafter 

was 2 Hz. All next steps were processed separately and 

simultaneously for each subarea. 

3)  DOWNSAMPLING 

In order to improve efficiency and to accelerate computing 

process, downsampling was conducted by using only one pixel 

value for each 2 × 2 block of pixels. Sampling for each 2 × 2 

pixels is considered sufficient to reduce processed data while 

still maintaining enough information of the images. 

4)  DEPTH HISTOGRAM CONVERSION 

The downsampled data from the previous step were 

converted into depth histogram by categorizing each pixel into 

100 groups. The image is represented as distribution of pixel 

with interval of 40 mm between each group (as the depth 

camera coverage is 0 to 4,000 mm and it is divided into 100 

groups. 

5)  PEAK DETECTION AND SELECTION 

When depth information is converted into depth histogram, 

it will be full of peaks and valleys that represent local maximum 

and local minimum. Usually, a local maximum in depth 

histogram indicates an object [35]. Therefore, the closest object 

is determined by finding the closest local maximum in depth 

histogram. This process begins by calculating all of contrast 

values for each group in depth histogram using function in (4). 

 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑖, 𝑛) = ∑ 𝑃𝑘 − ∑ 𝑃𝑘 − ∑ 𝑃𝑘
𝑖+2𝑛
𝑘=𝑖+𝑛+1

𝑖−𝑛−1
𝑘=𝑖−2𝑛

𝑖+𝑛
𝑘=𝑖−𝑛 (4) 

where i is the observed position, n is the parameter for adding 

up the contrast of the peak and its neighbor, and pk is the value 

in position of k in depth histogram. The number n is used to 

filter noises and unexpected local peak positions [37].  

After all of the contrast values were found, the process 

continued by selecting the contrast value that might represent a 

local maximum. As a local maximum, the contrast value on the 

histogram has a positive value. The selection process was 

carried out by sorting contrast values from the highest to the 

lowest ones and choosing the group that fit the following 

criteria. First, the contrast value at the ith position should be 

larger than 300. If the value is below 300, the histogram at that 

position is not steep enough to be considered an independent 

local maximum. Second, the distance among the local 

maximum should be more than four groups of histograms; 

otherwise, it is regarded as part of another local maximum. The 

numbers were determined based on observation. After finding 

all the local maximum, the system selected the one closest to 

the Kinect (a peak/local maximum with the smallest number of 

groups). 

6)  DOUBLE THRESHOLD SELECTION 

The next step was to find two threshold values (T1, T2) that 

would exclude the closest peak from any other data surround it. 

The first threshold value (T1) is the first local minimum, and its 

distance value (x) is smaller than the distance value of the 

closest peak. Meanwhile, the second threshold value (T2) is the 

same, but it has a bigger distance value (x) than the closest peak. 

Finding a local minimum from a local maximum required 

calculating the slope of each neighboring data point around the 

local maximum and halting when the slope changed extremely. 

The threshold is the distance value at the point when the 

gradient is changing dramatically. The detailed process to 

determine the value of the first and the second threshold is 

shown in Algorithm 1 and Algorithm 2. 

Algorithm 1 Determining the First Threshold Value 

1: i = p where yp is the closest peak in depth histogram 

2: xi = the ith group of data 

3: yi = the frequency of depth information in ith group 

4: T1 = the first threshold value 

5: d = distance between two groups 

6: j ← 0 

7: while i > 0 do 

8:      slope ← (yi − yi -1)/( xi − xi -1) 

9:      if slope ≤ 0 then 

10:         if yi -j < (yi /2) then 

11:              T1 ← yi -j × d 

12:          end if 

13:      end if 

14:      j ← j + 1 

15:      i ← i – 1 

16: end while 

Algorithm 2 Determining the Second Threshold Value 

1: i = p where yp is the closest peak in depth histogram 

2: xi = the ith group of data 

3: yi = the frequency of depth information in ith group 

4: n = the total number of groups in depth histogram 

5: T2 = the second threshold value 

6: d = distance between two groups 

7: j ← 0 

8: while i < n do 

9:      if i = n-1 then 

10:          T2 ← i × d 

11:      end if 

12: slope ← (yi+1 – yi)/(xi+1 − xi) 

13:      if slope ≥ 0 then 

14:          if yi+j < (yi/2) then 

15:              T2 ← yi+j × d 

16:          end if 

17:      end if 

18:      j ← j + 1 

19:      i ← i + 1 

20: end while 

Based on those two algorithms, minimum requirements to 

determine the threshold have been added, namely the frequency 

of depth information on the threshold value should be less than 

half of the frequency of depth information on the observed peak 

(<yi/2). It is done to avoid finding local minimum that is too 

close with the peak since local minimum can be a part of it. 

7)  FINAL DISTANCE CALCULATION 

The final distance calculation was carried out by calculating 

average values of the depth information that existed between 

the first threshold (T1) and the second threshold (T2) using (5). 

 𝑥𝑗 = ∑
𝑖𝑘

𝑛

𝑛
𝑘=1 , 𝑇1 <  𝑖𝑘 < 𝑇2  (5) 

where xj is average distance of the closest object at depth image 

area of j, ik is depth value at pixel position of k at depth image 

area of j, T1 is the first threshold value, T2 is the second 

threshold value, and n is the total of ik. The result of this process 

is three distance values of the closest object (in millimeter), one 

for each depth image area.  

V. GLYPH RECOGNITION 

Optical glyph is a printed marker represented with a square 

grid that its rows and columns are divided equally. Each cell is 

filled with either black or white color, except the first and the 

last row/column that is filled with only black color. 
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Optical glyph is generally used in augmented reality to 

generate 3D object exactly on the top of the recognized glyph. 

This technique was adapted to this research by recognizing the 

glyph to give information to the persons with visual impairment 

about navigational signs, places, or other interest points. The 

method to recognize glyph is based on the method developed 

by Andrew Kirillov [19] with a few modifications and 

enhancement in glyph binarization process. The method 

initiated with color image acquisition from RGB-D camera. 

The resolution and frame rate of the color camera are 640 × 480 

and 30 fps, respectively. The next steps after the color image 

acquisition were divided into two major steps: image 

processing and glyph recognition steps. Those two steps were 

executed by image processing module and glyph recognition 

module. 

A. IMAGE PROCESSING 

The aim of this step is to process the acquired color image 

and to find the potential optical glyph to be recognized. The 

step is described as follows. 

1)  CONVERSION TO GRAYSCALE IMAGE 

Using the ITU-BT.709 recommendation, the acquired RGB 

image was converted into a grayscale image in order to 

facilitate processing. This recommendation multiplies the red-

green-blue value of the processing pixel with specific weight 

that is 0.2125 for red, 0.7154 for green, and 0.072 for blue. 

2)  EDGE DETECTION 

The next step was to find all of edges on the grayscale 

image resulted from the previous step. The purpose of this step 

is to find all of edges that form rectangle shape so that the 

system can check whether this rectangle is a glyph or not. The 

method used to find object’s edges was by finding the 

maximum difference value between neighbor pixels in four 

directions around the processing pixel. This is done using (6). 

 𝑝′ = 𝑚𝑎𝑥(|𝑝1 − 𝑝5|, |𝑝2 − 𝑝6|, |𝑝3 − 𝑝7|, |𝑝4 − 𝑝8|) (6) 

where p’ is the final difference value, p1 is the left-top neighbor 

pixel, p2 is the middle-top neighbor pixel, p3 is the right-top 

neighbor pixel, p4 is the right-middle neighbor pixel, p5 is the 

right-bottom neighbor pixel, p6 is the middle-bottom neighbor 

pixel, p7 is the left-bottom neighbor pixel, and p8 is the left-

middle neighbor pixel. 

3)  BLOB DETECTION 

In order find a blob, the edges image was first converted 

into binary image using thresholding. Then, the blob was 

detected using a connected component labelling algorithm on 

top of the binary image. Connected component labelling scans 

all of pixels on the binary image and categorizes them into 

group based on the virtue of their connectivity [38].  

4)  RECTANGLE DETECTION 

After the groups of connected pixels were found, each 

group was analyzed to find which one was a rectangle. The 

complete steps involved determining bounding box of the 

connected pixels, finding the center of the bounding box, 

detecting the first corner of connected pixels by finding the 

farthest point in connected pixels from the center of bounding 

box, detecting the second corner of connected pixels by finding 

the farthest point in connected pixels from first corner, 

detecting third and fourth corners by finding the two farthest 

points from a straight line formed by first and second corners, 

and checking whether all of lines connected by those four 

corners were within the boundary of distortion limit. This 

distortion limit was used to make sure that the processing 

connected pixels forms quadrilateral object. The distortion 

limit (dm) is calculated using (7). 

 𝑑𝑚 = 𝑚𝑎𝑥 (𝑚, (𝑟 ×
𝑤+ℎ

2
)) (7) 

where m is the minimum allowed distortion, r is relative 

distortion limit, w is width of the bounding box, and h is height 

of the bounding box. The result of dm will be compared to the 

average distance of the processing side of the rectangle with the 

center of the bounding box. 

5)  GLYPH DETECTION 

Following the previous step, all detected rectangles were 

checked whether they were glyphs. This step was done by 

comparing average brightness between pixel area inside and 

outside the rectangle. Because the glyph border is black and it 

is always surrounded by white area, so the brightness difference 

is extremely high. The system then cropped only area of the 

image that contains the glyph.  

6)  CONVERSION TO BINARY IMAGE USING OTSU 
THRESHOLDING 

The final process of the image processing step was 

converting the cropped image into a binary image by using 

Otsu thresholding. Thus, the result was an image with only two 

classes: the object class, which is usually indicated with white 

color, and the background class, which is indicated with black 

color. The sample result of all these processes can be seen in 

Figure 3. 

B. RECOGNITION 

The recognition steps were divided into two processes. The 

first one is called glyph binarization. Glyph binarization 

converts detected glyphs into binary values of 0 and 1. It is done 

by splitting the glyph into an equal number of rows and 

columns (s) and calculating the number of color pixels (white 

or black) from each cell. If a cell is dominated by the black 

 (a) (b) (c) 

 

 (d) (e) (f) 

 

 (g) (h) (i) 

Figure 3. Sample result of glyph recognition process, (a) acquired RGB image, 
(b) grayscale image, (c) edges image, (d) binary image, (e) blob image, (f) 
detected glyph image in grayscale, (g) detected glyph in binary image, (h) glyph 
binarization process, and (i) result of glyph binarization. 
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pixels (beyond 60%), the cell is turned into 0. Otherwise, if it 

is full of white pixels (beyond 60%), then the cell is filled with 

1. The result of glyph binarization is a matrix with only 0 and 

1 values. 

Kirillov’s glyph binarization method has a drawback, that 

is the size of the glyphs must be set first. Hence, the user should 

create a glyph with a predefined size. This research solved this 

drawback by proposing automatic glyph binarization. 

Automatic glyph binarization detects the size of the glyph 

automatically based on the glyph size categories. The sizes of 

the glyphs generally used are from 5 × 5 to 10 × 10. A glyph 

size larger than 10 × 10 is rarely used because it is difficult to 

create without computer software. Automatic glyph 

binarization will check if the detected glyphs meet one of the 

glyph sizes, ranging from 5 × 5 to 10 × 10. The detection 

method is based on the characteristic of the glyph that the white 

data (value = 1) will always start from the second row/column. 

The size detection process began with dividing the glyph 

into a 10 × 10 matrix (s = 10) and checking whether the white 

data (value = 1) existed (beyond 60%) in the second row. If it 

does, it means the size of the glyph is matched. Thus, the size 

of the glyph was determined as 10 × 10. If it does not exist, the 

process is continued by dividing the glyph into smaller sizes, 

that is, 9 × 9 (s = 9). The details of the glyph size detection 

process can be seen in Algorithm 3. 

Algorithm 3 Glyph Size Detection 

1: I(w,h) = an I glyph image, with w width and h height 

2: Im,n = pixel at mth column and nth row in I image 

3: s = size of glyph (s × s) 

4: cws = width of each cell in s × s glyph  

5: chs = height of each cell in s × s glyph 

6: result = final detected glyph size 

7: s ← 10 

8: while s ≥ 5 do 

9:      cws ← w / s 

10:      chs ← h / s 

11:      for i ← 1 to s – 2 do 

12:          r ← 0 

13:          for a ← 1 to chs do 

14:              n ← chs + a 

15:              for b ← 1 to cws do 

16:                   m ← (cws × i) + b 

17:                  if Im,n equals to white color then 

18:                      r ← r + 1 

19:                  end if 

20:              end for 

21:         end for 

22:          if r > (0.6 × cws × chs) then 

23:              result ← s 

24:              break  

25:          end if 

26:     end for 

27:     s ← s – 1 

28: end while 

The second step, called glyph matching, compared the 

matrix from the previous step with the data saved in the 

database. The glyph matching was conducted for four possible 

conditions: ideal condition (the glyph is not rotated), rotated 

90°, rotated 180°, and rotated 270°. It was done by rotating the 

matrix for each condition, looping each value on the matrix, 

and comparing the value with the matrix resulting from saving 

the image in the database. The sample result of glyph 

binarization and glyph matching process can be seen in Figure 

3(h) and Figure 3(i). 

VI.   EXPERIMENTS 

The experiments were conducted to evaluate two main 

functions of INVys system, namely obstacle avoidance as a 

micronavigation function and glyph recognition as a 

macronavigation function. The experiments setup and the 

results were grouped into two clusters. Hardware configuration, 

experimental setup, performance indicator, and result are 

described in following sections. 

A. HARDWARE CONFIGURATION 

As shown in Figure 4, INVys consists of four main 

hardware parts: Microsoft Kinect 360 as RGB-D camera, 

battery pack as the power supply for Kinect, laptop/computer 

tablet as the main processor that contains INVys software, and 

an earphone as a device to give the feedback to the user. Kinect 

provides 640 × 480 depth image resolution, 3,500 mm 

maximum range, 57.5° horizontal and 43.5° vertical angle of 

vision [39] that is considered suitable to develop vision-based 

indoor navigation.  

B. SETUP AND PERFORMANCE INDICATOR 

1)  OBSTACLE DETECTION 

The primary purpose of an obstacle detection experiment is 

to check whether the obstacle detection algorithm works well 

and to measure its distance calculation accuracy. The RGB-D 

camera was placed at a height of 890 mm from the floor (based 

on the average hip height of 50-year-old Indonesian people 

[34]), as seen in Figure 5(a). The experiment was conducted by 

placing six different objects commonly found in an indoor 

environment (human, chair type 1, chair type 2, trash, electric 

 

Figure 4. INVys consists of four main parts that will be used by persons with visual 
impairments as depicted in figure on the right side. The data flow between each 
part is shown in the left side figure. 

 

 (a) (b) 

Figure 5. Images of, (a) a blind-folded man conducting experiment, (b) the 
position of object in obstacle detection experiments. There are 18 positions in 
total, 6 positions for each depth image coverage. 
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fan, piles of cardboard) at 18 different positions (six positions 

for each depth image area) as seen in Figure 5(b) and 

comparing the distance of obstacle obtained by the system and 

the real distance in millimeter. Three methods were tested, 

namely the baseline approach, AAT, and AADT. Then, those 

three algorithms were compared using four performance 

indicators. 

The first indicator is accuracy, which is the most important 

performance metric. It is indicated by the difference between 

the estimated location and the true location [40]. It is measured 

by calculating average distance of error measurement (µobs) 

using (8) where x is the real distance of obstacle, x’ is the 

distance calculated by the algorithm, n is the number of 

experiments.  

 𝜇𝑜𝑏𝑠 = ∑
|𝑥−𝑥′|

𝑛
. (8) 

The second indicator is precision. If accuracy only 

measures the value of average distance errors, precision 

measures how consistently the system works. It measures the 

robustness of the algorithm as it reveals the variation in its 

performance over many trials. In area of positioning technique, 

cumulative distribution functions (CDF) are commonly used to 

measure precision [40]. This research used CDF as well to 

measure the precision of the compared algorithm.  

The third indicator is the robustness of the accuracy along 

depth image coverage. When precision measures the robustness 

toward the number of trials, this third metric measures the 

robustness of the accuracy of the algorithm along depth image 

coverage. It considers how consistent the accuracy of distance 

calculation algorithm from the close distance of the obstacle 

until the distance of the obstacle reaches the coverage limit of 

RGB-D camera. It is important because the pixel accuracy of 

Kinect’s depth image decreases when the distance between 

scene and sensor increases  [41]. Thus, basically, the accuracy 

of distance calculation algorithm may decrease when distance 

of the observed object increases. From Kinect’s point of view, 

it may happen because of the missing depth information in 

depth image. Whereas, a positioning technique with high 

robustness should function normally even when some signals 

are not available [40]. Therefore, this indicator is significant to 

evaluate the performance of the compared algorithm. 

The last indicator is execution time. It is a metric to measure 

how fast the algorithm works in the real-time conditions. The 

algorithm was executed on notebook with Intel processor core 

i3 1.8 GHz and 4 MB of RAM. 

2)  GLYPH RECOGNITION 

The glyph recognition experiment was conducted using five 

different patterns of glyphs and two different sizes of glyphs, 

namely 6 × 6 cm (glyph A) and 11.5 × 11.5 cm (glyph B). It 

was done to find out the best glyph size used in the context of 

persons with visual impairment so that the system could 

recognize the glyph at an acceptable distance from the persons 

with visual impairment. This experiment tried to recognize 

glyphs for each 300 mm range from the RGB-D camera until 

the maximum distance the system could not recognize the 

glyph anymore. For each 300 mm distance, the glyphs were 

tested in two different scenarios: normal and tilted conditions. 

Normal condition means the glyph is recognized in the 

perpendicular direction toward the RGB-D camera. In this 

scenario, the glyph was tested in four different positions: ideal 

position (not rotated), rotated clockwise 90°, rotated clockwise 

180°, and rotated clockwise 270°. The sample of this 

experiment can be seen in Figure 6(a). 

In tilted conditions, the system attempts to recognize the 

glyph position that is not perpendicular to the RGB-D camera. 

This experiment was conducted because, in actual 

implementation, the RGB-D camera was moving along with 

persons with visual impairment, causing the glyph to not 

always be visible perpendicular to the RGB-D camera. In this 

scenario, the glyphs were tested in four different positions; 

namely, the glyph was tilted 45° to the left-back, right-back, 

top-back, and bottom-back. The sample of this experiment can 

be seen in Figure 6(b). 

In order to evaluate the two types of glyphs mentioned 

before, two performance indicators were used, namely 

accuracy and execution time. Accuracy compares how many 

times the system can recognize the glyph with the number of 

trials for each 30 cm range. The value is measured in 

percentage. Meanwhile, execution time measures how fast the 

system execute the algorithm, starting from color image 

acquisition to glyph recognition. 

C. RESULTS 

1)  OBSTACLE DETECTION 

Figure 7(a) depicts each compared algorithm’s average 

distance calculation errors. It can be seen that AADT has the 

smallest average distance errors compared to the others. The 

average error of AADT was 50.2 mm, with a standard deviation 

of 87.7 mm. Besides the comparison of average distance errors 

among those algorithms, the researchers were also interested in 

observing the difference in average distance errors when the 

floor was detected (at a distance farther than 2,500 mm) and not 

detected. The aim is to find out whether AADT could finally 

resolve the drawbacks of AAT. It can be seen in Figure 7(b) 

 

(a) 

 

(b) 

Figure 6. Experiment of glyph recognition, (a) in normal condition and (b) in 
tilted condition. 

 

 

 

 

 (a) (b) 

Figure 7. Graphs of, (a) average error of distance calculation for each obstacle 
detection algorithm and (b) comparison of average distance errors for each 
algorithm when the floor is detected and not. 
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that when the floor was detected, all of the compared 

algorithms had worse distance calculations than when the floor 

was not detected. The baseline was taken from the previous 

paper [5]. It was calculated based on the average depth within 

each block. The baseline value will have large errors, especially 

when the values of nearby pixels are divergent. 

AAT struggles when it cannot separate the object and the 

floor before it, especially when the floor is detected at a 

distance exceeding 2,500 mm. The average error of AADT was 

below 100 mm for both conditions, far better than the baseline 

approach and AAT. 

In regard to precision, Figure 8 depicts the CDF of error 

calculation of baseline, AAT, and AADT algorithms. Based on 

Figure 7(a), the standard deviation of AADT was 87.7 mm, so 

the maximum value of error calculation considered normal was 

within the range of 0 to 137.9 mm. 

However, it can be observed in Figure 8 that 93.5% of errors 

of AADT were below 100 mm. Thus, over 108 trials, most of 

them resulted in low error distance calculation. Even AAT only 

had a location precision of 53.7% in 100 mm (the CDF of 

distance error of 100 mm was 0.537). So, AADT is the most 

precise one. 

The accuracy of the distance calculation algorithm often 

decreases when the distance of the observed object increases. It 

means that the value of errors in calculating nearby objects will 

be smaller than the farther one. Figure 9 depicts the robustness 

of the compared algorithm against this issue. Based on Figure 

9, the accuracy of the baseline approach was still acceptable at 

a distance of 2,000 mm; beyond this distance, the average 

distance errors were too high. At a distance of 2,500 mm or less, 

AAT performed very well with average distance errors below 

200 mm. However, if farther than that distance, the average 

distance errors became higher even reached more than 600 mm 

at a distance of 3,500 mm. While in AADT, from the closest 

distance to the coverage limit of RGB-D camera, the average 

distance errors were constantly below 150 mm. The range of 

AADT’s average errors from the first to the last distance of 

measurement was only 103.3 mm. Therefore, the accuracy of 

AADT’s distance calculation decreased by approximately 21.3 

mm for every 500 mm of the increasing distance of the obstacle 

from the RGB-D camera. 

The last performance indicator is execution time. Table I 

shows the comparison of execution time between the baseline 

approach, AAT, and AADT. The baseline approach and AAT 

had similar average execution times, approximately 7 ms, with 

a standard deviation of 1 to 1.5. While AADT had a slower 

average execution time of 9.5 ms, with a standard deviation of 

3.61. It had only a slight difference compared to the other 

algorithms. Based on the described performance evaluation, it 

is concluded that AADT is better than the other algorithms 

regarding accuracy, precision, and robustness toward the 

increasing distance of obstacles. However, it is slower in 

execution time with only small differences. 

2)  GLYPH RECOGNITION 

Figure 10 depicts a comparison of the average accuracy of 

glyph recognition between glyph A (6 × 6 cm) and glyph B 

(11.5 × 11.5 cm) for every distance in trials. Figure 10 shows 

that glyph B still had an average accuracy beyond 90% when 

the glyph distance from the RGB-D camera reached 120 mm. 

The average accuracy for glyph A at a distance of 120 mm was 

0%, as no glyph could be detected. The accuracy of glyph A 

decreased significantly at a distance of 600 mm or beyond. In 

contrast, the accuracy of glyph B fell to unacceptable accuracy 

for persons with visual impairment at a distance of 150 mm or 

beyond. 

Based on Figure 10, it can be concluded that: 

• The accuracy of the glyph recognition is inversely 

proportional with the distance of glyph from the RGB-

D camera. It means that the accuracy decreases when 

the distance increases. 

• The size of the glyph is proportional with the accuracy 

of the glyph recognition. Thus, the larger the size of the 

 

Figure 8. Cumulative distribution function (CDF) of distance calculation errors 
over many trials. 

 

Figure 9. Robustness of the algorithm accuracy toward the increasing distance of 
the obstacle, along RGB-D camera coverage. 

 

 

TABLE I 

AVERAGE EXECUTION TIME OF BASELINE APPROACH, AAT, AND AADT 

Algorithm 
Average Execution 

Time (ms) 
Standard Deviation 

Baseline 7.41 1.19 

AAT 7.05 1.22 

AADT 9.50 3.61 

 

Figure 10. Comparison of average accuracy of glyph recognition between glyph 
A (6 x 6 cm) and glyph B (11.5 x 11.5 cm) for every distance in trials. 
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glyph is, the better the accuracy of the glyph recognition 

for each trial distance. 

• Glyph B is better used than glyph A because it has high 

accuracy at distances of 100 to 1,500 mm. Therefore, 

INVys implements sound notification at those distances. 

Thus, persons with visual impairment can recognize the 

glyph before colliding with it. 

• Based on the third point, the average accuracy of glyph 

B from distance 300 to 1,500 mm, that is 91%. This 

outcome is far better than glyph A that could only 

achieve 38.5% average accuracy at same distance. 

• With the result of the fourth point, the minimum glyph 

size that practically effective in the context of indoor 

navigation for persons with visual impairment, that is 

11.5 × 11.5 cm or beyond. 

Table II details the average recognition execution time for 

both glyphs A and B. The execution time of glyph B was faster 

than that of glyph A, despite the fact that both values were less 

than 100 ms. Therefore, glyph B is not only better recognized 

but also quicker. However, the difference is so minute as to be 

insignificant. 

The glyph recognition analyzed the accuracy in both tilted 

and nontilted glyph types. Figure 11 depicts the comparison of 

glyph recognition accuracy between tilted glyphs and nontilted 

glyphs in both types of glyphs A and B. It indicates which 

condition that contributes more to decreasing the overall 

recognition accuracy. From Figure 11(a), a tilted glyph has 

lower recognition accuracy than nontilted glyph in most 

distances of glyph recognition trials. This result is readily 

apparent in Figure 11(b).  At a distance between 1,200 mm and 

1,800 mm from the RGB-D camera, the tilted glyph B had a 

lower accuracy than the non-tilted glyph B. Even the difference 

is quite significant. At a distance of 1500 mm, a nontilted glyph 

still had 100% accuracy, while a tilted glyph had only 30% 

accuracy. Tilted glyphs have a more significant impact on 

reducing overall glyph recognition accuracy than nontilted 

glyphs. 

VII. CONCLUSION AND FUTURE WORKS 

In this paper, INVys impairment using the RGB-D camera 

have been presented as an indoor navigation system for persons 

with visual impairment. INVys uses a depth camera to perform 

micronavigation function and utilizes color camera for 

macronavigation function. In micronavigation, INVys 

proposes AADT algorithm in detecting obstacle.  

Experiments demonstrated that AADT outperformed other 

algorithms in terms of accuracy (50.2 mm distance errors), 

precision (95% errors in trials were below 100 mm), and 

robustness toward the increasing distance of obstacle (the 

average distance errors was constantly below 150 mm from the 

closer distance to the coverage limit of the RGB-D camera). 

The sole performance indicator that AADT performed worse 

on than other algorithms was execution time; however, the 

difference was so small (approximately 3 ms) so it can be 

ignored. 

In regards of macronavigation function, INVys recognizes 

optical glyph as marker of interest points or navigational signs 

that is collocated in indoor environment using automatic glyph 

binarization method. Trials with two different sizes of glyph, 

namely glyph A (6 × 6 cm) and glyph B (11.5 × 11.5 cm), 

indicate that glyph B had an average accuracy of 91% from 

distance 300 to 1,500 mm, far better than glyph A that had an 

average accuracy of 38.5% at the same distance. For future 

development, it would be great to add a positioning system and 

path planning function that does not rely on any markers. It can 

be used to guide persons with visual impairment to walk step 

by step from one place to another place seamlessly. 
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