
Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 1 February 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Syafriyadi Nor: Automatic Liquid-Filling Machine Using ...

© Jurnal Nasional Teknik Elektro dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Translation of article 10.22146/jnteti.v14i1.7058

Automatic Liquid-Filling Machine Using Arduino and
LabVIEW
Syafriyadi Nor1, Zaiyan Ahyadi1

1 Electrical Engineering Study Program, Department of Electrical Engineering, Politeknik Negeri Banjarmasin, Banjarmasin, Kalimantan Selatan 70123, Indonesia

[Submitted: 5 February 2024, Revised: 3 May 2024, Accepted: 24 February 2025]

Corresponding author: Zaiyan Ahyadi (email: z.ahyadi@poliban.ac.id)

ABSTRACT — The automatic liquid-filling machine plays a vital role in improving efficiency and productivity in modern

manufacturing and packaging industries. However, challenges such as high costs, complexity, and limited technical

knowledge often hinder its adoption. This research aimed to develop an educational system that is simple, affordable, and

easy to implement, helping students grasp the fundamental principles and real-world applications of automatic liquid-filling

machines. The system integrates LabVIEW for visual processing and an Arduino Nano microcontroller with the Modbus

remote terminal unit (RTU) protocol to simulate industrial communication standards. LabVIEW controls the conveyor belt,

filling, and capping processes using ladder logic while recording the number of filled bottles. The Arduino microcontroller

manages conveyor belt operations and allows users to set volume and bottle count via a keypad. Serial communication

between LabVIEW and Arduino through Modbus RTU provides hands-on experience in configuring industrial systems.

Experimental tests under various operational scenarios confirmed the system’s accuracy in filling bottles within a volume

range of 250–1,000 ml at a speed of 10 ml/s, handling up to five bottles per cycle. The system demonstrated stable operation

without disruptions. This research enhances instrumentation and control system education by offering an interactive, cost-

efficient learning tool. The successful use of Modbus RTU underscores its reliability in supporting automatic liquid-filling

machines while enriching students’ understanding of industrial automation.

KEYWORDS — Instrumentation, Arduino, LabVIEW, Filling Machine, Capping, Modbus.

I. INTRODUCTION

Automatic liquid-filling machines are widely used in

various industries, such as food, pharmaceuticals, chemicals,

and cosmetics, to fill liquids of different volumes and quantities

into containers. Precision in liquid-filling is essential to prevent

financial losses, while automation enhances efficiency and

quality in the industrial sector [1]. Manual liquid-filling

requires significant labor and time, reducing overall efficiency

and productivity [2]. Moreover, automation aims to improve

product quality, increase production rates, reduce labor

dependency, lower labor costs, minimize raw material wastage,

and reduce unproductive time [3].

Automatic liquid-filling machines function by filling liquid

into bottles, glasses, or cans. Additionally, these machines can

package various liquid products, such as mineral water, oil, soft

drinks, and wine, into bottled, glass, or canned packaging [4].

The machine automatically fills liquid into containers

according to pre-set volume and quantity parameters. With

Industry 4.0 advancements, these machines require minimal

human intervention in control processes [5], effectively

addressing workforce shortages [6].

The filling and capping processes in liquid product

manufacturing often face challenges, such as control issues

when errors or system failures occur [7]. Furthermore,

implementing automatic liquid-filling machine systems

requires complex hardware and software configurations to

adjust volume measurements and bottle counts. By integrating

software and hardware technologies such as LabVIEW and

Arduino microcontrollers, the implementation provides insight

into the liquid-filling process within packaging systems.

Additionally, the required devices are more cost-effective.

LabVIEW is a graphical programming language first

introduced by National Instruments in 1986 [8]. LabVIEW

programming does not involve textual code but uses dataflow

and graphical representations through block diagrams.

LabVIEW offers numerous features and advantages, including

ease of use, an intuitive interface, and real-time data processing

capabilities. Meanwhile, Arduino microcontrollers serve as an

open-source platform capable of controlling various machines

and systems [9]. Furthermore, Arduino microcontrollers are

cost-effective.

Research on automatic liquid-filling machines integrating

LabVIEW technology and Arduino microcontrollers remains

limited. The implementation of programmable logic controllers

(PLCs) as control processes has been explored in previous

studies [10]‒[14]. The design and implementation of automatic

liquid-filling systems using Arduino microcontrollers and

LabVIEW have also been investigated [15]‒[18]. Other studies

have developed systems for monitoring water turbidity,

temperature, and pH using a LabVIEW and Arduino interface

[19]. Besides Arduino, integration with LabVIEW can also be

achieved using a programmable logic controller (PLC). One

study developed a windscreen washer-filling machine system

using PLCs and LabVIEW [20]. The communication interface

between PLCs and LabVIEW employed open process control

(OPC). System monitoring was conducted using supervisory

control and data acquisition (SCADA) implemented through

LabVIEW’s data logging and supervisory control (DSC)

module. However, this study did not address the input

determination for volume measurements and bottle counts. The

integration between LabVIEW and Arduino was established

using the Modbus remote terminal unit (RTU) protocol [20].

The utilization of Modbus has become an industry-standard

protocol, facilitating hardware and software integration and

compatibility across various manufacturers, including Arduino

and LabVIEW. Therefore, this study aimed to design an

EN-62

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 1 February 2025

Syafriyadi Nor: Automatic Liquid-Filling Machine Using ... p-ISSN 2301–4156 | e-ISSN 2460–5719

industrial plant system for automatic liquid-filling machines

with volume measurement and bottle count inputs through a

keypad, utilizing LabVIEW and Arduino microcontrollers to

simulate real industrial processes.

 A novel aspect of this research is the integration of

LabVIEW and Arduino via the Modbus RTU protocol. The

Arduino microcontroller functions as the physical controller

operating the plant within LabVIEW. In similar studies, PLCs

have generally been used as hardware controllers. This

combination addresses accessibility limitations and the

availability of industry-relevant equipment. This research is

essential in assisting students in control system instrumentation

laboratory exercises and providing insights into the processes

within automatic liquid-filling machine systems.

II. SYSTEM DESIGN

In this study, a simulation plant for an automatic liquid-

filling machine system was designed using the LabVIEW 2017

application. Figure 1 presents the block diagram of the

automatic liquid-filling system, which consists of an Arduino

microcontroller, push buttons, a keypad, an LCD, LEDs, and

LabVIEW control. The Arduino is utilized to process input data

from the keypad and push buttons, while the LCDs the menu

interface and input data from the keypad. LEDs function as

indicators for commands from the push buttons. The LabVIEW

control receives control signals and executes the liquid-filling

process.

This system employs the Arduino Nano ATMega 328

microcontroller modules. The Arduino Nano features 22 digital

pins for input/output ports, 8 analog pins, and several serial

communication protocols, such as universal asynchronous

receiver-transmitter (UART), serial peripheral interface (SPI),

and inter-integrated circuit (I2C) [21]. The Arduino Nano is

equipped with two push buttons for start and stop functions,

along with two LEDs as indicators. A green LED indicates that

the conveyor belt is operating, while a red LED signifies that

the conveyor belt has stopped. To input the fill volume and the

number of bottles, a 3 × 4 keypad is used alongside a 16 × 2

LCD with an I2C module. To interface the push button and

keypad inputs with LabVIEW, the Arduino’s UART serial

protocol is connected to the LabVIEW serial protocol using the

National Instruments Virtual Instrument Software Architecture

(NI-VISA). NI-VISA is an application programming interface

(API) that provides serial communication programming

interfaces for National Instruments (NI) applications [22].

In LabVIEW control, the system design consists of a

conveyor belt, a proximity sensor for detecting the presence of

bottles as the conveyor belt moves, a liquid-filling machine

(FILLING), and a bottle-capping machine (CAPPING). These

machines are developed using the datalogging and supervisory

control (DSC) module, an add-on software module for

LabVIEW that facilitates the development of human-machine

interfaces (HMI).

Although LabVIEW is a graphical programming

environment based on block diagrams, this study implements

the control process for the automatic liquid-filling system

simulation using ladder logic. Ladder logic was selected

because it is commonly used in the development of PLC

software and has been widely implemented in industrial control

applications. In this context, ladder logic is used to construct

sequential logic for the conveyor belt process, including filling,

capping, and bottle counting. The control algorithm can be

programmed and structured based on ladder logic, while

counter and timer functions are adjusted according to the

programming rules in LabVIEW.

Figure 2 illustrates the ladder logic used for system control

in the LabVIEW block diagram. The operation of this plant is

as follows: when the start button is pressed, the control relay

(CR) activates and turns on the green (G) lamp as an indicator

that the conveyor belt is running to move bottles into and out

of the filling station. When proximity sensor 1 detects a bottle,

the conveyor belt stops to allow liquid-filling. The fill volume

is determined by the keypad input, which is transmitted by the

Arduino via serial communication.

Once the desired quantity of liquid has been dispensed, the

motor resumes conveyor belt operation. When proximity

sensor 2 detects a bottle, the conveyor belt stops again,

initiating the bottle-capping process. Once the capping process

is complete, the conveyor belt reactivates to move the bottle

forward. When proximity sensor 3 detects a bottle, the bottle is

subjected to a counting process.

The total counter resets to zero upon reaching a predefined

setpoint. The process stops when the stop button is pressed; the

 Figure 1. System block diagram of automatic liquid-filling machine.

Figure 2. Ladder logic on automatic liquid-filling machine system.

EN-63

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 1 February 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Syafriyadi Nor: Automatic Liquid-Filling Machine Using ...

G lamp turns off, and the red (R) lamp illuminates. All

components of the automatic liquid-filling machine system on

the LabVIEW Front Panel are displayed in Figure 3.

The control panel is used to control components within the

LabVIEW front panel. The LED indicators on the panel

illuminate simultaneously with the LEDs connected to the

Arduino. The conveyor belt is responsible for transporting

bottles to the filling station until the capping process is

complete. The proximity sensors detect bottle presence as the

conveyor belt moves. The filling display provides information

regarding the fluid flow rate into the bottle through a pipeline

or channel

Data from the Arduino is transmitted to LabVIEW using

serial communication. The filling machine fills liquid into

bottles when proximity sensor 1 detects a bottle, while the

capping machine caps bottles when proximity sensor 2 detects

a bottle. The counter display provides information on the

number of bottles detected by proximity sensor 3. A valve

serves as an indicator for the open or closed status during the

filling process.

The next stage involves programming in the Arduino IDE

to acquire data from push button and keypad readings and

subsequently display this data on the LCD. Additionally, a

selection menu is developed on the LCD, consisting of VIEW

and SET menus.

The SET menu function is used to input the fill volume into

bottles within a range of 0–1,000 ml. The fill volume is entered

by pressing numerical keys on the keypad “0” – “9.” Since the

keypad function returns values in char data type, conversion to

an integer is required. The conversion is performed using (1):

 𝑥 = 𝑥 × 10 + (𝑘𝑒𝑦−′0′). (1)

where x is an integer data type, 10 is a constant that is multiplied

by x to add 1 each time a key is pressed, and the key represents

a numerical value on the keypad “0” – “9,” adjusted by

subtracting the character “0” to obtain a decimal number from

the American Standard Code for Information Interchange

(ASCII) code. The character numbers “0” – “9” are converted

into decimal numbers “48”–“57.”

Once the fill volume is set, pressing the “*” symbol on the

keypad saves the value into a variable. The next step involves

inputting the number of bottles to be filled. Once this input is

confirmed, pressing the “*” symbol again saves both the fill

volume and the bottle count. The display then returns to the

VIEW menu, where the fill volume and bottle count variables

are displayed on the 16 × 2 LCD. When the START (1) or

STOP (0) push button is pressed, the stored data is transmitted

to LabVIEW using the Modbus RTU protocol.

This process enables LabVIEW to receive and process the

fill volume and bottle count data from the system, offering

enhanced flexibility and control in real-time monitoring and

parameter adjustment. With Modbus RTU integration, the

collected information can be efficiently accessed and utilized

in LabVIEW applications. To communicate using the Modbus

protocol on Arduino, a compatible library is required. In this

study, the ModbusRTUSlave library was used [23].

Figure 4 presents the Modbus RTU message structure,

which consists of the Slave ID (identification), function code,

data, and cyclic redundancy check (CRC). If the Slave ID and

CRC sections of a Modbus protocol are omitted, the resulting

data unit is known as a protocol data unit (PDU).

The Slave ID is a part of the Modbus protocol that specifies

the address of the Modbus slave device communicating with

the Modbus master device. Each Modbus slave device is

identified by a unique address known as the Slave ID.

Additionally, the Slave ID is used by the Modbus master device

to determine the target device for requests or instructions.

The function code is a numeric value identifying the type of

operation requested by the Modbus master or performed by the

Modbus slave. For instance, function code 03 reads a holding

register, while function code 06 writes to a holding register.

Function codes instruct the Modbus device on the action that

should be performed. Each function code has a specific

meaning and function in the context of Modbus operations.

Figure 3. Automatic liquid-filling machine system components on LabVIEW Front Panel.

EN-64

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 1 February 2025

Syafriyadi Nor: Automatic Liquid-Filling Machine Using ... p-ISSN 2301–4156 | e-ISSN 2460–5719

Table I presents a comprehensive list of the common function

codes within the Modbus protocol.

The data section in Modbus refers to information

transmitted or received through the Modbus protocol. These

data may include values from registers or other information

transmitted between Modbus master and slave devices. The

data stores the values required to execute the operation

according to the function code transmitted. For example, if the

function code is 03 (holding register), the data may contain

information about the address of the register to be read and the

number of registers to be fetched.

CRC is an error-checking method used to ensure data

integrity in Modbus communication. This process involves

calculating the CRC value from the data packet and including

this CRC value within the packet.

Since Arduino functions as a slave, it responds to messages

requested by LabVIEW, which operates as the master. The coil

reading data, volume measurement, and bottle count are stored

in variables. The CR variable is a Boolean data type

representing two conditions: a value of 0, which signifies a

STOP command, and a value of 1, which indicates a START

command. To access and read this data, function code 01 is

applied. Meanwhile, the volume and bottle count variables are

of integer data type. The volume variable ranges from 0 to

1,000 ml, while the bottle count variable ranges from 0 to 10.

Although these ranges can be flexibly set as needed, in this

study, both variables are constrained within the predefined

range.

To store data from the volume and bottle variables, an array

data structure is utilized as a register. With this implementation,

the data contained in the array can be accessed and read using

function code 03.

Subsequently, LabVIEW sends a request to the slave

(Arduino) to access and read the data stored in the register. To

read coil data, the read coil block is used with an initial address

of 0 (00001), while to read volume measurement and bottle

count data, the Read Holding Registers block is employed with

an initial address of 0 (40001 for volume measurement, 40002

for bottle count).

At the initial stage of programming, supporting libraries

and variables for storing volume measurement and bottle count

values are declared. When the user presses the ‘*’ symbol on

the keypad, the selection switches to the SET option to

configure the volume measurement and bottle count values.

Subsequently, the selection returns to VIEW mode. From the

VIEW mode, the user can press the START or STOP button to

send data to LabVIEW.

The Arduino microcontroller programming flow begins

with the declaration of supporting libraries and variables used

to store volume measurement and bottle count values. Initially,

the system is in VIEW mode as the default mode. In this mode,

the user can monitor the previously configured volume

measurement and bottle count values.

If the user presses the ‘*’ symbol on the keypad, the system

switches to SET mode. In this mode, the user can input new

values for liquid volume measurement (in ml) and the desired

number of bottles. Once these values are saved, the system

automatically returns to VIEW mode.

From VIEW mode, the user has the option to start or stop

system operation. Pressing the START button on the push

button will send a coil value of 1 (ON) to the LabVIEW

software via the Modbus RTU communication protocol to

initiate the liquid-filling process. Conversely, pressing the

STOP button will send a coil value of 0 (OFF) to halt the

ongoing process. This flow ensures that the user has full control

over the system configuration and operation with a simple and

structured interface.

III. DESIGN AND SIMULATION RESULTS

The simulation of the automatic liquid-filling machine has

been designed in LabVIEW, utilizing hardware components

such as the Arduino microcontroller, push button, LED, 16 × 2

LCD, and a 3 × 4 keypad. The first step was assembling the

aforementioned components and hardware. Then, the program

was uploaded to the Arduino ATMega 328P microcontroller.

After uploading the program, the initial display showed the

VIEW menu, which presented the volume measurement and

bottle count values. When the “*” symbol was pressed on the

keypad, the menu switched to the SET menu. In the SET menu,

the user could input the volume measurement within the range

of 0 – 1,000 ml. After this, the “*” symbol was pressed to save

the volume and then display the bottle count or total number of

Figure 4. RTU Modbus message.

TABLE I

COMMON FUNCTION CODE IN MODBUS PROTOCOL

Function

Code
Description Function

01 Read Coils Reads the values of multiple

coils.

02 Read Discrete

Inputs

Read the values of multiple

discrete inputs.

03 Read Holding

Registers

Reads the values of multiple

holding registers.

04 Read Input

Registers

Reads the values of multiple

input register.

05 Write Single

Coil

Writes a value to a single coil.

06 Write Single

Register

Writes a value to a single

register.

15 Write Multiple

Coils

Writes values to multiple coils.

16 Write Multiple

Registers

Write values to multiple

registers.

 (a) (b)

Figure 5. Process of inputting values, (a) volume measurement, (b) number of
bottles.

EN-65

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 1 February 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Syafriyadi Nor: Automatic Liquid-Filling Machine Using ...

bottles. Next, the ‘*’ symbol was pressed again to save the input

data, and the display returned to the VIEW menu.

The process of entering volume measurement and bottle

count values using the keypad is illustrated in Figure 5. Three

variables are transmitted via Arduino serial communication:

the CR variable, which holds the state 0 or 1 from the push

button; the volume variable 0 – 1,000 ml; and the bottle count

variable 0 – 10 bottles. However, in this study, the number of

bottles is limited to five.

Data reception by LabVIEW was conducted via Modbus

RTU and Virtual Instrument Software Architecture (VISA) in

LabVIEW. The automatic liquid-filling machine program

employed a block diagram in LabVIEW. Each block was

interconnected, forming a data flow consistent with ladder

logic. Figure 6 only displays a partial screenshot of the entire

block diagram.

Modbus Create Master Instance is a function or block in

LabVIEW used to instantiate a Modbus master. This

instantiation can be either a serial or TCP Modbus master. The

parameters used include the type of serial connection (such as

RTU or ASCII), the Modbus slave device address, the VISA

resource name for serial communication, the data transfer rate

(baud rate), and the error-checking method (parity) to ensure

data integrity.

Read Coils is a block used to read the status of multiple

coils (relays or switches) in the Modbus slave device. In this

study, this block was used to read the value of the CR variable.

The Modbus master can obtain information about the relay or

switch status on the Modbus slave device by configuring

parameters such as the starting address of the coil to be read,

the number of coils to be read, and the values representing the

on/off status of the coils that had been read.

The Index Array function was used to read values based on

array indices. Read Holding Registers were utilized to read

values from holding registers in the Modbus slave device.

Holding registers serve as memory locations that store data

accessible and modifiable by the Modbus master. The

parameters include the starting address of the holding register,

the number of holding registers to be read, and the register

values. The output from this block is typically an array or a set

of values, where each array element contains a value from one

holding register. The Array to Cluster function converted a 1D

array into a group of elements of the same type as the array

elements, while the Unbundle function was used to separate the

Figure 6. Modbus block diagram in LabVIEW.

 (a) (b) (c) (d)

Figure 7. Process simulation results on the LabVIEW front panel, (a) filling, (b) capping, (c) counting, (d) number of bottles.

EN-66

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 1 February 2025

Syafriyadi Nor: Automatic Liquid-Filling Machine Using ... p-ISSN 2301–4156 | e-ISSN 2460–5719

cluster into individual elements. These elements (such as

volume and bottle count) served as set points. Logical functions

such as AND, OR, and NOT are represented in the control logic

shown in Figure 2 in the block diagram.

The Case Structure was used to control program execution

flow based on specific conditions. In this context, a subdiagram

was utilized to operate the bottles on the conveyor belt.

Figure 7 illustrates the test results on the LabVIEW front

panel with a volume measurement of 250 ml. When the START

button is pressed, the Arduino sends a command signal (1) to

activate the green LED, followed by initiating the conveyor belt.

The bottles are arranged and positioned on the conveyor belt,

which moves towards the filling machine. When proximity

sensor 1 detects the presence of a bottle, the conveyor belt stops.

The bottle-filling machine then operates by dispensing liquid

into the bottle automatically at a rate of 10 ml/s. The valve

opens, allowing the liquid to be poured into the bottle through

a nozzle connected to the liquid tank. The volume of the

dispensed liquid corresponds to the predetermined

measurement. To determine the response time required to fill a

volume of 250 ml, (2) is used:

 𝑡𝑖𝑚𝑒 =
𝑣𝑜𝑙𝑢𝑚𝑒

𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
=

250 𝑚𝑙

10 𝑚𝑙/𝑠
= 25 𝑠. (2)

After the bottle had been filled according to the specified

volume, the conveyor belt resumed movement toward the

capping machine. When proximity sensor 2 detected the

presence of a bottle, the capping machine operated by placing

a cap on the bottleneck and pressing it down automatically until

it was securely sealed. Subsequently, the conveyor belt

continued moving toward the bottle-counting process.

Bottles passing through a proximity sensor 3 were counted.

This sensor was programmed to count the number of bottles

that have been filled and sealed. The system halted once the

desired number of bottles was reached, as defined by the data

previously set and transmitted by the Arduino.

Figure 8 illustrates the time required for the simulation to

fill bottles with four different volume measurements. The

testing was conducted with input volume measurements of 250

ml, 500 ml, 750 ml, and 1,000 ml, with a total of five bottles.

The set points on the LabVIEW front panel accurately

correspond to the predefined volume measurements and bottle

counts entered via the keypad. The results displayed on the

LabVIEW front panel do not specify the type of liquid used

during the bottle-filling process. The developed control system

visualizes the input data determination process for volume

measurements and bottle counts via the keypad, as well as the

control process for the conveyor belt, filling, capping, and

counting on the LabVIEW front panel.

IV. CONCLUSION

This study has demonstrated that the integration of

LabVIEW and microcontrollers can effectively simulate an

automatic liquid-filling machine system. The system provides

precise control over volume measurement and bottle count,

ensuring that each container is filled according to the specified

inputs of 250 ml, 500 ml, 750 ml, and 1,000 ml. The use of

LabVIEW as a plant design tool resembling industrial

processes, along with seamless integration with the Arduino

microcontroller, has been successfully implemented.

Communication between LabVIEW and Arduino in this study

was conducted using the Modbus RTU protocol, which ensures

stable and reliable data exchange, guaranteeing accurate and

efficient communication. This highlights the potential of this

system as a supporting tool for control system instrumentation

practices. Further development and system optimization could

lead to broader adoption in various industrial plant applications.

CONFLICTS OF INTEREST

The authors declare that there is no conflict of interest in the

research and preparation of this paper.

AUTHORS’ CONTRIBUTION

Conceptualization, Syafriyadi Nor and Zaiyan Ahyadi;

methodology, Syafriyadi Nor; software, Syafriyadi Nor;

validation, Syafriyadi Nor and Zaiyan Ahyadi; formal analysis,

Syafriyadi Nor; investigation, Syafriyadi Nor and Zaiyan

Ahyadi; resources, Syafriyadi Nor and Zaiyan Ahyadi; data

curation, Syafriyadi Nor and Zaiyan Ahyadi; writing-original

drafting, Syafriyadi Nor; writing-reviewing and editing, Zaiyan

Ahyadi; visualization, Syafriyadi Nor and Zaiyan Ahyadi.

ACKNOWLEDGMENT

The authors would like to express their gratitude to the

Microprocessor Laboratory of Politeknik Negeri Banjarmasin

for providing the necessary facilities and support for this

research.

REFERENCES

[1] S.K. Das et al., “Design, development and FEA analysis of multi-sized

bottle filling system,” in 2023 Int. Conf. Integr. Comput. Intell. Syst.
(ICICIS), 2023, pp. 1–5, doi: 10.1109/ICICIS56802.2023.10430283.

[2] R.L.W. Koggalage, A.G.M.I.S. Wijesinghe, H.P.S.S. Caldera, and R.R.

Samarawickrama, “Design and implementation of an automated multi-

purpose filling and capping machine,” in 2021 From Innov. To Impact

(FITI), 2021, pp. 1–5, doi: 10.1109/FITI54902.2021.9833035.

[3] M.M. Khan et al., “Simulation of PLC ladder logic programming for an

automated glass bottle molding and refilling plant,” in 4th Smart Cities
Symp. (SCS 2021), 2021, pp. 114–119, doi: 10.1049/icp.2022.0324.

[4] M.F. Rahaman, S. Bari, and D. Veale, “Flow investigation of the product

fill valve of filling machine for packaging liquid products,” J. Food Eng.,

vol. 85, no. 2, pp. 252–258, Mar. 2008, doi:

10.1016/j.jfoodeng.2007.07.020.

[5] K.S. Kiangala and Z. Wang, “An Industry 4.0 approach to develop auto
parameter configuration of a bottling process in a small to medium scale

industry using PLC and SCADA,” in 2nd Int. Conf. Sustain. Mater.

Process. Manuf. (SMPM 2019), 2019, pp. 725–730, doi:
10.1016/j.promfg.2019.06.015.

[6] G. Selvaraj, R. Karthikeyan, S. Brindha, and K. Kumar S, “Low cost

assorted sized bottles automated liquid filling system using SCADA,” in

2023 Intell. Comput. Control Eng. Bus. Syst. (ICCEBS), 2023, pp. 1–4,

doi: 10.1109/ICCEBS58601.2023.10448914.

Figure 8. Response time to volume measurement.

EN-67

Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Volume 14 Number 1 February 2025

p-ISSN 2301–4156 | e-ISSN 2460–5719 Syafriyadi Nor: Automatic Liquid-Filling Machine Using ...

[7] A. Mahrez et al., “Design a PLC-based automated and controlled liquid

filling-capping system,” in 2022 Int. Eng. Conf. Elect. Energy Artif. Intell.
(EICEEAI), 2022, pp. 1–5, doi: 10.1109/EICEEAI56378.2022.10050478.

[8] C. Elliott, V. Vijayakumar, W. Zink, and R. Hansen, “National

instruments LabVIEW: A programming environment for laboratory

automation and measurement,” J. Lab. Autom., vol. 12, no. 1, pp. 17–24,

Feb. 2007, doi: 10.1016/j.jala.2006.07.012.

[9] Arduino. “What is Arduino? | Arduino.” Access date: 20-Feb-2023.

[Online]. Available: https://www.arduino.cc/en/Guide/Introduction

[10] M.L. Ahmed, S. Kundu, and M. Rafiquzzaman, “Automatic bottle filling

system using PLC based controller,” J. Adv. Mech., vol. 4, no. 1, pp. 17–
24, Mar. 2019.

[11] R. Sureshkumar et al., “IoT based bottle filling system using PLC,” in

2023 Int. Conf. Energy Mater. Commun. Eng. (ICEMCE), 2023, pp. 1–5,

doi: 10.1109/ICEMCE57940.2023.10433948.

[12] A. Kumar M and H.P. Kumar, “Automatic bottle filling system using

PLC,” Int. J. Trend Sci. Res. Dev. (IJTSRD), vol. 2, no. 1, pp. 361–364,

Nov./Dec. 2017, doi: 10.31142/ijtsrd5953.

[13] G.A. Laksmana, P. Santoso, and F. Pasila, “Aplikasi untuk memonitor

PLC pada mesin filling dan capping,” J. Tek. Elekt., vol. 10, no. 2, pp.
48–53, Sep. 2017, doi: 10.9744/jte.10.2.48-53.

[14] D. Patil, “Automatic bottle filling, capping and labelling system using

PLC based controller,” Ilkogretim, vol. 20, no. 1, pp. 5750–5761, 2021,

doi: 10.17051/ilkonline.2021.01.604.

[15] O.I. Abdullah, W.T. Abbood, and H.K. Hussein, “Development of

automated liquid filling system based on the interactive design approach,”
FME Trans., vol. 48, no. 4, pp. 938–945, Aug. 2020, doi:

10.5937/fme2004938A.

[16] M. Aria et al., “Virtual simulation system with various examples and

analysis tools for programmable logic controller training,” in 3rd Int.
Conf. Inform. Eng. Sci. Technol. (INCITEST 2020), 2020, pp. 1–7, doi:

10.1088/1757-899X/879/1/012108.

[17] A. El Hammoumi et al., “Real-time virtual instrumentation of Arduino

and LabVIEW based PV panel characteristics,” in Int. Conf. Renew.

Energies Energy Effic. (REEE'2017), 2018, pp. 1–11, doi: 10.1088/1755-
1315/161/1/012019.

[18] R.M. Shrenika et al., “Non-contact water level monitoring system

implemented using LabVIEW and Arduino,” in 2017 Int. Conf. Recent

Adv. Electron. Commun. Technol. (ICRAECT), 2017, pp. 306–309, doi:

10.1109/ICRAECT.2017.51.

[19] Y.K. Taru and A. Karwankar, “Water monitoring system using Arduino

with LabVIEW,” in 2017 Int. Conf. Comput. Methodol. Commun.
(ICCMC), 2017, pp. 416–419, doi: 10.1109/ICCMC.2017.8282722.

[20] M. Gharte, “Automation of soap windscreen washer filling machine with

PLC and LabVIEW,” in Int. Conf. Autom. Control Dyn. Optim. Tech.

(ICACDOT), 2016, pp. 469–472, doi: 10.1109/ICACDOT.2016.7877630.

[21] Arduino. “Arduino ® Nano Arduino ® Nano Features.” Access date: 6-

Feb-2024. [Online]. Available: https://docs.arduino.cc/hardware/nano/

?_gl=1*pj02od*_up*MQ..*_ga*MTA0NDA1MDQ1Ni4xNzQyMzUz
MDcy*_ga_NEXN8H46L5*MTc0MjM1MzA2OS4xLjAuMTc0MjM1

MzA2OS4wLjAuMTg0Mjc5MDA0Mg..#tech-specs

[22] LabVIEW, National Instruments, Austin, TX, USA, 1998.

[23] C.M. Bulliner. “ModbusRTUSlave.” Access date: 6-Feb-2024. [Online].

Available: https://github.com/CMB27/ModbusRTUSlave

EN-68

